×
11.03.2019
219.016.d9fa

СПОСОБ ОПРЕДЕЛЕНИЯ ЛЕСОПОЖАРНОЙ ОПАСНОСТИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Для оперативного обнаружения лесопожарной опасности на обширных площадях определяют влажность лесных горючих материалов (ЛГМ) путем: зондирования подстилающей поверхности в СВЧ-диапазоне на длине волны, обеспечивающей прохождение электромагнитного излучения через поверхностный слой ЛГМ; формирования матрицы изображения многолучевой антенной с регулируемой дискретизацией отсчетов в полосе сканирования и индивидуальным трактом приема в каждом луче; расчета параметров сигнала матрицы изображения: M - математического ожидания, σ - среднеквадратического отклонения, S - площади рельефа. S - геометрической площади обрабатываемой матрицы; выделения контуров на изображении методами пространственного дифференцирования и определения влажности (W) ЛГМ внутри контуров по калибровочной функции: W,%=S/S·exp(-M/σ)·100%, где S - площадь рельефа сигнала матрицы изображения; S - геометрическая площадь матрицы изображения; M - математическое ожидание сигнала; σ - среднеквадратическое отклонение сигнала. 1 з.п. ф-лы, 5 ил., 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к лесному хозяйству, в частности к дистанционной оперативной оценке состояния влажности лесных горючих материалов (ЛГМ) на обширных площадях.

Лесные пожары были и остаются доминирующим фактором, определяющим структуру и динамику бореальных лесов. По масштабу воздействия на лесной фонд они превышают все другие факторы. Своевременный прогноз лесопожарной опасности позволяет заблаговременно сосредотачивать имеющиеся ресурсы и вводить режимы в лесопожарных зонах.

Известен способ пирологической оценки лесов по комплексному показателю (КПО) горимости В.Г.Нестерова (см., например, Лесопожарные показатели засухи, в сборнике «Пирологическое районирование в таежной зоне» Софронов М.А., Волокитина А.В., АН СССР, Сибирское отделение, Наука, Новосибирск, 1990 г., стр.37-38 - аналог). В способе - аналоге расчет КПО проводится на основе данных наземных метеопунктов по следующей зависимости:

где Т° - температура воздуха на 12 часов местного времени, °С,

tp - температура точки росы, °С,

∑ - сумма разности температур за все дни τi сухого периода со дня наблюдения до дня выпадения осадков более 3 мм.

После выпадения осадков более 3 мм счет обнуляется, а расчет КПО начинается заново со дня установления бездождевой погоды. По полученной сумме КПО устанавливаются классы пожарной опасности по В.Г.Нестерову: I класс - до 300; II класс - 300...1000; III класс - 1000...4000; IV класс - 4000...8000; V класс чрезвычайной опасности - более 8000.

Выделенные участки различных классов наносят на карту лесхоза (лесничества) по укрупненным выделам и закрашивают красным цветом различной насыщенности.

Недостатком известного аналога являются:

- существенные ошибки результирующих оценок при неравномерном выпадении осадков на площади наблюдения,

- невысокая достоверность при редкой сети метеопунктов,

- неадекватность (косвенность) самого критерия, характеризующего засушливое состояние погоды, а не пожарную зрелость лесных горючих материалов.

Восприимчивость лесного отпада и подстилки к огню напрямую зависит от их влажности. Самым надежным способом прогнозирования пожарной опасности явился бы способ непосредственного измерения влажности ЛГМ.

В большинстве национальных систем мониторинга лесов для прогноза лесопожарной опасности используют данные дистанционного зондирования аэрокосмическими средствами в ИК-диапазоне.

Ближайшим аналогом по технической сущности с заявляемым техническим решением является «Способ контроля лесопожарной опасности». Патент RU №2.147.253, кл. А62С, 3/02, 2000 г.

