×
11.03.2019
219.016.d91e

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ РАЗМЕРОВ МАЛЫХ ОБЪЕКТОВ С ПОМОЩЬЮ ВАРИООБЪЕКТИВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002383855
Дата охранного документа
10.03.2010
Аннотация: Способ бесконтактного измерения размеров малых объектов осуществляют с помощью устройства, содержащего вариообъектив, который выполнен в виде одного неподвижного, а также первого и второго подвижных компонентов. Рассматриваемый объект размещают в задней фокальной плоскости вариообъектива. В задней фокальной плоскости неподвижного компонента вариобъектива размещают две калиброванные рамки. Осуществляют последовательное совмещение изображения объекта с изображениями двух рамок и фиксацию положения подвижного компонента при этих совмещениях. Вычисление размера объекта производят по двум зафиксированным положениям подвижного компонента, по размеру рамок и конструктивным параметрам вариообъектива. Технический результат заключается в обеспечении высокой точности измерений линейных размеров небольших объектов. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к бесконтактным оптическим средствам измерения геометрических размеров различных объектов.

Известен способ бесконтактного оптического измерения размеров объектов, называемый также теневым, который заключается в размещении исследуемого объекта между лазером и многоэлементным фотоприемником, развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта и определении размера объекта по величине тени, отбрасываемой им на фотоприемник. Устройства, реализующие известный способ, - лазерные теневые измерители - состоят из источника лазерного излучения, системы линз, формирующей из первоначального луча путем оптической развертки пучок параллельных лучей, и многоэлементного фотоприемника, подключенного к блоку обработки информации. Количество незасвеченных пикселов на фотоприемнике на линейке ПЗС определяет размер объекта (см., например, А.З.Венедиктов, В.Н.Демкин, Д.С.Доков, А.В.Комаров. Применение лазерных методов для контроля параметров автосцепки и пружин. Новые технологии - железнодорожному транспорту. Сборник научных статей с международным участием, часть 4. Омск 2000, с.23 2-233 [1] и V.N.Demrin, D.S.Dokov, V.N.Tereshkin, A.Z.Venediktov. Optical control of geometrical dimensions for railway cars automatic coupling. Third Internat. Workshop on New Approaches to High-Tech: Nondestructive Testing and Computer Simulations in Science and Engineering. Proceedings of SPAS, Vol.3. 7-11 June 1999, St. Petersburg, p.A17 [2]).

Использование оптической развертки позволяет применить для непрерывного считывания информации многоэлементный фотоприемник на линейке ПЗС и осуществить съем информации в течение одного кадра, длительность которого регулируется в широких пределах, вплоть до 0,1 мкс. Это обстоятельство дает возможность использовать лазерные теневые измерители для измерения параметров объектов, движущихся с большой скоростью.

Известен также способ бесконтактного оптического измерения размеров объектов, заключающийся в размещении исследуемого объекта между лазером и фотоприемником, оптической развертке лазерного излучения в пучок параллельных лучей в зоне расположения объекта и определении размера объекта по величине тени от объекта на фотоприемнике. Устройство, реализующее известный способ, состоит из источника лазерного излучения, линзовой системы оптической развертки, многоэлементной фотодиодной линейки, схемы обработки информации и компьютера (см., например, В.В.Анциферов, М.В.Муравьев. Бесконтактный лазерный измеритель геометрических размеров роликов подшипников. Новые технологии - железнодорожному транспорту. Сборник научных статей с международным участием, часть 4. Омск 2000, с.210-213 [3]).

Недостатки способа и устройства [3], с помощью которого реализуется способ, обусловлены следующим. Точность измерения при использовании известного способа зависит, прежде всего, от точности определения границ контура исследуемого объекта. Дифракционные эффекты приводят к тому, что переход от света к тени на поверхности фотоприемника характеризуется определенной протяженностью, которая для используемых на практике фотоприемников на линейке ПЗС составляет, как правило, несколько пикселов. Размытость границы между светом и тенью снижает точность определения размеров объекта, причем влияние этого фактора будет тем больше, чем меньше размер объекта.

