×
11.03.2019
219.016.d93e

Результат интеллектуальной деятельности: СПЛАВ НА НИКЕЛЕВОЙ ОСНОВЕ ДЛЯ ЛИТЬЯ МОНОКРИСТАЛЛИЧЕСКИХ ЛОПАТОК ТУРБИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, в частности к производству литейных жаропрочных коррозионно-стойких сплавов на никелевой основе, предназначенных для литья монокристаллических лопаток турбин газотурбинных двигателей методом направленной кристаллизации, и может быть использовано в наземных газотурбинных двигателях, авиационных газотурбинных двигателях и газоперекачивающих установках, работающих в условиях длительного температурного воздействия в агрессивных средах, например, при использовании в качестве топлива природного газа, содержащего соединения серы. Сплав содержит компоненты при следующем соотношении, мас.%: углерод 0,04-0,06; хром 11,2-11,8; кобальт 4,5-5,5; вольфрам 6,7-7,3; молибден 0,6-1,0; титан 4,3-4,7; алюминий 3,2-4,0; тантал 3,7-4,3; бор 0,008-0,012; иттрий 0,020-0,040; лантан 0,005-0,015; кремний 0,1-0,3; ниобий 0,02-0,2; цирконий 0,02-0,1, никель - остальное. Повышается работоспособность рабочих лопаток газотурбинного двигателя, работающих в условиях длительного температурного воздействия в агрессивных средах. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, в частности к производству литейных жаропрочных коррозионно-стойких сплавов на никелевой основе, предназначенных для литья монокристаллических лопаток турбин газотурбинных двигателей методом направленной кристаллизации, и может быть использовано в наземных газотурбинных двигателях, авиационных газотурбинных двигателях и газоперекачивающих установках (ГТУ), работающих в условиях длительного температурного воздействия в агрессивных средах, например, при использовании в качестве топлива природного газа, содержащего соединения серы.

Известен жаропрочный коррозионно-стойкий сплав на никелевой основе для литья монокристаллических лопаток турбины газотурбинного двигателя, содержащий компоненты в следующем соотношении (в мас.%):

Углерод 0,04-0,06
Хром 11,2-11,8
Кобальт 4,5-5,5
Вольфрам 6,7-7,3
Молибден 0,6-1,0
Титан 4,3-4,7
Алюминий 3,2-4,0
Тантал 3,7-4,3
Бор 0,008-0,012
Иттрий 0,020-0,040
Лантан 0,005-0,015
Никель остальное

(см. патент UA №77606, кл. С22С 19/05, опубл. 15.12. 2005).

Несмотря на то, что лопатки, изготовленные из этого сплава, имеют достаточно высокие эксплуатационные характеристики, в процессе длительной эксплуатации жаропрочный сплав в условиях температурно-силового нагружения претерпевает развитие необратимых структурных изменений, ограничивающих ресурс ГТД. К таким необратимым структурным изменениям относятся следующие:

- коагуляция упрочняющей γ'- фазы с формированием пластинчатой «рафт»- структуры;

- развитие карбидных реакций;

- образование микропор на малоугловых границах и межфазных поверхностях карбид-матрица в результате диффузионной ползучести сплава;

- образование сегрегации легкоплавких примесей на межфазных границах, снижающих их адгезивную прочность.

Технический результат заявленного изобретения - повышение работоспособности рабочих лопаток газотурбинного двигателя, работающих в условиях длительного температурного воздействия в агрессивных средах.

Указанный технический результат достигается тем, что сплав на никелевой основе для литья монокристаллических лопаток турбины газотурбинного двигателя, содержит компоненты в следующем соотношении (в мас.%):

Углерод 0,04-0,06
Хром 11,2-11,8
Кобальт 4,5-5,5
Вольфрам 6,7-7,3
Молибден 0,6-1,0
Титан 4,3-4,7
Алюминий 3,2-4,0
Тантал 3,7-4,3
Бор 0,008-0,012
Иттрий 0,020-0,040
Лантан 0,005-0,015
Кремний 0,1-0,3
Ниобий 0,02-0,2
Цирконий 0,02-0,1
Никель остальное

Содержание (в мас.%) химических элементов в указанных пределах является существенным, так как обеспечивает эффект комплексного легирования упрочняющей γ'- фазы и никелевой γ-матрицы, определяет структурную стабильность сплава при длительных наработках лопаток в эксплуатации.

