×
11.03.2019
219.016.dd83

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СООТНОШЕНИЯ ФАЗ В СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металловедения, в частности к способам определения соотношения фаз в феррито-перлитных сталях. Сущность: подготавливают гладкий участок поверхности исследуемого образца стали. В качестве рекомендуемого усилия на индентор принимают усилие, полученное в результате определения микротвердости эталонного образца, выполненного из стали, марка которой соответствует марке стали исследуемого образца, и соответствующее гистограмме значений микротвердости эталонного образца, имеющей выраженное двухмодальное распределение. Измерения микротвердости выполняют не менее чем в 50 случайных точках подготовленного гладкого участка поверхности исследуемого образца и пошагово не менее трех раз: сначала с рекомендуемым усилием на индентор, потом с усилием, большим и меньшим от рекомендуемого на 3-5 Н. Строят гистограммы, соответствующие измерениям микротвердости исследуемого образца на каждом шаге измерений, а соотношение фаз определяют по гистограмме, имеющей двухмодальное распределение значений микротвердости исследуемого образца, путем соотношения площадей гистограммы, соответствующих каждой фазе. Если двухмодальное распределение имеют несколько построенных гистограмм, то при определении соотношения фаз используют результаты измерений, полученные при наибольшем усилии на индентор. Технический результат: расширение арсенала способов определения соотношения фаз в стали при сохранении необходимой точности и достоверности определяемых при осуществлении заявленного способа параметров. 3 ил.

Изобретение относится к области металловедения, в частности к способам определения соотношения фаз в феррито-перлитных сталях.

Известен способ определения соотношения фаз в стали линейным методом Розиваля, заключающийся в полировании и травлении поверхности исследуемого сплава, получении микрофотографий поверхности, проведении на микрофотографии отрезков, пересекающих несколько фаз, расчете суммарных длин отрезков, приходящихся на каждую фазу, и определении соотношения фаз, равного отношению суммарных длин отрезков, пересекающих каждую фазу (см. Металловедение и термическая обработка стали: справочник. В 3 т. Т.1, 2/под ред. М.Л.Бернштейна, А.Г.Рахштадта. - изд. 2-е, перераб. и доп.: М. - 1961. - 1656 с.).

Известен способ определения соотношения фаз в стали точечным методом Глаголева, заключающийся в полировании и травлении поверхности исследуемого сплава, получении микрофотографий поверхности, равномерном распределении точек на поверхности микрофотографии, подсчете точек, приходящихся на каждую фазу структуры. Отношение количества точек, соответствующих различным фазам, соответствует соотношению фаз в сплаве (см. Металловедение и термическая обработка стали: справочник. В 3 т. Т.1, 2/под ред. М.Л.Бернштейна, А.Г.Рахштадта. - изд. 2-е, перераб. и доп.: М. - 1961. - 1656 с.).

Недостатки известных способов следующие:

- необходимость специальной подготовки поверхности стали;

- сложность реализации способов на действующих объектах в условиях отрицательных температур, атмосферных осадков, вибрации и т.д., например на магистральных газонефтепроводах.

Наиболее близким и принятым в качестве прототипа является способ оценки фазового состава металлических и металлоподобных сплавов, заключающийся в подготовке микрошлифа, определении микротвердости фаз в исследуемом сплаве на основе справочных данных, определении при помощи микроскопа среднего размера кристаллитов (зерен), расчете необходимой нагрузки на индентор микротвердомера, многократном измерении микротвердости поверхности металла, построении кривой в координатах «микротвердость - частота появления фаз», по которой определяют количество точек измерения, соответствующих каждой фазе, и рассчитывают соотношение фаз (см. а.с. СССР №1668903, МПК5 G01N 3/00, опубл. 07.08.1991).

Прототипу присущи недостатки описанных выше решений, кроме этого, применение микроскопа привносит в конечные результаты измерений неточности, связанные с субъективным восприятием размеров кристаллитов конкретным исследователем, а фактические свойства тестируемого металла могут значительно отличаться от сертификатных и справочных данных, что в совокупности снижает точность определения необходимой нагрузки на индентор микротвердомера.

Задачей изобретения является создание способа определения соотношения фаз в стали, устраняющего недостатки прототипа.

Технический результат заключается в расширении арсенала способов определения соотношения фаз в стали при сохранении необходимой точности и достоверности определяемых при осуществлении заявленного способа параметров.