Способ ближайшего аналога включает регистрацию собственного излучения подстилающей поверхности в ИК-диапазоне, соответствующего максимуму теплового излучения (9-12 мкм), калибровку тракта зондирования по измерениям эталонных участков, преобразование зарегистрированной функции электрического сигнала в цифровые матрицы отсчетов зависимости амплитуды А(х, у) от пространственных координат, выделение методами пространственного дифференцирования контуров на двумерных изображениях лесных массивов, расчет влажности (W) лесных горючих материалов внутри выделенных контуров по регрессионной зависимости:

где

а - поправочный коэффициент, учитывающий параметры тракта зондирования, географическую зону, тип лесов;

σ2, L2 - мощность переменной и постоянной составляющей сигнала участка изображения внутри анализируемого контура.

Недостатками ближайшего аналога являются:

- зависимость интегрального показателя от типа лесов, т.е. необходимость введения поправочного коэффициента (а), значения которого неизвестны;

- поскольку ИК-излучение экранируется древесным пологом, то оно содержит лишь косвенную информацию о влажности ЛГМ;

- неадекватность используемой регрессионной зависимости физическому процессу нарастания пожарной зрелости ЛГМ.

Задача, решаемая заявляемым способом, состоит в оперативном обнаружении и отслеживании лесопожарной опасности на обширных площадях путем зондирования лесов в СВЧ-диапазоне космическими средствами с широкой полосой захвата на длине волны, обеспечивающей прохождение восходящего излучения через поверхностный слой из лесных горючих материалов и древесный полог.

Технический результат достигается тем, что в способе определения лесопожарной опасности, включающем зондирование подстилающей поверхности леса космическими средствами для определения и анализа показателя лесопожарной опасности - влажности лесных горючих материалов, с получением изображений подстилающей поверхности в виде матриц зависимости амплитуды сигнала А(х,у) восходящего излучения от пространственных координат, и обработкой матриц для выделения границ контуров лесопожарной опасности в зависимости от параметров сигнала, дополнительно зондирование осуществляют в СВЧ-диапазоне на длине волны, обеспечивающей прохождение электромагнитного излучения через поверхностный слой лесных горючих материалов, для формирования матриц используют многолучевую антенну с регулируемой дискретизацией отсчетов в полосе сканирования и с индивидуальным трактом приема в каждом луче, а влажность (W) лесных горючих материалов внутри границ контуров находят из соотношения:

W,%=Sp/So·exp(-M1/σ)·100%, где

Sp - площадь рельефа сигнала матрицы изображения;

S0 - геометрическая площадь матрицы изображения;

M1 - математическое ожидание сигнала;

σ - среднеквадратическое отклонение сигнала;

геометрическая площадь матрицы изображения равна произведению числа строк на число столбцов и на площадь одного пикселя, а площадь рельефа сигнала матрицы изображения вычисляется как интеграл из соотношения:

где

m - число строк сигнала матрицы изображения;

n - число столбцов сигнала матрицы изображения;

х, у - текущие координаты функции сигнала А(х, у);

σ - среднеквадратическое отклонение сигнала.

Изобретение поясняется чертежами, где:

фиг.1 - зависимость влажности лесных горючих материалов от комплексного показателя (КПО) способа ближайшего аналога;

фиг.2 - зависимость потока восходящего излучения от комплексного показателя;

фиг.3 - калибровочная функция зависимости влажности ЛГМ от параметров сигнала матрицы;

фиг.4 - распечатка с границами классов лесопожарной опасности на контурной карте региона;

фиг.5 - функциональная схема устройства, реализующего способ.