Содержание в сплаве кремния, ниобия и циркония является существенными, так как:

- легирование сплава ниобием и цирконием в указанных пределах позволяет снизить скорость диффузионной ползучести упрочняющей γ'-фазы в процессе эксплуатации и за счет этого повысить межремонтный ресурс ГТД.

- легирование сплава кремнием в указанных пределах позволяет повысить термодинамическую активность углерода в никелевой аустенитной матрице и за счет этого снизить скорость карбидных реакций в процессе эксплуатации ГТД, повысить структурную стабильность сплава.

Уменьшение содержания кремния, ниобия и циркония в сплаве ниже заявляемых пределов снижает эффект комплексного легирования упрочняющей γ'-фазы и, как результат, снижает структурную стабильность сплава при длительных наработках лопаток в эксплуатации. Повышение содержания кремния, ниобия и циркония выше заявляемых пределов расширяет температурный интервал кристаллизации сплава и повышает усадочную литейную пористость монокристаллических отливок.

Содержание (в мас.%) углерода, хрома, кобальта, вольфрама, молибдена, титана, алюминия, тантала, бора, иттрия, лантана, никеля в указанных пределах позволяет повысить коррозионную стойкость сплава, что позволяет обеспечить необходимый ресурс газотурбинной установки, работающей на природном газе, содержащем в своем составе соединения серы (например, сероводород H2S).

Уменьшение содержания указанных элементов в сплаве ниже заявляемых пределов снижает комплекс эксплуатационных характеристик сплава и снижает ресурс рабочих лопаток ТВД. Так, например, уменьшение содержания в сплаве хрома и алюминия приводит к снижению коррозионных свойств жаропрочного сплава. Уменьшение содержания тантала и титана снижает объемную долю и легирование упрочняющей γ'-фазы, обеспечивающей жаропрочность сплава. Уменьшение содержания кобальта, молибдена, вольфрама, ниобия, циркония, лантана и кремния снижает эффект твердорастворного упрочнения никелевой γ-матрицы и снижает прочностные свойства сплава во всем диапазоне рабочих температур лопатки. Уменьшение содержания углерода и бора снижает эффект дисперсного упрочнения жаропрочного сплава карбидами и боридами. Снижение содержания иттрия в сплаве повышает количество растворенного кислорода в сплаве, что приводит к снижению выхода годных монокристаллических отливок при направленной кристаллизации монокристаллических лопаток.

Увеличение содержания указанных элементов в сплаве выше заявляемых пределов приводит к образованию ТПУ- фаз, снижающих эксплуатационные характеристики жаропрочного сплава.

Так, при увеличении содержания углерода и бора происходит образование избыточного количества боридов и карбидов, выводящих из твердого никелевого раствора тугоплавкие металлы: титан, вольфрам, хром, ниобий, снижая этим прочностные свойства сплава. Увеличение содержания вольфрама, хрома, тантала, молибдена приводит к образованию ТПУ- фаз, снижающих ресурс лопаток. Увеличение содержания алюминия приводит к увеличению объемной доли упрочняющей γ'- фазы, что приводит к выделению γ-γ' -эвтектики, снижающей пластичность сплава и температуру солидус сплава. Увеличение содержания циркония, лантана, иттрия и кремния приводит к выделению легкоплавких эвтектик, ограничивающих температурный режим работы лопаток.

Соотношение суммарного содержания алюминия и титана к содержанию тантала в сплаве может находиться в пределах 1,8-2,2.

Снижение суммарного содержания алюминия и титана в сплаве к танталу менее 1,8 приводит к формированию структурной неоднородности упрочняющей γ'- фазы, не устраняемой термической обработкой и приводящей к снижению пластичности сплава.

Превышение суммарного содержания алюминия и титана в сплаве к танталу более 2,2 сопровождается снижением жаропрочных характеристик упрочняющей γ'- фазы и снижением длительной прочности сплава в целом.

Пример реализации заявляемого изобретения.