Поставленная задача и технический результат при реализации способа определения соотношения фаз в стали, заключающегося в подготовке гладкого участка поверхности исследуемого образца стали, определении рекомендуемого усилия на индентор, многократном измерении микротвердости, построении гистограмм микротвердости, определении соотношения фаз по отношению количества точек измерения микротвердости, соответствующих каждой фазе, соответственно решается и достигается тем, что в качестве рекомендуемого усилия на индентор принимают усилие, полученное в результате определения микротвердости эталонного образца, выполненного из стали, марка которой соответствует марке стали исследуемого образца, и соответствующее гистограмме значений микротвердости эталонного образца, имеющей выраженное двухмодальное распределение; измерения микротвердости выполняют не менее чем в 50 случайных точках подготовленного гладкого участка поверхности исследуемого образца и пошагово не менее трех раз: сначала с рекомендуемым усилием на индентор, потом с усилием, большим и меньшим от рекомендуемого на 3-5 Н; далее строят гистограммы, соответствующие измерениям микротвердости исследуемого образца на каждом шаге измерений, а соотношение фаз определяют по гистограмме, имеющей двухмодальное распределение значений микротвердости исследуемого образца, путем соотношения площадей гистограммы, соответствующих каждой фазе, при этом если двухмодальное распределение имеют несколько построенных гистограмм, то при определении соотношения фаз используют результаты измерений, полученные при наибольшем усилии на индентор.

В качестве пояснения следует привести следующее. При определении соотношения фаз в сплавах методом измерения микротвердости важным условием является определенное соотношение размеров отпечатка индентора и зерен металла, которое зависит от твердости (прочности) фаз, усилия на индентор и размера зерна. Если размер отпечатка будет много больше размера зерна, не удастся интерпретировать полученную гистограмму, поскольку она будет соответствовать одномодальному распределению. Способ может быть осуществим, если размер отпечатка сопоставим или меньше размера зерна, в этом случае полученная гистограмма имеет двухмодальное распределение с модами, соответствующими наиболее вероятной твердости каждой фазы. С другой стороны, избыточно малый размер отпечатка накладывает особые требования к качеству подготовки поверхности измерения.

На фиг.1-3 показаны гистограммы чисел микротвердости, измеренных на стали 17Г1С с усилием на инденторе 15 (фиг.1), 10 (фиг.2) и 5Н (фиг.3).

Способ реализуется следующим образом.

Экспериментально на эталонном образце, выполненном из стали, марка которой соответствует марке стали исследуемого образца, в лабораторных условиях определяют рекомендуемое значение усилия на инденторе микротвердомера, при котором гистограмма значений микротвердости имеет выраженное двухмодальное распределение. Шлифованием подготавливают гладкий участок поверхности исследуемого образца стали. Измеряют микротвердость подготовленного участка поверхности исследуемого образца стали не менее 50 раз в случайных точках участка с рекомендуемым усилием на индентор. Измеряют микротвердость подготовленного участка поверхности исследуемого образца стали не менее 50 раз в случайных точках участка с усилием на индентор на 3-5 Н больше рекомендуемого значения. Измеряют микротвердость подготовленного участка поверхности исследуемого образца стали не менее 50 раз в случайных точках участка с усилием на индентор на 3-5 Н меньше рекомендуемого значения. Строят гистограммы статистического распределения чисел микротвердости, измеренных на каждом шаге измерений. Определяют среди полученных гистограмм гистограмму, имеющую двухмодальное распределение. Определяют моды выбранной гистограммы, соответствующие различным фазам. Определяют площади гистограммы, соответствующие каждой фазе. По соотношению площадей гистограммы определяют соотношения фаз в исследуемом образце стали. В случае если двухмодальное распределение имеют несколько гистограмм, используют результаты измерений, полученные при наибольшем усилии на индентор.

Пример

Необходимо определить соотношение фаз металла действующего надземного газопровода обвязки компрессорного цеха компрессорной станции, изготовленного из труб стали марки 17Г1С.

Тестированием в лабораторных условиях микротвердости эталонных образцов стали марки 17Г1С с различным усилием на индентор получают, что двухмодальный вид распределения имеет гистограмма, построенная по результатам измерения при усилии около 10Н, которое принимают в качестве рекомендуемого значения усилия на индентор.

На трубе удаляют фрагмент изоляционного покрытия размером 150×150 мм, готовят поверхность мелкозернистой наждачной бумагой до шероховатости поверхности не более Rz=10. Пошагово измеряют микротвердость шлифованной поверхности в различных точках исследуемого участка 140 раз, например используя ультразвуковой измеритель твердости с усилием на индентор 15, 10 и 5Н. С помощью программы Microsoft Excel строят гистограммы статистического распределения чисел микротвердости, соответствующие усилиям 15, 10 и 5Н (фиг.1-3). Устанавливают, что только гистограмма, построенная по результатам измерения при усилии 5Н (фиг.3) имеет двухмодальное распределение. Принимают, что мода со значениями микротвердости 195НВ соответствует средней твердости наименее прочной фазы - ферриту, со значениями 215НВ - перлиту.