Наиболее близким к заявляемому изобретению является техническое решение, описанное в патенте РФ №2262660 [4]. В способе-прототипе измеряемый объект размещается между источником лазерного излучения и фотоприемником, измеряется мощность лазерного излучения Р, затем сравнивается с заданным уровнем Ро, осуществляется оптическая развертка лазерного излучения в пучок параллельных лучей в зоне нахождения объекта и определяется размер объекта по величине тени от объекта на фотоприемнике, корректируя время экспозиции фотоприемника по величине разности (Ро-Р). Устройство-прототип для осуществления способа включает лазер, светоделительную пластину, короткофокусную цилиндрическую линзу, выходную цилиндрическую линзу, коллимирующую линзу, ПЗС, блок обработки информации, фотоприемное пороговое устройство.

Недостатком решения-прототипа является то, что предложенный способ измерения не позволяет проводить измерение поперечных линейных размеров труднодоступных небольших объектов без их перемещения в поле зрения оптической системы устройства, а также не обладает широким диапазоном измеряемых размеров.

Таким образом, задача, на решение которой направлено заявляемое изобретение, состоит в том, чтобы обеспечить высокую точность измерений линейных поперечных размеров небольших объектов; создать условия для проведения точных измерений труднодоступных объектов, не допускающих произвольного перемещения и расположения в пространстве; проводить точные измерения поперечных линейных размеров при их значительном разбросе, например, в 10 и более раз.

Поставленная задача решена за счет разработки способа бесконтактного измерения размеров малых объектов, заключающегося в том, что рассматриваемый объект размещают в задней фокальной плоскости вариообъектива, в задней фокальной плоскости неподвижного объектива размещают две калиброванные рамки, далее осуществляют последовательное совмещение изображения объекта с изображениями двух рамок, фиксацию положения подвижного компонента при этих совмещениях и вычисление размера объекта по двум зафиксированным положениям подвижного компонента, по размеру рамок и конструктивным параметрам вариообъектива.

Кроме того, для реализации заявляемого способа разработано устройство, содержащее вариообъектив, который выполнен в виде одного неподвижного и первого и второго подвижных компонентов, и в задней фокальной плоскости которого размещается исследуемый объект, две калиброванные рамки, размещенные в задней фокальной плоскости неподвижного компонента, оптически сопряженной с задней фокальной плоскостью вариообъектива, и датчик линейного перемещения первого подвижного компонента.

При этом, в конструкции устройства важно предусмотреть, чтобы первый подвижный компонент был выполнен с возможностью движения как в ведомом, так и в линейном режиме по отношению к второму подвижному компоненту.

Принцип, положенный в основу заявляемого изобретения, может быть сформулирован следующим образом. Для измерения поперечных линейных размеров труднодоступных объектов с ними совмещают заднюю фокальную плоскость вариообъектива, который используется при рассматривании глазом изображения объекта с большим видимым увеличением. Вариообъектив имеет необходимый перепад фокусного расстояния.

Для проведения измерений в качестве измерительного средства используют калиброванную рамку. Причем для проведения высокоточных измерений размеров объектов вариообъектив обеспечивает высокое качество их изображения при любом увеличении. При измерениях с изображением калиброванной рамки совмещают увеличенное изображение объекта, размер которого может варьироваться в широких пределах за счет изменения видимого увеличения (фокусного расстояния) вариообъектива. Изменение величины видимого увеличения вариообъектива с известными конструктивными параметрами однозначно определяется законом перемещения двух его подвижных компонентов: зная величину перемещения одного какого-либо подвижного компонента, можно вычислить значение углового увеличения вариообъектива. При совмещении изображения объекта с изображением калиброванной рамки с помощью датчика снимается линейное перемещение выбранного подвижного компонента вариообъектива и по этой величине рассчитывают искомый линейный размер объекта.

Для лучшего понимания существа заявляемого изобретения далее приводится его подробное описание с привлечением графических материалов.

На Фиг.1 приведена схема устройства для измерения поперечных линейных размеров малых труднодоступных объектов.

На Фиг.2 показана оптическая схема вариообъектива для измерений поперечных линейных размеров малых труднодоступных объектов.

