×
11.03.2019
219.016.dac1

Результат интеллектуальной деятельности: СИСТЕМА ТЕПЛОЗАЩИТЫ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к конструкции теплозащиты космического аппарата, выводимого ракетой-носителем в космическое пространство. Система теплозащиты космического аппарата содержит экранно-вакуумную тепловую изоляцию (ЭВТИ). Для ЭВТИ предусмотрено устройство обеспечения ее прочностных и теплофизических характеристик, выполненное в виде сквозных дренажных отверстий, равномерно расположенных по поверхности изоляции. Над дренажными отверстиями с зазорами относительно ЭВТИ установлены теплоотражательные экраны. Дренажные отверстия сообщают межслойные объемы изоляции и объем газовой среды под ЭВТИ между собой и с наружной средой. Суммарные эффективные площади дренажных отверстий в ЭВТИ и зазоров между нею и экранами определяются с учетом суммарного объема газовой среды в межслойных объемах изоляции и под ней. При этом учтен также максимальный по траектории полета ракеты-носителя перепад давлений газовой среды, действующий на ЭВТИ. Технический результат изобретения состоит в сохранении прочности теплозащиты и ее теплофизических характеристик при выведении космического аппарата ракетой-носителем в космическое пространство, а также повышении надежности эксплуатации бортовых систем и агрегатов аппарата. 3 ил.

Изобретение относится к ракетно-космической технике, может быть использовано при проектировании и создании космических аппаратов (КА), выводимых ракетой-носителем (РН) в космическое пространство, и предназначено для защиты корпуса КА, его элементов, систем и агрегатов, размещенных в КА, от теплового воздействия окружающей среды.

Известны и широко применяются в ракетостроении устройства теплозащиты топливной емкости с криогенным топливом и ее трубопроводов [1], [2], содержащие экранно-вакуумную тепловую изоляцию (ЭВТИ) [3], установленную на их поверхности для уменьшения потерь из-за испарения криогенного топлива.

Обладая высокими теплоизоляционными свойствами, ЭВТИ представляет собой пакет, состоящий из последовательно расположенных межслойных экранов с минимальной степенью черноты, термически изолированных друг от друга разделительными прокладками. Отражательные экраны ограничивают большую часть притока тепла за счет излучения, а разделительные прокладки уменьшают теплопроводность между соседними экранами.

Эффективность такой изоляции, кроме свойств материалов экранов и прокладок, определяется величиной давления в теплоизоляционном слое, а также технологией ее изготовления и монтажа на элементы (топливные баки, космические аппараты) ракетно-космической системы (РКС). Причем для штатного функционирования ЭВТИ требуется создание глубокого вакуума (до 10-4 мм рт.ст.), так как при его уменьшении резко возрастает коэффициент теплопроводности [4].

По техническому решению [1] ЭВТИ устанавливают на топливную емкость с криогенным топливом, предназначенную для длительного хранения криогенного топлива и его заправки в баки РН. При этом топливная емкость с ЭВТИ заключена в кожух (тепловую оболочку), установленный с зазором с топливным баком, образующим замкнутую герметичную теплоизоляционную полость между топливной емкостью и кожухом. Для вакуумирования этой полости до заданного остаточного давления предусмотрена соответствующая вакуумная оснастка и контроль давления в полости, что существенно усложняет конструкцию этого устройства, функционально предназначенного для эксплуатации его в наземных условиях.

По техническому решению [2] ЭВТИ устанавливают на топливную магистраль, также заключенную в кожух с образованием теплоизоляционной полости, вакуумированной до заданного остаточного давления, и также предназначенную для эксплуатации магистрали в наземных условиях.

Известны также и широко применяются в ракетостроении устройства теплозащиты КА [5], [6], содержащие ЭВТИ, установленную на поверхности КА, выполненного в виде космического корабля (КК), и предназначенную для тепловой защиты отсеков, систем и агрегатов КА от теплового воздействия аэродинамического потока на активном участке полета РН, а также при функционировании КА в автономном полете в условиях длительного пребывания в космическом пространстве.

КК могут быть выполнены в транспортно-грузовом (КК "Прогресс") [5] либо пилотируемом вариантах (КК "Союз") [6] и состоят из системы взаимосвязанных отсеков каркасной и форменной конструкции.