Техническая сущность способа состоит в следующем. Известные методы и средства измеряют косвенные признаки лесопожарной опасности, а именно - нарастание метеотемпературы приповерхностного слоя, к тому же ИК-излучение экранируется древесным пологом. Радиоволны СВЧ-диапазона могут проникать под полог растительного покрова и в глубину почвенного слоя [см. например, Крапивин В.Ф., Кондратьев К.Я. «Глобальные изменения окружающей среды: экоинформатика», СПбГУ, Санкт-Петербург, 2002 г., Теоретические основы радиофизического зондирования, стр.666-670]. Поэтому, восходящее СВЧ-излучение содержит информацию непосредственно о влажности лесных горючих материалов: мхов, лишайников, травяной ветоши, отмершей хвои, листьев, отпада, кустарников. Использование СВЧ-диапазона обеспечивает контроль самого процесса нарастания пожарной зрелости ЛГМ. Наряду с очевидным преимуществом, СВЧ-диапазон имеет существенный недостаток, ограничивающий его техническую применимость - малую мощность восходящего излучения. В соответствии с законом Планка мощность излучения при одной и той же температуре объекта убывает обратно пропорционально пятой степени длины волны (˜1/λ5) [см., например, «Физический энциклопедический словарь» под редакцией А.М.Прохорова, Сов. энциклопедия, 1983 г., Планка закон излучения, стр.544]. Следовательно, при переходе в СВЧ-диапазон возникают трудности в обеспечении необходимого энергетического потенциала радиоканала зондирования. Как следует из размерности мощности восходящего излучения [Вт/м2], энергетический потенциал радиоканала можно обеспечить, осуществляя прием излучения с большой площади. Например, при разрешении одного пикселя в 10 км, энергетический потенциал радиоканала увеличивается в (10·1000)2≈108 раз. Однако, при увеличении размера пикселя измерений, возникает проблема формирования матрицы изображения подстилающей поверхности, адекватной измеряемому физическому процессу в полосе сканирования.

В заявляемом способе перечисленные противоречивые условия реализуются путем использования многолучевой антенны, каждый луч которой, для повышения чувствительности, подключен к отдельному тракту приема. При этом, сканирование подстилающей поверхности, для формирования измерительной матрицы отсчетов, осуществляют: вдоль трассы - за счет движения носителя (измерителя) путем регулирования интервала дискретизации отсчетов, а поперек трассы - многолучевой антенной, как это иллюстрируется фиг.5. Скрытая информация о влажности ЛГМ содержится в сигнале регистрируемой матрицы отсчетов. Подсыхание горючих материалов сопровождается следующими физическими явлениями:

- уменьшение влажности приводит к увеличению кажущейся температуры и излучательной способности горючих материалов, что эквивалентно увеличению амплитуды постоянной составляющей сигнала M1 (M1 - математическое ожидание сигнала матрицы);

- рост средней температуры приповерхностного слоя сопровождается уменьшением разброса температур между элементами подстилающей поверхности, находящихся в различных пирологических условиях (возвышенность, низина, солнце, тень), что эквивалентно уменьшению амплитуды переменной составляющей сигнала σ (σ - среднеквадратическое отклонение сигнала матрицы);

- засуха, как правило, охватывает большие пространственные территории, что сопровождается уменьшением скорости флюктуаций сигнала по пространственным координатам, т.е. снижением степени изрезанности (шероховатости) сигнала матрицы и уменьшением площади его рельефа (Sp).

Процесс нарастания пожарной зрелости ЛГМ определяется совокупным, одновременным изменением всех трех перечисленных факторов. Функция изменения потока восходящего излучения от комплексного показателя пожарной опасности иллюстрируется графиками фиг.2. Зависимость влажности лесных горючих материалов от параметров сигнала матрицы изображения (M1, σ, Sp/S0) (калибровочная функция) иллюстрируется фиг.3. Количественную оценку влажности ЛГМ по измерениям СВЧ-радиометра осуществляют по калибровочной функции переходного процесса. Из математики известно [см., например. Пискунов Н.С., «Дифференциальное и интегральное исчисления для ВТУЗов», том 1, 5-е издание. Наука, М., 1964 г., стр.457-458], что сама функция и скорость ее изменения связаны дифференциальным уравнением первого порядка, общим решением которого является экспонента. Начальные условия для решения дифференциального уравнения находят из статистических данных, представленных в табл.1 [см., например, аналог, стр.106-117]

Зависимость между КПО и влажностью ЛГМ

Таблица 1
Класс пожарной опасностиКПО По НестеровуВлажность ЛГМ,%Горимость ЛГМ
Зеленые мхиПодстилка
I
II
III
IV
V
до 300
300...1000
1000...4000
4000...8000
более 8000
68-70
50-60
35-40
17-20
10-13
50-55
35-40
25-30
15-20
7-10
Не горят
Горят слабо,
неустойчиво
Горимость
средняя
Горимость
высокая
Горимость
чрезвычайно
высокая

+Из данных табл.1 следует, что предельно опасный уровень горимости ЛГМ соответствует влажности 7-10%, а уровень негоримости ≈70%. Представляя функцию переходного процесса подсыхания ЛГМ в виде экспоненты: W=k·ехр(-х), выражая показатели (k, x) через параметры сигнала матрицы отсчетов, при начальных условиях табл. 1, получена калибровочная характеристика для расчета влажности ЛГМ в виде:

W,%=Sp/S0·ехр (- M1/σ)·100%.