Изобретение поясняется Фиг.1, где изображено заявляемое устройство, с помощью которого реализуется заявляемый способ измерения поперечных линейных размеров малых объектов.

Устройство включает глаз 1 оператора, производящего измерения размера объекта, вариообъектив 2, состоящий из неподвижного объектива 3, в задней фокальной плоскости объектива которого расположен кадр с двумя тест-рамками 4, системы 9 переменного линейного увеличения (СПЛУ) с двумя перемещающимися линзовыми компонентами 5 и 6, оптически сопрягающей заднюю фокальную плоскость объектива 3 с задней фокальной плоскостью всего вариообъектива 2, датчика 7 линейного положения подвижного компонента 5. Объект 8 расположен в задней фокальной плоскости вариообъектива, которая остается неподвижной при изменении фокусного расстояния (и увеличения вариообъектива).

На Фиг.2 показано, что исследуемый объект 8 расположен в плоскости F', которую СПЛУ оптически сопрягает с неподвижной задней фокальной плоскостью F'1 объектива 3, где расположен кадр 4. Причем за счет перемещения положения компонентов 5 и 6 изменяют соответственно линейное увеличение системы 9 переменного линейного увеличения, фокусное расстояние всего вариообъектива 2 и угловой размер объекта.

Такое построение вариообъектива с кадром в плоскости F1 обеспечивает наблюдение резкого изображения объекта переменного углового размера на фоне двух калиброванных рамок.

Заявляемый способ осуществляется следующим образом. Глаз через объектив 3 видит изображение объекта 8 на фоне двух рамок фиксированных угловых размеров (калиброванных рамок). Изменяя фокусное расстояние вариообъектива 2, меняют положение подвижных компонентов 5 и 6 и линейное увеличение системы 9 переменного увеличения. Меняют размер изображения объекта до тех пор, пока он не будет равен размеру первой калиброванной рамки с угловым размером W1. При совпадении указанных размеров фиксируют величину t1 расстояния d1 между неподвижным объективом и компонентом 5.

Повторно изменяя фокальное расстояние вариообъектива, перемещают компонент 5 до совмещения изображения объекта со второй калиброванной рамкой с угловым размером W2 и фиксируют величину t2 расстояния d1. Используют полученные отчеты t1 и t2 для расчета искомого размера предмета по зависимости, в которой используются известные конструктивные параметры вариообъектива и угловые размеры калиброванных рамок W1 и W2.

Для вариообъектива известны связи между его параметрами и угловыми размерами объекта и калиброванные рамки с размерами LK1 и LK2.

Угловые размеры W1 и W2 двух калиброванных рамок определяются фокусным расстоянием неподвижного объектива 2 при помощи выражений

Угловой размер W объекта размером L определяется фокусным расстоянием всего вариообъектива f' согласно выражению TgW=L/f'. Здесь фокусное расстояние вариообъектива f' связано с фокусным расстоянием через линейное увеличение Bet(t) системы 9 переменного увеличения Видимое увеличение Г объекта, которое обеспечивает вариообъектив при фокусном расстоянии f', определяется известным соотношением Г=250/f'.

В свою очередь линейное увеличение Bet(t) системы 9 переменного увеличения однозначно связано с ее конструктивными параметрами с перемещением компонента 5. Из теории СПЛУ [1] при условии неподвижности плоскостей F1 и F2 можно получить связь нормированных конструктивных параметров F, G, перемещения Х компонента 5 и текущего линейного увеличения Bet(t).

FX2β2+β(X2-2GX+1)+F=0;

Здесь

- фокусное расстояние первого компонента СПЛУ;

- фокусное расстояние второго компонента СПЛУ;

d1, d2 - расстояния между компонентами системы;

d3 - расстояние от второго компонента до плоскости изображения;

G - обобщенное нормированное расстояние между фокальными плоскостями компонентов СПЛУ в начальном положении;

- параметр СПЛУ,

β - текущее увеличение СПЛУ;

β1, β21/M - увеличение СПУ в начальном и конечном положениях компонентов системы;

М - требуемый перепад увеличений СПЛУ;

Х - нормированное расстояние от задней фокальной плоскости неподвижного объектива до переднего фокуса первого компонента СПЛУ.