К недостаткам этих технических решений следует отнести повышенные аэродинамические нагрузки, действующие на ЭВТИ КК, и возможность ее повреждения в процессе вывода КК в космическое пространство. Как показал визуальный осмотр поверхности КК "Союз" в космическом пространстве, ЭВТИ имеет локальные "вздутия" и даже отслоения ее отдельных элементов. Тем самым понижается надежность эксплуатации ЭВТИ и, следовательно, систем и агрегатов, размещаемых в отсеках КК.

В составе РН КК "Союз" и КК "Прогресс" для защиты от воздействия аэродинамического потока устанавливают под сбрасываемым обтекателем космической головной части (КГЧ) РН.

Техническое решение [6] наиболее близко к предлагаемому и принято авторами за прототип.

Задачей изобретения является повышение конструктивной прочности теплозащиты КА при сохранении ее теплофизических характеристик при выводе КА в космическое пространство ракетой-носителем, а также в процессе автономной эксплуатации КА в космическом пространстве.

Задача решается таким образом, что в системе теплозащиты КА, содержащей ЭВТИ, согласно изобретению в ЭВТИ выполнено устройство обеспечения ее прочностных и теплофизических характеристик в виде сквозных дренажных отверстий, равномерно расположенных по поверхности изоляции, сообщающих межслойные объемы изоляции и объем газовой среды под изоляцией между собой и с наружной средой, при этом над дренажными отверстиями установлены отражательные экраны с зазорами относительно изоляции, а суммарные эффективные площади дренажных отверстий и зазоров между отражательными экранами и изоляцией определяются из соотношений:

где:

S, S1 [см2] - суммарная площадь дренажных отверстий и суммарная площадь зазоров между отражательными экранами и изоляцией соответственно;

µ, µ1 - коэффициент расхода дренажных отверстий и коэффициент расхода зазоров между отражательными экранами и изоляцией соответственно;

V [м3] - суммарный объем газовой среды в изоляции и под изоляцией;

ΔР [кгс/см2] - максимальный по траектории полета РН перепад давлений газовой среды, действующей на изоляцию;

а, в - зависящие от параметров траектории полета РН коэффициенты, аппроксимирующие кривую зависимости относительной эффективной площади дренажных отверстий от максимального по траектории перепада давлений, действующего на изоляцию.

Техническими результатами изобретения являются:

- уменьшение перепадов давлений, действующих на элементы ЭВТИ КА (межслойные экраны, прокладки) и элементы ее крепления к КА, при сохранении теплофизических характеристик ЭВТИ за счет сквозных дренажных отверстий, снабженных отражательными от лучевых тепловых потоков экранами;

- определение суммарных эффективных площадей дренажных отверстий и зазоров между отражательными экранами и ЭВТИ, обеспечивающих перетекание газовой среды из межслойных объемов ЭВТИ и объемов под ЭВТИ в наружную среду.

Сущность изобретения поясняется на примере решения задачи применительно к КА, выполненному в виде КК "Союз", выводимого РН в космическое пространство.

На фиг.1 приведена схема КК, состоящего из системы отсеков каркасной и ферменной конструкции, на поверхности которого установлена ЭВТИ, содержащая устройство обеспечения ее прочностных и теплофизических характеристик.

На фиг.2 показан фрагмент ЭВТИ КК с устройством обеспечения ее прочностных и теплофизических характеристик и основные его элементы. Здесь же иллюстрируется схема перетекания газовой среды из межслойных объемов ЭВТИ и из объема под ЭВТИ в наружную среду (перетекание газовой среды показано стрелками).

На этих фигурах:

1 - каркасный отсек;

2 - ферменный отсек;

3 - экранно-вакуумная тепловая изоляция (ЭВТИ);

4 - оболочка каркасного отсека;

5 - стержни ферменного отсека;

6 - дренажные отверстия;

7 - отражательные экраны;

8 - межслойные экраны;

9 - теплоизоляционные прокладки.

На фиг.3 приведена зависимость максимального по траектории полета РН перепада давлений газовой среды ΔР, действующего на пакет ЭВТИ, от относительной эффективной проходной площади дренажных отверстий µ·S/V.