При проведении апробации опытного сплава монокристаллические образцы и лопатки газоперекачивающих агрегатов ГТК-10И и ГТК-25И были отлиты на установке УВНК-8П при скорости кристаллизации Vкр=10 мм/мин.

Монокристаллические образцы с КГО [001] прошли ТО по режиму, включающему гомогенизирующий отжиг при 1240°С в течение 2 часов, охлаждение и выдержку при 1050°С в течение 4 часов.

Монокристаллические образцы испытывали на кратковременную прочность по ГОСТ 1497-61 при температурах 20, 800, 900, 1000°С и длительную прочность по ГОСТ 10145-81 при температурах 800, 900 и 1000°С.

Технологическое апробирование в промышленных условиях заявляемого сплава показало, что сплав демонстрирует хорошую литейную плотность, не склонен к образованию горячих трещин во время ВТВО.

Стойкость сплавов к высокотемпературной коррозионной стойкости (ВТК) оценивали по средней скорости коррозии Vq, г/м2·с, и глубине суммарного коррозионного проникновения hk, мм.

Составы сплавов и результаты испытаний представлены в приведенных ниже таблицах.

Таблица 1
Химический состав заявляемого сплава
Компоненты Химический состав заявляемого сплава, в мас.%
№ сплава №1 №2 №3 №4 №5
Углерод 0,04 0,05 0,06 0,05 0,05
Хром 11,2 11,5 11,8 10,9 12,1
Кобальт 4,5 5,0 5,5 5,0 5,0
Вольфрам 6,7 7,0 7,3 7,0 7,0
Молибден 0,6 0,8 1,0 0,8 0,8
Титан 4,3 4,5 4,7 4,5 4,5
Алюминий 3,2 3,6 4,0 3,6 3,6
Тантал 3,7 4,0 4,3 3,4 4,6
Бор 0,010 0,010 0,010 0,010 0,010
Иттрий 0,030 0,030 0,030 0,030 0,030
Лантан 0,010 0,010 0,010 0,010 0,010
Кремний 0,10 0,20 0,30 0,01 0,40
Ниобий 0,02 0,10 0,20 0,01 0,35
Цирконий 0,02 0,05 0,10 0,01 0,20
Никель Ост. Ост. Ост. Ост. Ост.

Сплавы, представленные в таблице 1, содержали компоненты в количестве, соответствующем:

- нижнему заявляемому пределу соответствует сплав №1;

- верхнему заявляемому пределу соответствует сплав №3;

- оптимальному составу заявляемого сплава соответствует сплав №2;

- ниже нижнего заявляемого предела соответствует сплав №4, где содержание хрома составляет 10,9%, тантала 3,4%, кремния, ниобия и циркония по 0,01%;

- выше верхнего заявляемого предела соответствует сплав №5, где содержание хрома составляет 12,1%, тантала 4,6%, кремния 0,40%, ниобия 0,35%, циркония 0,20%.

Остальные компоненты в составе сплавов №4 и №5 взяты в оптимальном соотношении - определяемом, как среднее значение.

Таблица 2
Механические свойства и длительная прочность заявляемого сплава.
Сплав σ0,2, МПа σв, МПа δ, % σ (100 ч), МПа σ (1000 ч), МПа
Температура испытаний 20°С
Заявляемый сплав (№1)
Заявляемый сплав (№2)
Заявляемый сплав (№3)
Сплав (№4)
Сплав (№5)
1075
1080
1085
1000
1100
1150
1170
1200
1080
1210
10,5
9,5
9,0
12,5
6,0
-
-
-
-
-
-
-
-
-
-
Температура испытаний 800°С
Заявляемый сплав (№1)
Заявляемый сплав (№2)
Заявляемый сплав (№3)
Сплав (№4)
Сплав (№5)
1080
1125
1150
1025
1200
1250
1270
1300
1205
1350
16,5
15,0
14,5
18,0
12,5
530
580
600
480
490
360
450
460
320
340
Температура испытаний 900°С
Заявляемый сплав (№1)
Заявляемый сплав (№2)
Заявляемый сплав (№3)
Сплав (№4)
Сплав (№5)
890
935
980
850
1000
985
1000
1050
930
1020
22,0
20,0
18,5
25,0
16,0
340
370
380
270
320
220
240
250
200
210
Температура испытаний 1000°С
Заявляемый сплав (№1)
Заявляемый сплав (№2)
Заявляемый сплав (№3)
Сплав (№4)
Сплав (№5)
495
555
600
450
585
625
675
680
605
685
25,0
20,0
17,5
26,6
15,0
170
180
190
150
160
100
115
120
85
95