Зная величину d1=t1, полученную при совпадении изображений предмета и первой калиброванной рамки, можно последовательно найти:

Зная параметры вариообъектива, можем записать 1-е уравнение для расчета линейного увеличения СПЛУ, соответствующее первом отсчету t1:

kw=tgW1/tgW2.

Аналогично можно записать 2-е уравнение, соответствующее отсчету t2.

Вычитая из 1-го уравнения 2-е, для линейного увеличения и искомого размера у объекта получаем:

Минимальное фокусное расстояние вариообъектива обеспечивает большое видимое увеличение объекта и, как следствие, высокую точность измерений даже при малых размерах объекта, а большой перепад фокусных расстояний вариообъектива позволяет поддерживать эту точность при варьировании размеров объекта в большом диапазоне.

Таким образом, заявляемые способ и устройство за счет использования вариообъектива, высокой точности поперечной наводки обеспечивают - по сравнению с устройством - прототипом - повышение точности измерения размеров малых объектов.

В практическом примере реализации заявляемого изобретения был использован вариообъектив, имеющий оптическое разрешение с перепадом фокусных расстояний М=39 крат в плоскости объекта около 5 мкм. Такой объектив обеспечивает измерение размеров с высокой точностью.

Изобретение может быть использовано в различных отраслях производства, в медицине и других областях, где требуется проведение высокоточных измерений.

Источник поступления информации: Роспатент

Showing 81-90 of 125 items.
08.03.2019
№219.016.d4d1

Способ передачи-приема сигналов в системе радиосвязи с n каналами передачи и м каналами приема

Изобретение относится к области радиотехники, в частности к способу передачи и приема сигналов в системе радиосвязи с множеством каналов передачи и множеством каналов приема. Технический результат достигается за счет того, что для каждого интервала Та определяют количество J сигналов,...
Тип: Изобретение
Номер охранного документа: 0002381628
Дата охранного документа: 10.02.2010
11.03.2019
№219.016.da79

Способ интерполяции цифрового изображения

Изобретение относится к обработке цифровых изображений, в частности к способам изменения масштаба цифрового изображения, т.е. вычислению значений яркости в точках, не принадлежащих изначально исходному множеству точек, в которых значения яркости известны. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002367019
Дата охранного документа: 10.09.2009
11.03.2019
№219.016.da92

Устройство задней подсветки

Изобретение относится к осветительным устройствам. Устройство задней подсветки содержит множество расположенных отдельно друг от друга светоизлучающих диодов (СИД), светонаправляющую пластину, изготовленную из прозрачного оптического материала, которая имеет первую поверхность и вторую...
Тип: Изобретение
Номер охранного документа: 0002364904
Дата охранного документа: 20.08.2009
11.03.2019
№219.016.dabb

Способ выявления искажений, вызванных эффектом гиббса, при jpeg-кодировании

Изобретение относится к цифровой фотографии, а именно к анализу качества цифрового изображения, и может быть использовано при выявлении искажений при JPEG-кодировании. Способ выявления искажений, вызванных эффектом Гиббса, при JPEG-кодировании заключается в оценке размера кодировочного блока по...
Тип: Изобретение
Номер охранного документа: 0002365994
Дата охранного документа: 27.08.2009
11.03.2019
№219.016.db66

Способ формирования составного изображения

Изобретение относится к обработке цифровых изображений, а более конкретно к способам формирования составного (мозаичного) изображения из нескольких частично перекрывающихся изображений, захваченных такими планшетными устройствами, как сканер или многофункциональное периферийное устройство....
Тип: Изобретение
Номер охранного документа: 0002421814
Дата охранного документа: 20.06.2011
11.03.2019
№219.016.db67

Система и способ формирования и воспроизведения трехмерного видеоизображения

Изобретение относится к устройствам и способам обработки стерео изображений. Техническим результатом является получение высококачественного изображения на основе точной карты глубины, сформированной из стереокадров. Результат достигается тем, что система формирования и воспроизведения...
Тип: Изобретение
Номер охранного документа: 0002421933
Дата охранного документа: 20.06.2011
11.03.2019
№219.016.db8e

