×
11.03.2019
219.016.dbbd

СПОСОБ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ГИДРОПОТОКА И ВИХРЕВАЯ ГИДРОТУРБИНА ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002424444
Дата охранного документа
20.07.2011
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к гидроэнергетике и может быть использовано для преобразования кинетической энергии потоков рек, каналов, сбрасываемой воды в природных и техногенных системах в механическую или электрическую энергию. Способ преобразования энергии гидропотока заключается в том, что преобразование осуществляется путем изменения поступательного движения потока во вращательное движение жидкости и ротора гидротурбины в ограниченном от основного потока объеме. На первом этапе - за счет отсечения потока воды к турбине и постепенного сужения водовода с целью увеличения скорости поступательного движения. На втором этапе - за счет организации вращения воды одновременно вокруг двух осей, лежащих в перпендикулярных плоскостях: вращения вокруг оси ротора гидротурбины и вихревого процесса торообразной формы в основании ограниченного объема. На третьем этапе - за счет формирования ускоренного восходящего вращательно-поступательного потока, направленного на раскручивание ротора и выполняющего рекуперативную функцию. Изобретение направлено на повышение эффективности преобразования энергии гидропотока, упрощение конструкции, уменьшение габаритных размеров турбины, повышение КПД устройства. 2 н. и 3 з.п. ф-лы, 6 ил.
Реферат Свернуть Развернуть

Изобретение относится к гидроэнергетике и может быть использовано для преобразования кинетической энергии потоков рек, каналов, сбрасываемой воды в природных и техногенных системах в механическую или электрическую энергию.

Известен способ преобразования энергии потоков в механическую или электрическую энергию и русловая гидроустановка, реализующая его, принятые за прототип (см. патент RU №2084692, F03B 3/00, 13/00, 20.07.97 г.). Преобразование энергии руслового потока в механическую или электрическую энергию осуществляется путем изменения поступательного потока во вращательное движение жидкости и преобразователя энергии гидроустановки, причем данное изменение движения осуществляют образованием двух вихрей противоположного направления вращения, при глубине потока, не превышающей трехкратно линейные размеры гидроустановки, обеспечивают совпадение скоростей вихрей и потока с внешних боковых сторон вихрей, а при глубине потока, превышающей трехкратно линейные размеры гидроустановки, обеспечивают противоположное направление скоростей вихрей и потока с внешних боковых сторон вихрей.

В русловой гидроустановке, содержащей каркас с двумя вертикально расположенными полыми телами вращения, выполненными в виде полых цилиндров, и размещенные в последних валы отбора мощности с установленными друг над другом двумя лопастными турбинами, при этом валы установлены с возможностью вращения в противоположных направлениях, каждый цилиндр снабжен внутренней стенкой, выполненной в виде трубы переменного сечения, закрепленной с образованием сужающегося кверху канала, валы выполнены трубчатыми и закреплены на внутренних осях, связанных с каркасом, лопасти верхних и нижних турбин расположены симметрично оси вращения и прикреплены к наружным боковым поверхностям валов и цилиндров соответственно, причем к последним прикреплены под острым углом, при этом стенки цилиндра, трубы и вала жестко связаны между собой с образованием единой системы ротора, а для обеспечения противоположного вращения роторов лопасти их турбин ориентированы в разные стороны.

Недостатками прототипа являются сложность и большие габаритные размеры конструкции, недостаточно эффективное использование динамического напора набегающего гидропотока за счет высоких энергетических потерь и низкой способности к рекуперации кинетической энергии потока и, как следствие, низкий КПД.

Предлагаемым изобретением решается задача: повышение эффективности преобразования энергии гидропотока, упрощение конструкции, уменьшение габаритных размеров турбины, повышение КПД устройства.

Технический результат, получаемый при осуществлении изобретения, заключается в создании эффективной вихревой гидротурбины, реализующей предлагаемый способ за счет формирования рекуперативного вихревого потока при снижении габаритных размеров гидротурбины.