Определяют площади гистограммы, соответствующие каждой фазе, например, путем подсчета количества измерений микротвердости, выполненных в фазе феррита и перлита в следующей последовательности.

Определяют интервал на гистограмме между модами с наименьшей частотой попадания значений микротвердости (205НВ, на фиг.3 обозначен штриховкой). Исключают интервал 205НВ из дальнейших расчетов, полагая, что эти значения микротвердости (в количестве 12 измерений) получены измерением на границе между фазами стали. Подсчитывают количество измерений, характеризующих фазу феррита, попадающих в интервалы 165-200НВ, и перлита, попадающих в интервалы 210-250НВ.

Устанавливают, что количество точек, соответствующих ферриту, - 62, перлиту - 66. Определяют, что относительная площадь феррита равна 62/(62+66)=0,48, перлита - 66/(62+66)=0,52. Следовательно, соотношение фаз феррита и перлита - 48:52.

Сравнение предлагаемого способа с оптическими способами показало высокую сходимость показаний (погрешность заявляемого способа для различных марок сталей составила не более 5%).

Способ определения соотношения фаз в стали, заключающийся в подготовке гладкого участка поверхности исследуемого образца стали, определении рекомендуемого усилия на индентор, многократном измерении микротвердости, построении гистограмм микротвердости, определении соотношения фаз по отношению количества точек измерения микротвердости, соответствующих каждой фазе, соответственно отличающийся тем, что в качестве рекомендуемого усилия на индентор принимают усилие, полученное в результате определения микротвердости эталонного образца, выполненного из стали, марка которой соответствует марке стали исследуемого образца, и соответствующее гистограмме значений микротвердости эталонного образца, имеющей выраженное двухмодальное распределение; измерения микротвердости выполняют не менее чем в 50 случайных точках подготовленного гладкого участка поверхности исследуемого образца и пошагово не менее трех раз: сначала с рекомендуемым усилием на индентор, потом с усилием большим и меньшим от рекомендуемого на 3-5 Н; далее строят гистограммы, соответствующие измерениям микротвердости исследуемого образца на каждом шаге измерений, а соотношение фаз определяют по гистограмме, имеющей двухмодальное распределение значений микротвердости исследуемого образца, путем соотношения площадей гистограммы, соответствующих каждой фазе, при этом если двухмодальное распределение имеют несколько построенных гистограмм, то при определении соотношения фаз используют результаты измерений, полученные при наибольшем усилии на индентор.
Источник поступления информации: Роспатент

Showing 71-80 of 160 items.
29.12.2017
№217.015.fd4f

Способ обезвреживания и утилизации нефтесодержащего шлама

Способ обезвреживания и утилизации нефтесодержащего шлама включает смешивание негашеной извести с нефтесодержащим шламом и поверхностно-активным веществом, затем осуществляют гашение извести путем добавления воды в количестве, необходимом для полного гашения извести, после гашения извести...
Тип: Изобретение
Номер охранного документа: 0002638019
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.0ea8

Ингибирующий буровой раствор (варианты)

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении набухающих неустойчивых глинистых пород. Технический результат - повышение ингибирующих свойств раствора и обеспечение стабильности...
Тип: Изобретение
Номер охранного документа: 0002633468
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0fb2

Установка абсорбционной подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. Установка...
Тип: Изобретение
Номер охранного документа: 0002633563
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.1206

Способ определения метанола в воде

Изобретение относится к аналитической химии и может быть использовано для определения метанола в воде методом газожидкостной хроматографии. Для этого проводят подготовку газового хроматографа с пламенно-ионизационным детектором к работе. Для лучшего разделения компонентов применяют насадочную...
Тип: Изобретение
Номер охранного документа: 0002634260
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1b47

Установка подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. Установка подготовки...
Тип: Изобретение
Номер охранного документа: 0002635946
Дата охранного документа: 17.11.2017
13.02.2018
№218.016.2172

Стенд для моделирования процессов течения наклонно-направленных газожидкостных потоков

Изобретение относится к нефтегазовой промышленности и может применяться для исследования газогидродинамических процессов, происходящих в скважинах газоконденсатных месторождений. Техническим результатом является повышение точности и достоверности проводимых на стенде исследований. Предлагаемый...
Тип: Изобретение
Номер охранного документа: 0002641337
Дата охранного документа: 17.01.2018
17.02.2018
№218.016.2aba