КК (фиг.1) состоит из системы взаимосвязанных каркасных отсеков 1 и ферменного отсека 2. На его поверхности установлена теплозащита, содержащая ЭВТИ 3. ЭВТИ 3 изготавливают в рулонном виде или отдельными панелями и крепят к оболочке каркасного отсека 4 и стержням ферменного отсека 5. Места стыков ее отдельных элементов герметизируют.

В ЭВТИ 3 выполнено устройство обеспечения прочностных и теплофизических характеристик в виде сквозных дренажных отверстий 6, равномерно расположенных по ее поверхности, которые сообщают межслойные объемы ЭВТИ 3 и объемы газовой среды под ней между собой и с наружной средой, и отражательных экранов 7, установленных над дренажными отверстиями 6 с зазорами относительно ЭВТИ 3 (фиг.2).

Поскольку сквозные дренажные отверстия 6 выполняют равномерно по поверхности ЭВТИ 3, обеспечивают равномерное или близкое к равномерному распределение давления в межслойных объемах ЭВТИ 3 и, следовательно, перепадов давлений, действующих на ее элементы. Тем самым исключают концентрации напряжений в отдельных ее элементах от неравномерных перепадов давлений при наличии скрытого локального неперетекания газовой среды в межслойных объемах ЭВТИ 3, что приводит к улучшению прочностных и сохранению теплофизических характеристик ЭВТИ 3 как на активном участке полета КК в составе РН, так и в его автономном полете в космическом пространстве.

Отражательные экраны 7, установленные над дренажными отверстиями 6 с зазором относительно ЭВТИ 3, исключают тепловой нагрев элементов КК через дренажные отверстия 6 в ЭВТИ 3 от излучения космических объектов.

Суммарную эффективную площадь µ·S дренажных отверстий 6 определяют из соотношения (1), используя зависимость, приведенную на фиг.3, с учетом максимально допустимых (из условия прочности) перепадов давлений ΔРдоп, действующих на ЭВТИ 3 и входящих в это соотношение коэффициентов а, в, зависящих от параметров траектории РН (см. допустимую область "А" определения µ·S). В этом соотношении суммарный объем V газовой среды для каркасного отсека 1 принимают как объем, состоящий из объема газовой среды в ЭВТИ 3 и объема между ЭВТИ 3 и оболочкой каркасного отсека 4, а для ферменного отсека 2 - как объем, состоящий из объема газовой среды в ЭВТИ 3 и объема газовой среды в ферменном отсеке 2.

Суммарную эффективную площадь µ1·S1 зазоров между отражательными экранами 7 и ЭВТИ 3 определяют из соотношения (2).

Формула (1) содержит математическое описание зависимости относительной суммарной эффективной площади дренажных отверстий µ·S/V от максимального по траектории полета РН перепада давлений ΔР и получена по результатам анализа течения газовой среды в замкнутом объеме, состоящем из газодинамически взаимосвязанных межслойных объемов ЭВТИ 3 и объема, находящегося под ЭВТИ 3.

В ракетостроении межслойные экраны 8 изготавливают из алюминиевой фольги толщиной в несколько микронов либо алюминизированной полимерной пленки, а теплоизоляционные прокладки 9 - из различных стекловолокнистых материалов (стеклобумага, стеклохолст, стекловуаль и т.д.). Отражательные экраны 7 выполняют из материала с минимальной степенью черноты, например из алюминиевой фольги.

Функционирование ЭВТИ 3 в составе КК осуществляется следующим образом.

Поскольку в отличие от прототипа равномерно по поверхности ЭВТИ 3 выполнены сквозные дренажные отверстия 6, происходит перетекание газовой среды из объема под ЭВТИ 3 и межслойных ее элементов через сквозные дренажные отверстия 6 в наружную среду (фиг.1, 2).

Истечение газовой среды в наружную среду происходит с дозвуковыми скоростями с незапиранием ее в дренажных отверстиях 6, так как суммарная эффективная площадь µ1·S1 зазоров между отражательными экранами 7 и ЭВТИ 3 выполнена большей или равной суммарной эффективной площади µ·S дренажных отверстий 6 (µ1·S1≥µ·S) в соответствии с соотношением (2).