Указанный технический результат достигается тем, что в предлагаемом способе преобразования энергии гидропотока, заключающемся в том, что преобразование осуществляется путем изменения поступательного движения потока во вращательное движение жидкости и ротора гидротурбины, причем данное изменение движения осуществляется образованием двух вихрей противоположного направления вращения, новым является то, что преобразование осуществляется путем изменения поступательного движения потока во вращательное движение жидкости и ротора гидротурбины в ограниченном от основного потока объеме, на первом этапе - за счет отсечения потока воды к турбине и постепенного сужения водовода с целью увеличения скорости поступательного движения, на втором этапе - за счет организации вращения воды одновременно вокруг двух осей, лежащих в перпендикулярных плоскостях: вращения вокруг оси ротора гидротурбины, и вихревого процесса торообразной формы в основании ограниченного объема, на третьем этапе - за счет формирования ускоренного восходящего вращательно-поступательного потока, направленного на раскручивание ротора и выполняющего рекуперативную функцию.

Кроме того, преобразование может быть осуществлено с возможностью формирования вращения в виде множества дополнительных радиальных вихревых потоков, приводящих к эффективному перераспределению гидропотока.

Этот способ преобразования энергии гидропотока реализуется в вихревой гидротурбине, содержащей каркас с вертикально расположенной полой емкостью, в которой размещены валы отбора мощности с установленными друг над другом двумя лопастными турбинами, соосными оси вращения, и внутренняя стенка, выполненная в виде трубы переменного сечения с образованием сужающегося кверху канала, в которой новым является то, что вертикальная полая емкость установлена неподвижно и выполнена в виде стакана с формой дна в виде полуторовой поверхности, образующей в дне осевое сквозное отверстие, в верхней части стакана, на его периферии, установлен сопловый ввод с входным раструбом, параллельным направлению движения основного гидропотока, первая лопастная турбина, расположенная на одном уровне с сопловым вводом, выполнена радиальной, вторая лопастная турбина выполнена осевой.

Лопасти первой турбины могут быть оснащены вихреобразующими поверхностями, а противолежащая поверхность стакана - отражающим кольцевым поясом.

Стенка вертикального стакана может быть выполнена с переменным сечением с образованием конфузорной, узкой цилиндрической и диффузорной частей.

Осуществление преобразования путем изменения поступательного движения потока во вращательное движение жидкости и ротора гидротурбины в ограниченном от основного потока объеме в виде вертикального стакана, установленного неподвижно на каркасе, позволяет:

- во-первых, усилить динамические процессы при преобразовании энергии гидропотока за счет ограничения границ вихревых потоков и направленного их формирования и перераспределения;

- во-вторых, снизить потери гидравлической энергии поступающего и полученных потоков жидкости;

- в-третьих, легко придавать потоку жидкости вращательный характер движения;

- в-четвертых, упростить конструкцию и габаритные размеры гидротурбины.

Отсечение на первом этапе преобразования потока воды, движущегося к турбине, постепенное сужение водовода и выполнение для этого в верхней части стакана, на его периферии, соплового ввода с входным раструбом, параллельным направлению основного гидропотока, позволяет:

- во-первых, отсечь при помощи входного раструба необходимый слой гидропотока, обеспечивающий раскручивание ротора гидротурбины и обладающий наиболее высокими динамическими характеристиками в сечении общего потока;

- во-вторых, увеличить скорость движения поступающего в стакан потока;

- в-третьих, обеспечить форму поступающего потока, близкую к форме естественно сжимающейся струи, что поддерживает безотрывность течения внутри сопла и параллельноструйность в выходном сечении;

- в-четвертых, обеспечить ввод жидкости с малыми потерями и устойчивый режим истечения без кавитации;

- в-пятых, получить за счет периферийного ввода жидкости по направлению движения основного гидропотока (тангенциального или близкого к тангенциальному) закручивающий эффект в потоке, способствующий эффективному раскручиванию ротора и переходу ко второму этапу преобразования.