Снижение содержания легирующих компонентов ниже заявляемого предела приводит к уменьшению эффекта твердорастворного упрочнения, в результате чего снижается уровень свойств монокристаллического сплава как при нормальной, так и при повышенной температуре испытаний. Увеличение содержания легирующих компонентов выше заявляемого предела, в том числе кремния, ниобия и циркония, приводит к образованию эвтектики Ni5(ZrNbSi), снижающей температуру солидус сплава, и, как результат, снижению прочностных и пластических свойств при повышенных температурах.

Технологические свойства сплава проверены при производстве рабочих лопатках газоперекачивающих агрегатов ГТК-10И и ГТК-25И. Заявляемый сплав показал высокую технологичность.

Источник поступления информации: Роспатент

Showing 81-86 of 86 items.
09.06.2019
№219.017.7ca2

Способ определения остаточного ресурса детали акустической диагностикой

Использование: для определения остаточного ресурса детали. Сущность заключается в том, что в детали кратковременным ударным воздействием возбуждают собственные упругие акустические колебания, регистрируют и анализируют их параметры, при этом в качестве информативного параметра выявляют и...
Тип: Изобретение
Номер охранного документа: 0002320987
Дата охранного документа: 27.03.2008
09.06.2019
№219.017.7ca9

Способ отделения частиц и/или капель вещества микронного и субмикронного размера от потока газа

Изобретение относится к области очистки газа, а именно к способу отделения частиц и/или капель веществ микронного и субмикронного размера от потока газа, и может быть использовано в металлургической, химической и других отраслях промышленности. При отделении частиц и/или капель веществ...
Тип: Изобретение
Номер охранного документа: 0002320422
Дата охранного документа: 27.03.2008
09.06.2019
№219.017.7cb6

Вакуумная камера для электронно-лучевой обработки

Изобретение относится к установкам для электронно-лучевой обработки изделий сваркой, пайкой или наплавкой, а именно к вакуумным камерам. Вакуумная камера содержит вакуумно-плотные наружную и внутреннюю оболочки, размещенные одна в другой с образованием полости между ними. В полости размещены...
Тип: Изобретение
Номер охранного документа: 0002328363
Дата охранного документа: 10.07.2008
09.06.2019
№219.017.7ccf

Способ обработки каналов охлаждения лопаток турбины газотурбинного двигателя

Изобретение относится к обработке деталей, в частности к химической обработке внутренних поверхностей деталей с использованием фторсодержащих поверхностно-активных веществ, и может быть использовано в авиадвигателестроении, газотурбостроении, энергетике и других отраслях техники при ремонте и...
Тип: Изобретение
Номер охранного документа: 0002417145
Дата охранного документа: 27.04.2011
09.06.2019
№219.017.7cd9

Способ изготовления широкохордной полой лопатки компрессора газотурбинного двигателя

Изобретение относится к газотурбинным двигателям, в частности к технологии изготовления широкохордных полых лопаток для их компрессоров. Способ изготовления широкохордных полых лопаток включает формирование лопатки из отдельных фрагментов и размещение между ними детали, формирующей внутреннюю...
Тип: Изобретение
Номер охранного документа: 0002417147
Дата охранного документа: 27.04.2011
19.06.2019
№219.017.8812

Способ ремонта лопаток турбины газотурбинного двигателя

Изобретение относится к области ремонта, в частности к ремонту лопаток турбин газотурбинных двигателей химико-термическими методами, и может быть использовано в областях техники, где используются газотурбинные двигатели. Способ включает очистку пера и замка лопаток от эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002367554
Дата охранного документа: 20.09.2009
Showing 71-73 of 73 items.
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
+ добавить свой РИД