S0 - геометрическая площадь матрицы |m×n|, равная произведению числа строк на число столбцов и на площадь одного пикселя;

Sp - площадь рельефа сигнала матрицы отсчетов, вычисляемая как интеграл из соотношения:

Интегральную площадь вычисляют программным методом, по расчетной величине дисперсии сигнала σ2 [см., например, «Способ определения площади рельефа». Патент RU №2.255.357, G01V, 9/01, G01C 7/00, 2005 г.].

Пример реализации

Заявляемый способ может быть реализован по схеме фиг.5. Функциональная схема системы фиг.5 содержит орбитальную станцию 1 (типа МКС) с установленным на ней СВЧ - радиометром 2 (типа РК-21-8), осуществляющим прием восходящего излучения подстилающей поверхности в полосе сканирования 3 многолучевой антенной 4, каждый остронаправленный луч 5 которой подключен на вход отдельного приемного тракта 6. С выхода тракта 6 сигнал каждого луча, проквантованный в стандартной шкале 0...256 уровней, в цифровом виде, синхронно записывают на отдельную дорожку бортового видеомагнитофона 7 (типа «Нива»). Включение СВЧ-радиометра в режим сканирования над заданными регионами планеты осуществляют по программам или разовым командам, закладываемым в бортовой комплекс управления (БКУ) 8 посредством радиолинии 9 из центра управления полетом (ЦУП) 10. Последовательность отснятых радиометрическим комплексом 2 изображений подстилающей поверхности в сеансах видимости МКС с наземных пунктов передают телеметрической системой 11 (типа БИТС-2) по автономному радиоканалу 12 на пункты приема информации (ПИИ) 13, где записывают на видеомагнитофон 14 (типа «Арктур»). По запросам потребителей или согласованным протоколам обмена информацию изображений лесопожарных регионов вместе со служебной информацией (время съемки, регион, виток орбиты, метки бортового времени) перегоняют в региональные центры 15, где создают долговременный архив 16 из всех отснятых кадров. Тематическую обработку получаемых изображений осуществляют на персональных ЭВМ 17 в стандартном наборе элементов: процессора 18, оперативного запоминающего устройства 19, винчестера 20, дисплея 21, принтера 22, клавиатуры 23, графопостроителя 24. Радиотехнический комплекс РК-21-8 позволяет регулировать интервал дискретизации отсчетов от 0,1 до 1 сек. В таблице 2 представлены результаты контрольных замеров и программной обработки матриц изображений, полученные при наземной отработке радиотехнического комплекса на самолетном носителе.

Таблица 2
РегионМестный КПОХарактеристики сигналаВлажность ЛГМ, %
M1σSp/S0
Приморский край
Читинская обл.
Респ. Бурятия
400
2000
4000
85
120
144
93
79
60
1,9
1,7
1,3
68
37
14

Выделение границ контуров лесопожарной опасности осуществляют программным методом, с использованием стандартных процедур вычисления операторов пространственного дифференцирования Робертса или Собела [см., например, Дуда P.O., Харт П.Е. «Распознавание образов и анализ сцен», перев. с англ., М., Мир, 1976 г., § 7.3 Пространственное дифференцирование, стр. 287-288]. Результат программного выделения границ контуров классов лесопожарной опасности иллюстрируется фиг.4.

Эффективность заявляемого способа характеризуется такими показателями, как оперативность, достоверность, точность, глобальность. Осуществляя ежедневное обновление информации и ее автоматизированную обработку, представляется возможным адекватно, достоверно и точно отслеживать состояние ЛГМ на обширных площадях.