Организация на втором этапе преобразования вращения жидкости и ротора гидротурбины и выполнение для этого первой лопастной турбины, расположенной на одном уровне с сопловым вводом, радиальной позволяет:

- во-первых, получить вращающийся вертикальный столб жидкости по всей высоте полого стакана;

- во-вторых, осуществлять раскручивание ротора от набегающего потока при поддержке центробежных сил, действующих на него;

- в-третьих, использовать накопленную при прохождении через сопловый ввод кинетическую энергию с высокой эффективностью;

- в-четвертых, получать на турбине значительную полезную мощность без использования напора, равного расстоянию между рабочим колесом гидротурбины и нижним уровнем гидростанции.

Формирование вихревого процесса торообразной формы в основании ограниченного объема и выполнение с этой целью объема в виде стакана с формой дна в виде полуторовой поверхности, образующей осевое сквозное отверстие в дне, позволяет:

- во-первых, сформировать в зоне полуторовой поверхности круговое вращательное течение за счет разности скоростей верхнего и нижнего слоев водяного столба в стакане, обусловленной различными условиями движения этих слоев: нижние слои, находящиеся под большим давлением, испытывают трение при контакте о дно стакана и вращаются медленнее, верхние слои вращаются свободно, контактируя только с атмосферным воздухом над зеркалом гидропотока, что и приводит к появлению вращательного торового потока;

- во-вторых, получить за счет вышеизложенного двойное вращение воды вокруг осей, лежащих в перпендикулярных плоскостях;

- в-третьих, подготовить условия для перехода к следующему этапу преобразования - формированию центрального ускоренного восходящего вращательно-поступательного потока, на который дополнительно воздействует расположенный ниже сквозного отверстия в дне стакана слой гидропотока, слабо подверженный вихревому движению и имеющий более высокое давление;

- в-четвертых, активизировать в целом динамические процессы в потоке жидкости, воздействующей на ротор гидротурбины.

Формирование ускоренного восходящего вращательно-поступательного потока, направленного на раскручивание ротора, и выполнение второй лопастной турбины осевой позволяет:

- во-первых, сформировать за счет неравномерности условий вращения нижних и верхних слоев столба жидкости в стакане поток-вихрь вдоль центральной оси ротора, обладающий ускорением поступательного движения;

- во-вторых, направить часть внутренней энергии вихревого потока на преобразование в кинетическую энергию его поступательного движения вдоль оси вихря (ротора);

- в-третьих, использовать ускоренное вращательно-поступательное движение восходящего потока - вихря для дополнительного раскручивания ротора посредством лопастей осевой турбины;

- в-четвертых, таким образом, реализовать рекуперативную функцию восходящего потока, что приводит к повышению КПД гидротурбины.

Формирование дополнительных радиальных вихревых потоков и оснащение для этого лопастей верхней турбины вихреобразующими поверхностями, а противолежащей поверхности стакана - отражающим кольцевым поясом, позволяет:

- во-первых, повысить коэффициент использования энергии напора набегающего потока, в том числе энергии слабых потоков;

- во-вторых, усилить использование действия центробежных сил за счет формирования реактивных радиальных вихревых жгутов, взаимодействующих с отражающим кольцевым поясом;

- в-третьих, стимулировать эффективное перераспределение полной энергии набегающего гидропотока;

- в-четвертых, сформировать третью область вращения в виде дополнительных ускоренных радиальных вихревых потоков, совпадающих по количеству с количеством лопастей первой турбины и способствующих раскручиванию гидротурбины;

- в-пятых, увеличить кинетическую энергию поступательного и вращательного движения центрального восходящего потока и «прокачать» большее количество жидкости через центральную трубу переменного сечения, а соответственно, и рекуперативную способность турбины и ее КПД.

Выполнение стенки вертикального стакана с переменным сечением с образованием конфузорной, узкой цилиндрической и диффузорной частей позволяет:

- во-первых, сформировать скачкообразный по скорости и давлению режим вращательно-поступательного перемещения жидкости внутри вертикального стакана;

- во-вторых, активизировать процесс образования вращательного движения в зоне полуторовой поверхности.