При полете КК в составе КГЧ на активном участке полета РН в межслойных объемах изоляции устанавливается давление, близкое к давлению под обтекателем КГЧ. При этом газовая среда из межслойных объемов ЭВТИ 3 и из объема под ней перетекает в объем под обтекателем КГЧ и далее через дренажное устройство в обтекателе КГЧ в атмосферу, геометрические характеристики которого задают такими, что давление под обтекателем КГЧ становится близким к атмосферному (статическому окружающей атмосферы).

В автономном полете КК в межслойных объемах ЭВТИ 3 и под ней устанавливается внутреннее давление, близкое к атмосферному. Перепады давлений в составе КГЧ и автономном полете КК, при этом действующие на межслойные экраны 8 и теплоизоляционные прокладки 9 ЭВТИ 3, близки к нулю. Отражательные экраны 7, установленные над сквозными дренажными отверстиями 6, исключают воздействие теплового потока на элементы КК от излучения космических объектов.

Таким образом, повышают конструктивную прочность теплозащиты за счет уменьшения аэродинамических нагрузок, действующих на ЭВТИ, и сохраняют ее теплофизические характеристики, обеспечивая тепловой режим функционирования приборов, систем и агрегатов, размещенных в отсеках КК, что приводит к выполнению поставленной задачи. Тем самым повышают надежность эксплуатации КК.

В настоящее время техническое решение прошло экспериментальную проверку и внедряется на КК "Союз". Требования по дренажу ЭВТИ вводятся в ОСТ и являются составным элементом в технологическом цикле изготовления КА.

Техническое решение может быть использовано для различных типов КА, околоземных, межпланетных, грузовых, пилотируемых и других КА, выводимых РН и другими средствами выведения КА в космическое пространство.

Литература

1. Космодром. Под ред. проф. А.П.Вольского, ВИ МО СССР, М., 1977, с.160-161, рис.5.3, 5.4.

2. Там же, с.164, рис.5.6.

3. Космонавтика: Энциклопедия. / Под ред. В.П.Глушко. М.: Советская энциклопедия, 1985, с.394.

4. Справочник по физико-техническим основам криогеники. / Под ред. проф. М.П.Малкова. М.: Советская энциклопедия, 1973, с.236-237.

5. Космонавтика: Энциклопедия. / Под ред. В.П.Глушко. М.: Советская энциклопедия, 1985, с.304-305.

6. Там же, с.369-370.

Система теплозащиты космического аппарата, содержащая экранно-вакуумную тепловую изоляцию, отличающаяся тем, что в упомянутой изоляции выполнено устройство обеспечения ее прочностных и теплофизических характеристик в виде сквозных дренажных отверстий, равномерно расположенных по поверхности изоляции, сообщающих межслойные объемы изоляции и объем газовой среды под изоляцией между собой и с наружной средой, при этом над дренажными отверстиями установлены отражательные экраны с зазорами относительно изоляции, а суммарные эффективные площади дренажных отверстий и зазоров между отражательными экранами и изоляцией определяются из соотношений , ,S, S [см] - суммарная площадь дренажных отверстий и суммарная площадь зазоров между отражательными экранами и изоляцией соответственно;µ, µ - коэффициент расхода дренажных отверстий и коэффициент расхода зазоров между отражательными экранами и изоляцией соответственно;V [м] - суммарный объем газовой среды в изоляции и под изоляцией;ΔР [кгс/см] - максимальный по траектории полета ракеты-носителя перепад давлений газовой среды, действующей на изоляцию;а, в - зависящие от параметров траектории полета коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий от максимального по траектории перепада давлений, действующего на изоляцию.
Источник поступления информации: Роспатент

Showing 101-110 of 370 items.
10.12.2014
№216.013.100b

Коммутатор измерительного прибора для контроля качества цепей питания электротехнических систем изделия при их сборке

Изобретение относится к области технологических устройств и может быть использовано в составе автоматизированной измерительной системы совместно с измерительными приборами при контроле цепей питания электротехнической системы изделия в процессе. Коммутатор содержит три входные цепи, четыре...
Тип: Изобретение
Номер охранного документа: 0002535524
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1127