Стенд для испытания обетонированных труб

Изобретение относится к испытательной технике и может быть использовано для испытаний стальных обетонированных труб больших диаметров для магистральных газо- и нефтепроводов. Стенд содержит опоры и гидравлическую систему для нагружения испытуемой трубы изгибом. Стенд снабжен измерительной...
Тип: Изобретение
Номер охранного документа: 0002642881
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3017

Способ подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В способе...
Тип: Изобретение
Номер охранного документа: 0002645102
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3022

Способ абсорбционной подготовки природного газа

Изобретение относится к газовой промышленности, в частности к подготовке природного газа и извлечению нестабильного углеводородного конденсата из пластового газа, и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В способе...
Тип: Изобретение
Номер охранного документа: 0002645124
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.30d4

Способ исследования скважин при кустовом размещении

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении газогидродинамических исследований и эксплуатации газовых, газоконденсатных и нефтяных скважин. Технический результат изобретения - расширение функциональных возможностей, заключающихся в...
Тип: Изобретение
Номер охранного документа: 0002644997
Дата охранного документа: 15.02.2018
Showing 71-77 of 77 items.
21.05.2020
№220.018.1f7c

Способ определения срока вывода в ремонт анодного заземления

Изобретение относится к области электрохимической защиты от коррозии подземных трубопроводов. В начальный момент времени ввода установки катодной защиты УКЗ в эксплуатацию выполняют измерение значения сопротивления растеканию тока с анодного заземления, входящего в состав УКЗ участка...
Тип: Изобретение
Номер охранного документа: 0002721250
Дата охранного документа: 18.05.2020
31.05.2020
№220.018.22fa

Способ определения механических напряжений в стальном трубопроводе

Изобретение относится к области оценки технического состояния стальных трубопроводов и может быть использовано для определения механических напряжений, например, в стальных трубопроводах подземной прокладки. Сущность: осуществляют изготовление образца в виде полого цилиндра из материала,...
Тип: Изобретение
Номер охранного документа: 0002722333
Дата охранного документа: 29.05.2020
12.04.2023
№223.018.440e

Способ контроля напряженно-деформированного состояния заглубленного трубопровода

Изобретение относится к способам мониторинга состояния заглубленных трубопроводов. Измеренные с помощью N>3 волоконно-оптических распределенных сенсоров продольной деформации значения деформаций в точках крепления сенсоров к поверхности трубопровода с помощью модели деформации трубопровода...
Тип: Изобретение
Номер охранного документа: 0002729304
Дата охранного документа: 05.08.2020
12.04.2023
№223.018.448c

Способ определения коррозионной активности гликолей в теплообменном оборудовании

Изобретение относится к области исследований коррозионных процессов и может быть использовано при определении скорости коррозии стали и коррозионной активности гликолей в теплообменном оборудовании. Способ определения коррозионной активности гликолей в теплообменном оборудовании включает...
Тип: Изобретение
Номер охранного документа: 0002777000
Дата охранного документа: 29.07.2022
12.04.2023
№223.018.44a2

Способ редуцирования природного газа

Изобретение относится к области газораспределения, в частности снижения давления природного газа с использованием редуцирующего устройства, и может быть использовано на газораспределительных станциях магистральных газопроводов. Техническим результатом изобретения является уменьшение перепада...
Тип: Изобретение
Номер охранного документа: 0002770349
Дата охранного документа: 15.04.2022
12.04.2023
№223.018.45f3

Способ калибровки системы контроля напряженно-деформированного состояния заглубленного трубопровода

Изобретение относится к способам мониторинга состояния заглубленных трубопроводов. Для учета начальных напряжений, возникающих при сборке трубопровода путем сварки из отдельных труб из-за неровностей поверхности земли и приводящих к изгибным деформациям и соответствующим напряжениям в теле...
Тип: Изобретение
Номер охранного документа: 0002741185
Дата охранного документа: 22.01.2021
12.04.2023
№223.018.4906

Устройство для защиты и закрепления трубопровода

Изобретение относится к трубопроводному транспорту нефти и газа и может быть использовано для механической защиты подземных трубопроводов на переходах через водные преграды. Техническим результатом изобретения является обеспечение защиты трубопровода от внешних механических воздействий,...
Тип: Изобретение
Номер охранного документа: 0002793804
Дата охранного документа: 06.04.2023
+ добавить свой РИД