Сущность изобретения поясняется чертежами, где на фиг.1 показана схема вихревой гидротурбины; на фиг.2 - схема установки соплового ввода и входного раструба; на фиг.3 - схема размещения на лопастях первой турбины вихреобразующих поверхностей и противолежащего отражающего кольцевого пояса; на фиг.4 - схема взаимодействия вихревого потока и поверхностей отражающего кольцевого пояса; на фиг.5 - схема, поясняющая принцип реализации способа; на фиг.6 - схема выполнения стенки вертикального стакана с переменным сечением.

Вихревая гидротурбина для реализации данного способа преобразования энергии гидропотока состоит из неподвижной вертикальной полой емкости, установленной на каркасе, который закреплен на стационарной или наплавной платформе (на чертежах не показаны), и выполненной в виде стакана 1 с формой дна в виде полуторовой поверхности 2, образующей в дне осевое сквозное отверстие 3. Причем стакан 1 может быть установлен как на уровне зеркала основного потока, так и ниже в зависимости от динамики течения слоев воды в общем потоке. В верхней части стакана 1, на его периферии, установлен сопловый ввод 4 с входным раструбом 5, параллельным направлению движения основного гидропотока. На одном уровне с сопловым вводом 4 установлена первая лопастная турбина 6, выполненная радиальной и оснащенная рабочими лопастями 7. По центру турбины 6 располагается жестко соединенный с ней цилиндрический стакан 8, внутри которого помещена вторая лопастная турбина 9, выполненная осевой и установленная на валу 10, который в свою очередь жестко связан посредством радиальных перемычек 11 со стаканом 8. Турбины 6 и 9, стакан 8, вал 10 образуют единую жесткую систему ротора. Вал 10 связан с генератором электрической энергии (на чертежах не показан). Ниже цилиндрического стакана 8, соосно с ним, с гарантированным зазором «а» на радиальных перемычках 12, связанных со стенкой стакана 1 размещена внутренняя стенка 13, выполненная в виде трубы переменного сечения с образованием сужающегося кверху канала 14.

Лопасти 7 первой турбины 6 могут быть оснащены вихреобразующими поверхностями 15, а противолежащая поверхность стакана 1 - отражающим кольцевым поясом 16. Отражающий кольцевой пояс 16 в данном случае располагается в кольцевой выемке 17, выполненной в верхней части стакана 1, и представляет собой ступенчатую кольцевую поверхность 18 с неравными размерами ступенчатых поверхностей, расположенных под различными углами к радиусу стенки вертикального стакана 1.

Стенка вертикального стакана 1 может быть выполнена в виде поверхности переменного сечения, содержащей конфузорную 19, узкую цилиндрическую 20 и диффузорную 21 части.

Способ преобразования энергии гидропотока реализуется в вихревой гидротурбине следующим образом. Вихревая гидротурбина устанавливается в гидропотоке на стационарной или наплавной платформе (на чертежах не показаны) таким образом, чтобы сопловый ввод 4 с входным раструбом 5 были параллельны направлению основного течения. Причем расположение по глубине вихревой гидротурбины определяется исходя из структуры и мощности гидропотока в конкретном сечении русла. Набегающий поступательно движущийся гидропоток отсекается раструбом 5 и приобретает дополнительную кинетическую энергию в сопловом вводе 4. Активизированный гидропоток приводит во вращение радиальную гидротурбину 6 с рабочими лопастями 7. Одновременно с ней начинает вращаться вторая осевая турбина 9, связанная с первой турбиной 6 посредством стакана 8 и радиальных перемычек 11. Поток, поступающий через периферийно расположенный сопловый ввод 4 (тангенциальный или близко к тангенциальному), получает при поступлении внутрь вертикального стакана 1 дополнительную вращательную составляющую. Во вращательное движение вовлекается весь столб жидкости, находящийся между стенкой стакана 1 и внутренней стенкой 13, размещенной на радиальных перемычках 12, и на который действует центробежная сила. Однако слои воды, находящиеся внизу и вверху вертикального стакана 1, находятся в различных условиях. Нижние слои, находящиеся под давлением, испытывают трение при контакте о дно стакана 1 и вращаются медленнее. Верхние слои вращаются свободно, контактируя с верхним слоем воды или же напрямую с атмосферой. Таким образом, верхний слой вращается быстрее, испытывая более значительную центробежную силу. Поэтому в столбе воды, в нижней его части появляется круговое движение, окончательно сформированное формой полуторовой поверхности 2. Таким образом, формируется двойное вращение W1 и W2 вокруг разных осей.