Устройство для соединения трубопроводов двух объектов

Изобретение относится к устройству для соединения трубопроводов двух объектов и предназначено для соединения пневмогидравлических систем терморегулирования или заправки орбитальных космических станций для соединения узлов и объектов за пределами корабельной деятельности. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002535814
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11b8

Побудитель циркуляции жидких теплоносителей, преимущественно для системы терморегулирования космического объекта

Изобретение относится преимущественно к системам терморегулирования космических объектов. Побудитель циркуляции содержит электронасосные агрегаты (ЭНА) и соединительные трубопроводы с гидроразъемами (ГР). ГР стыкуются через трубчатые перемычки с внешней гидравлической сетью. Каждый ГР выполнен...
Тип: Изобретение
Номер охранного документа: 0002535959
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11bc

Способ управления орбитальным космическим аппаратом

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ...
Тип: Изобретение
Номер охранного документа: 0002535963
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.14ca

Устройство для отбора проб космонавтом с внешней поверхности космического объекта

Изобретение относится преимущественно к инструментам, используемым космонавтом в открытом космосе. Устройство содержит корпус из химически, термически, механически устойчивого и γ-проницаемого материала. В корпусе выполнены одна или более глухих полостей с резьбой и конической поверхностью на...
Тип: Изобретение
Номер охранного документа: 0002536746
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14dd

Способ управления орбитальным космическим аппаратом

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ...
Тип: Изобретение
Номер охранного документа: 0002536765
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.19d0

Коммутатор измерительного прибора для контроля качества цепей питания электротехнических систем изделия при их сборке

Изобретение относится к области технологических устройств и может быть использовано при контроле цепей питания электротехнической системы. Технический результат: увеличение производительности, исключение влияния помех и ошибок подключения измерительного прибора на надежность собираемой...
Тип: Изобретение
Номер охранного документа: 0002538036
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dd4

Двигательная установка космического летательного аппарата

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических летательных аппаратов (КЛА). ДУ КЛА содержит криогенный бак с экранно-вакуумной теплоизоляцией и каналом с теплообменником, расходный клапан, бустерный насос, заборное...
Тип: Изобретение
Номер охранного документа: 0002539064
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dd8

Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения

Изобретение относится к управлению ориентацией космического, в частности транспортного грузового корабля (ТГК) с неподвижными панелями солнечных батарей (СБ). Способ включает закрутку ТГК вокруг нормали к рабочей поверхности СБ, направленной на Солнце, с угловой скоростью не менее 1,5 град/сек....
Тип: Изобретение
Номер охранного документа: 0002539068
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1e91

Способ управления ориентацией космического транспортного грузового корабля с неподвижными панелями солнечных батарей при проведении работ в условиях вращательного движения

Изобретение относится к управлению движением космического, в частности транспортного грузового корабля (ТГК) с неподвижными панелями солнечных батарей (СБ). Способ включает закрутку ТГК вокруг направления нормали к рабочей поверхности СБ, направленной на Солнце, с угловой скоростью не менее...
Тип: Изобретение
Номер охранного документа: 0002539266
Дата охранного документа: 20.01.2015
Showing 11-12 of 12 items.
09.06.2019
№219.017.7b77

Космический аппарат для спуска с орбиты искусственного спутника земли и способ его спуска с орбиты искусственного спутника земли

Изобретение относится к ракетно-космической технике. Космический аппарат (КА) содержит теплоизолированные корпус с затупленной носовой частью, стреловидное крыло, аэродинамические и газодинамические органы стабилизации и управления по каналам тангажа, крена и рысканья, в том числе...
Тип: Изобретение
Номер охранного документа: 0002334656
Дата охранного документа: 27.09.2008
10.07.2019
№219.017.aa21

Способ термостатирования приборного отсека разгонного блока космической головной части ракеты-носителя и бортовая система для его реализации (варианты)

Изобретения относятся к способам и средствам термостатирования приборных отсеков ракет-носителей. Согласно предлагаемому способу, осуществляют одновременный вдув термостатирующей среды в блок полезного груза и в разгонный блок. Вдув термостатирующей среды в разгонный блок осуществляют со...
Тип: Изобретение
Номер охранного документа: 0002279377
Дата охранного документа: 10.07.2006
+ добавить свой РИД