W,%=(S/S)ехр(-M/σ)100%,гдеS-площадьрельефасигналаматрицыизображения;S-геометрическаяплощадьматрицыизображения;M-математическоеожиданиесигнала;σ-среднеквадратическоеотклонениесигнала.156500000006.tiftifdrawing75гдеm-числостроксигналаматрицыизображения;n-числостолбцовсигналаматрицыизображения;х,у-текущиекоординатыфункциисигналаА(х,у);σ-среднеквадратическоеотклонениесигнала.1.Способопределениялесопожарнойопасности,включающийзондированиеподстилающейповерхностилесакосмическимисредствамидляопределенияианализапоказателялесопожарнойопасности-влажностилесныхгорючихматериалов,сполучениемизображенийподстилающейповерхностиввидематрицзависимостиамплитудысигналаА(х,у)восходящегоизлученияотпространственныхкоординатиобработкойматрицдлявыделенияграницконтуровлесопожарнойопасностивзависимостиотпараметровсигнала,отличающийсятем,чтозондированиеосуществляютвСВЧдиапазоненадлиневолны,обеспечивающейпрохождениеэлектромагнитногоизлучениячерезповерхностныйслойлесныхгорючихматериалов,дляформированияматрициспользуютмноголучевуюантеннусрегулируемойдискретизациейотсчетоввполосесканированияисиндивидуальнымтрактомприемавкаждомлуче,авлажность(W)лесныхгорючихматериаловвнутриграницконтуровнаходятизсоотношения12.Способпоп.1,отличающийсятем,чтогеометрическаяплощадьматрицыизображенияравнапроизведениючисластрокначислостолбцовинаплощадьодногопикселя,аплощадьрельефасигналаматрицыизображениявычисляетсякакинтегрализсоотношения2
Источник поступления информации: Роспатент

Showing 1-5 of 5 items.
11.03.2019
№219.016.ddec

Система подачи топлива двигательной установки космического летательного аппарата

Система подачи топлива двигательной установки космического летательного аппарата содержит топливные баки с пускоотсечными клапанами, коллекторы питания топливом управляющих ракетных двигателей с клапанами подачи и магистрали подачи топлива, соединенные закольцовочным трубопроводом с...
Тип: Изобретение
Номер охранного документа: 0002170839
Дата охранного документа: 20.07.2001
20.03.2019
№219.016.e9ff

Смесительная головка камеры сгорания жидкостного ракетного двигателя

Смесительная головка камеры сгорания жидкостного ракетного двигателя содержит корпус с днищем и установленные на нем втулки, зазоры между которыми образуют кольцевые каналы подвода жидкого и газообразного компонентов. В указанную смесительную головку введены смесительные элементы, закрепленные...
Тип: Изобретение
Номер охранного документа: 02170841
Дата охранного документа: 20.07.2001
29.05.2019
№219.017.656a

Способ определения стока поглощаемого из атмосферы углерода древесной растительностью

Изобретение относится к мониторингу природных объектов при помощи космических средств и может найти применение в экологических целях. Сущность: способ состоит в зондировании лесов космическими средствами, получении изображений лесов в виде матриц элементов зависимости функции яркости сигнала от...
Тип: Изобретение
Номер охранного документа: 0002342636
Дата охранного документа: 27.12.2008
29.05.2019
№219.017.657d

Поляризационный датчик предвестника землетрясений

Изобретение относится к области сейсмологии и может быть использовано в национальных системах сейсмического контроля для краткосрочного предсказания землетрясений. Сущность: датчик содержит канал приема поляризованного светового потока, отраженного от подстилающей поверхности, и тракт обработки...
Тип: Изобретение
Номер охранного документа: 0002343507
Дата охранного документа: 10.01.2009
09.06.2019
№219.017.7751

Система дозаправки жидких продуктов (варианты)

Система дозаправки жидких продуктов космической орбитальной станции, содержит автономные подсистемы, размёщенные на грузовом космическом корабле и на космической орбитальной станции и включающие ёмкости для жидких продуктов с трубопроводами и клапанами. Ёмкость для жидких продуктов автономной...
Тип: Изобретение
Номер охранного документа: 0002244842
Дата охранного документа: 20.01.2005
Showing 1-10 of 55 items.
27.10.2013
№216.012.7ada