Проследим за жидкостью, двигающейся по траектории АВСД при участии ее одновременно в 2-х вращениях. Участвуя во вращении W1, в точке А жидкость приобретает линейную скорость V. На эту же жидкость действует вращение W2. Следовательно, вращающаяся масса жидкости, продвигаясь мимо точки В, подходит к точке С. При этом происходит ускорение угловой скорости вращения. В итоге мгновенные линейные скорости движения жидкости в точке С и в точке А будут равны и будут отличаться только направлением. Далее, двигаясь по спирали, мимо точки D, вода возвращается в точку А и имеет линейную скорость V с добавкой ΔV, возникающей за счет вращения W2. Вода, совершив цикл по АВСD, вернувшись в А, получает постоянную добавку ΔV. Таким образом, по оси гидротурбины формируется восходящий вращающийся ускоренный поток жидкости, движение которого вверх поддерживается давлением нижнего слоя воды, которое распространяется через центральное отверстие 3, и напором нижних слоев вихревого столба, образующегося в сужающемся канале внутренней стенки 13. Движение водяного потока становится упорядоченным, и поступательное движение осуществляется только вдоль единственной оси координат - оси ротора, дополнительно раскручивая осевую турбину 9. Таким образом, реализуется рекуперативный режим циркуляции потока воды внутри гидротурбины.

При оснащении лопастей 7 первой турбины 6 вихреобразующими поверхностями 15, а противолежащей поверхности стакана 1 отражающим кольцевым поясом 16, располагающимся в кольцевой выемке 17, формируются дополнительные радиальные вихревые потоки жидкости. Часть потока, воздействующая на лопасти 7, «срывается», ускоряется и закручивается, подвергаясь действию центробежной силы, вихреобразующими поверхностями 15. Таким образом, формируется множество ускоряющихся мини-вихревых потоков по числу лопастей, которые реактивно взаимодействуют с противолежащей поверхностью стакана 1 - отражающим кольцевым поясом 16, располагающимся в кольцевой выемке 17, выполненной в верхней части стакана 1. Мини-вихри одновременно вращаются вокруг оси ротора, «катясь» по ступенчатой кольцевой поверхности 18 с неравными размерами ступенчатых поверхностей. Таким образом, появляется дополнительная реактивная составляющая движения, способствующая раскручиванию ротора. Лопасти 7 турбины 6, вращаясь, постоянно подпитывают эти мини-вихри и вовлекают в движение внутри стакана 1 новые порции жидкости снаружи, увеличивая расход при создающемся на входе в стакан 1 разрежении. Причем наличие разности давления между внешней средой и во внутреннем вращающемся потоке в стакане 1 эту рекуперативную функцию поддерживает.

Если стенка вертикального стакана 1 выполнена в виде поверхности переменного сечения, то при поступлении вращающейся жидкости в конфузорную часть 19 и узкую цилиндрическую часть 20 происходит ускорение ее движения при снижении давления. На выходе из цилиндрической части 20 поток достигает максимальной скорости. Далее при условии возрастающего давления более активно начинает формироваться круговое движение в области полуторовой поверхности 2.

Таким образом, в вихревой гидротурбине, реализующей предлагаемый способ, осуществляется эффективное преобразование энергии гидропотока за счет формирования рекуперативного вихревого потока при снижении габаритных размеров гидротурбины.

Источник поступления информации: Роспатент

Showing 91-100 of 311 items.
20.11.2014
№216.013.099c

Сошка стрелкового оружия

Изобретение относится к огнестрельному оружию, в частности к устройству пулеметов и снайперских винтовок. Сошка стрелкового оружия содержит основание с выступами, на которых с помощью осей шарнирно закреплены две складные опоры. На каждой из опор установлена трубчатая рукоятка, поджатая с...
Тип: Изобретение
Номер охранного документа: 0002533861
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0abc

Стационарный имитатор средств воздушного нападения

Стационарный имитатор средств воздушного нападения снабжен программным устройством, обеспечивающим последовательное включение двигателя и отстрел ложных тепловых целей. Устройство крепления двигателя выполнено с возможностью фиксации двигателя под различными горизонтальными и вертикальными...
Тип: Изобретение
Номер охранного документа: 0002534156
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0abd

Практическая управляемая ракета

Изобретение относится к вооружению, в частности к практическим управляемым ракетам. Практическая управляемая ракета содержит двигатель, аппаратуру управления, аэродинамические стабилизаторы и массогабаритный макет боевой части. Ракета содержит неконтактный датчик цели боевой ракеты. В имитаторе...
Тип: Изобретение
Номер охранного документа: 0002534157
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.112c

Система обеспечения функционирования боевого роботизированного комплекса

Изобретение относится к военной технике. Система обеспечения функционирования боевого роботизированного комплекса содержит пункт дистанционного управления, комплект дополнительного оборудования, средство загрузки и транспортирования. Средство для транспортирования боевого роботизированного...
Тип: Изобретение
Номер охранного документа: 0002535819
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1388

Пусковая установка

Изобретение относится к системам вооружения, в частности к системе запуска дымовых гранат с объектов бронетехники. Пусковая установка содержит ствол, казенник, во внутренней полости которого на втулке размещаются электрокатушки, а также донце с креплением к борту объекта гайкой. На конце...
Тип: Изобретение
Номер охранного документа: 0002536423
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.160c

Пусковая установка

Изобретение относится к системам вооружения, например к системе запуска дымовых гранат с объектов бронетехники. Пусковая установка, например, для стрельбы дымовыми гранатами содержит ствольное стреляющее устройство, фиксатор гранаты и заглушку ствола. При этом фиксатор гранаты выполнен заодно с...
Тип: Изобретение
Номер охранного документа: 0002537068
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.160f

Пусковая установка

Изобретение относится к системам вооружения, в частности к системе запуска дымовых гранат с объектов бронетехники, и может быть использовано для расширения их применяемости. Пусковая установка содержит ствольные стреляющие устройства с опорами, блок управления пусками и соединительную...
Тип: Изобретение
Номер охранного документа: 0002537071
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1922

Способ заливки компаундом электроизделий

Изобретение относится к области электротехники и касается способа заливки компаундом электрических изделий, например высоковольтных трансформаторов. Способ заливки компаундом электроизделий включает смешение компонентов с получением компаунда и заливку электроизделий компаундом. При этом перед...
Тип: Изобретение
Номер охранного документа: 0002537862
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1999

Способ правки стальных тонкостенных труб, совмещенный с закалкой

Изобретение относится к области машиностроения и может быть использовано при закалке длинномерных, тонкостенных труб из стали СП-28, к которым предъявляются жесткие требования по геометрии внутренней поверхности. Способ термической обработки с одновременной правкой стальных тонкостенных труб с...
Тип: Изобретение
Номер охранного документа: 0002537981
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19f7

Стенд для испытания изделий на виброустойчивость

Изобретение относится к испытательному оборудованию и может быть использовано в различных отраслях промышленности для испытания изделий на виброустойчивость в трех взаимно перпендикулярных положениях. Устройство содержит вибратор со столом, на котором установлено приспособление для закрепления...
Тип: Изобретение
Номер охранного документа: 0002538075
Дата охранного документа: 10.01.2015
Showing 91-100 of 104 items.
19.04.2019
№219.017.3025

Теплогенератор для нагрева жидкости

Изобретение относится к теплотехнике и может быть использовано в системах отопления и горячего водоснабжения. Теплогенератор для нагрева жидкости содержит циклон, соединенный с насосом. На противоположных торцах циклона и соосно ему установлены основной и дополнительный цилиндрические корпусы с...
Тип: Изобретение
Номер охранного документа: 0002301381
Дата охранного документа: 20.06.2007
29.04.2019
№219.017.40e1