Способ дистанционного определения деградации почвенного покрова

Способ дистанционного определения деградации почвенного покрова. Способ включает зондирование подстилающей поверхности, содержащей тестовые участки многоканальным спектрометром, установленнЫм на аэрокосмическом носителе с одновременным получением изображений на каждом канале; расчет методом...
Тип: Изобретение
Номер охранного документа: 0002497112
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b01

Способ определения загрязнения окружающей среды при аварийных выбросах на аэс

Изобретение относится к ядерной физике и может быть использовано для дистанционного измерения и анализа уровня радиационного загрязнения вокруг АЭС. Согласно способу с помощью радиометра получают изображения подстилающей поверхности в виде функции яркости I(х,у), содержащей контрольные площадки...
Тип: Изобретение
Номер охранного документа: 0002497151
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b08

Способ краткосрочного прогнозирования землетрясений

Изобретение относится к области сейсмологии и может быть использовано для краткосрочного прогнозирования землетрясений. Сущность: посредством группы фотометров, разнесенных в пространстве, измеряют оптическую плотность атмосферы. Измерения осуществляют в спектральных участках с длиной волны...
Тип: Изобретение
Номер охранного документа: 0002497158
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.8ed2

Способ инициирования струйных течений в атмосфере

Изобретение предназначено для сдвига и разрушения антициклонов в тропосфере. Способ включает длительное воздействие на атмосферу вертикальным восходящим конвективным потоком от системы излучателей, поднятых над Землей и разнесенных по площади, образуемым завихрением магнитным полем генерируемых...
Тип: Изобретение
Номер охранного документа: 0002502255
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.8ed3

Устройство инициирования процессов в атмосфере

Изобретение касается метеорологии и может быть использовано для сдвига и разрушения антициклонов в тропосфере. Устройство содержит генератор высокочастотного напряжения и присоединенную к нему систему коронирующих электродов, каждый из которых выполнен в виде соленоида с венчиком игл на концах,...
Тип: Изобретение
Номер охранного документа: 0002502256
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.95d8

Антенна для зондирования ионосферы

Изобретение относится к радиотехнике, а именно к области измерений геофизических полей Земли и системам связи. Техническим результатом является реализация широкодиапазонной антенны, работающей во всем диапазоне частот зондирования ионосферы. Антенна для зондирования ионосферы выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002504054
Дата охранного документа: 10.01.2014
27.04.2014
№216.012.bd20

Способ автоматической идентификации объектов на изображениях

Изобретение относится к информатике и может быть использовано для автоматической идентификации объектов на изображениях. Согласно способу производят сканирование исходного фотоизображения с высоким разрешением. Матрицу полученных отсчетов приводят к масштабу эталонной матрицы путем нормирования...
Тип: Изобретение
Номер охранного документа: 0002514155
Дата охранного документа: 27.04.2014
20.05.2014
№216.012.c520

Устройство коррекции погодных условий

Изобретение может быть использовано для сдвига и разрушения антициклонов в тропосфере. Устройство выполнено в виде геометрического зонтика из десяти радиальных проводов-коронирующих электродов, создающих антенное поле, длиной 100 м каждый, подвешенных на центральной опорной мачте из...
Тип: Изобретение
Номер охранного документа: 0002516223
Дата охранного документа: 20.05.2014
27.10.2014
№216.013.016f

Способ отслеживания границы зоны "лес-тундра"

Изобретение относится к лесному хозяйству и может быть использовано при оценке динамики глобальных климатических изменений в Арктике. Согласно способу проводят спектрометрические измерения в переходной зоне 69°…70° с.ш., содержащей тестовые участки в диапазоне 0,55…0,68 мкм и 0,73…1,1 мкм, а...
Тип: Изобретение
Номер охранного документа: 0002531765
Дата охранного документа: 27.10.2014
27.07.2015
№216.013.6823

Способ определения рейтинга вида пород для плана озеленения

Изобретение относится к лесному хозяйству и может найти применение при планировании мероприятий по озеленению городских территорий. Способ включает составление каталога древесных пород обследуемого городского поселения с известной экологической обстановкой и соответствующей ему территории...
Тип: Изобретение
Номер охранного документа: 0002558212
Дата охранного документа: 27.07.2015
+ добавить свой РИД