Вихревой измельчитель материалов

Изобретение относится к машиностроению для химической, пищевой, строительной и других отраслей промышленности, а именно к вихревым мельницам. Достигаемый результат - повышение производительности и качества измельчения. Вихревой измельчитель материалов состоит из неподвижной цилиндрической...
Тип: Изобретение
Номер охранного документа: 0002399423
Дата охранного документа: 20.09.2010
09.05.2019
№219.017.49bf

Робототехнический комплекс для ведения разведки и огневой поддержки

Робототехнический комплекс для ведения разведки и огневой поддержки содержит роботизированную платформу, функциональный модуль, бортовую систему управления с навигационной аппаратурой, систему технического зрения, пульт дистанционного управления, радиоканал управления, средства доставки,...
Тип: Изобретение
Номер охранного документа: 0002686983
Дата охранного документа: 06.05.2019
09.05.2019
№219.017.4efd

Система связи и передачи данных топопривязчика

Изобретение относится к радиосистемам обмена данными. Технический результат состоит в создании автоматизированного помехозащищенного обмена данными между наземными подвижными объектами и передачи речевой информации внутри них. Для этого создается система, состоящая из: возимой на...
Тип: Изобретение
Номер охранного документа: 0002453994
Дата охранного документа: 20.06.2012
09.05.2019
№219.017.4f46

Электрическое распределительное устройство

Изобретение относится к электротехнике и может быть использовано в наземных подвижных комплексах вооружений, в частности в мобильных комплексах топопривязки, в качестве электрического распределительного устройства при подключении бортового и выносного оборудования. Технический результат состоит...
Тип: Изобретение
Номер охранного документа: 0002451375
Дата охранного документа: 20.05.2012
29.05.2019
№219.017.67f3

Расходный материал для фиксации на местности точек специальных топогеодезических сетей

Изобретение относится к средствам создания на земной поверхности специальных топогеодезических сетей и может быть использовано в подвижных пунктах навигации и топогеодезической привязки на базе шасси специальных транспортных средств. Техническим результатом изобретения является создание...
Тип: Изобретение
Номер охранного документа: 0002422771
Дата охранного документа: 27.06.2011
29.05.2019
№219.017.68e7

Способ доработки серийного транспортного средства, оснащенного кузовом-фургоном, в специальное транспортное средство и установочный комплект для такой доработки

Изобретение относится к области транспортного машиностроения и может быть использовано при переоборудовании серийных транспортных средств. Способ доработки серийного транспортного средства, оснащенного кузовом-фургоном, заключается в изготовлении установочного комплекта, компоновке оборудования...
Тип: Изобретение
Номер охранного документа: 0002435682
Дата охранного документа: 10.12.2011
29.05.2019
№219.017.692b

Топопривязчик

Изобретение относится к военной и специальной технике и может быть использовано в подвижных пунктах управления и информационно-технического обеспечения. Топопривязчик содержит размещенные в кабине (2) две первых рабочих зоны: рабочие места механика-водителя и командира, оборудованное...
Тип: Изобретение
Номер охранного документа: 0002434762
Дата охранного документа: 27.11.2011
29.05.2019
№219.017.694a

Локальная система терморегулирования воздуха зоны автоматизированных рабочих мест операторов мобильного информационно-аналитического комплекса вооружений

Система предназначена для терморегулирования воздуха зоны автоматизированных рабочих мест операторов мобильного информационно-аналитического комплекса вооружений. Система содержит три рабочих контура: два воздушных 1, 2 и один жидкостный 3, и состоит из наружного блока 4, установленного на...
Тип: Изобретение
Номер охранного документа: 0002430310
Дата охранного документа: 27.09.2011
29.05.2019
№219.017.698d

Мобильный комплекс навигации и топопривязки

Изобретение относится к мобильной технике навигации и топогеодезической привязки. Мобильный комплекс навигации и топопривязки (МКНТП) размещен на базе транспортного средства повышенной проходимости (1) с кузовом-фургоном (3) и средствами электрооборудования (2). На транспортном средстве (1)...
Тип: Изобретение
Номер охранного документа: 0002444451
Дата охранного документа: 10.03.2012
+ добавить свой РИД