Модуль объектива

Модуль объектива содержит по меньшей мере два крепления, каждое их которых содержит, по меньшей мере, один оптический элемент типа линзы. Крепления соединены одно с другим шарнирно в виде цепи и выполнены с возможностью поворота вокруг шарнирных соединений. Цепь креплений расположена между...
Тип: Изобретение
Номер охранного документа: 0002427014
Дата охранного документа: 20.08.2011
11.03.2019
№219.016.dc4e

Способ и система контроля процессов в операционной системе на микроядре

Изобретение может быть использовано в роботизированных системах и навигационных системах роботов. Согласно способу контроля процессов в операционной системе на микроядре получают дескриптор очередного процесса из планировщика действующей очереди выполнения процессов; проверяют, пуста ли очередь...
Тип: Изобретение
Номер охранного документа: 0002408062
Дата охранного документа: 27.12.2010
20.03.2019
№219.016.e512

Цифровой преобразователь сигналов с неоднородной архитектурой массива выборки

Изобретение относится к электронике для измерения характеристик высокоскоростных сигналов, которые применяются в цифровых регистраторах быстропротекающих процессов и радиолокационных приемниках. Технический результат заключается в повышении производительности. Цифровой преобразователь сигналов...
Тип: Изобретение
Номер охранного документа: 0002348993
Дата охранного документа: 10.03.2009
20.03.2019
№219.016.e70f

Способ деинсталляции компьютерной программы в многопользовательской среде

Изобретение относится к области вычислительной техники и может быть применено в инсталляторах компьютерных программ, которые работают под операционными системами Windows, MacOS и ОС семейства UNIX. Техническим результатом изобретения является повышение функциональности и удобства пользования...
Тип: Изобретение
Номер охранного документа: 0002365976
Дата охранного документа: 27.08.2009
Showing 11-17 of 17 items.
29.03.2019
№219.016.f11b

Осветительная система для жидкокристаллического дисплея с увеличенным динамическим диапазоном отображаемых яркостей

Изобретение относится к области оптического приборостроения и, в частности, к осветительным системам жидкокристаллических дисплеев. Осветительная система для жидкокристаллического дисплея содержит источники света и формирующую оптическую систему. Формирующая оптическая система состоит из двух...
Тип: Изобретение
Номер охранного документа: 0002343520
Дата охранного документа: 10.01.2009
29.03.2019
№219.016.f496

Способ и устройство для перемещения перетяжки лазерного пучка

Способ перемещения выходной перетяжки с сохранением постоянства ее размера заключается в использовании двухкомпонентной лазерной оптической системы (ЛОС). ЛОС содержит первый подвижный компонент на расстоянии d от входной перетяжки, второй подвижный компонент на расстоянии d от первого...
Тип: Изобретение
Номер охранного документа: 0002411598
Дата охранного документа: 10.02.2011
29.03.2019
№219.016.f6c7

Согласующая лазерная оптическая система для обеспечения постоянства размера и положения выходной перетяжки

Изобретение относится к оптике, а точнее к лазерным оптическим системам. Согласующая лазерная оптическая система выполнена с возможностью обеспечения постоянства размера и положения выходной перетяжки при вариациях размера входной перетяжки и включает в себя лазер, пучок которого с параметром...
Тип: Изобретение
Номер охранного документа: 0002435182
Дата охранного документа: 27.11.2011
29.05.2019
№219.017.68ff

Десятикратный ультракомпактный вариообъектив с макрорежимом

Объектив состоит из четырех последовательно расположенных компонентов: первого - положительного, второго - отрицательного, третьего и четвертого - положительных. Первый компонент неподвижен в режиме зуммирования и подвижен в макрорежиме и представляет собой склейку положительной и отрицательной...
Тип: Изобретение
Номер охранного документа: 0002433434
Дата охранного документа: 10.11.2011
29.06.2019
№219.017.a1a7

Оптическая система голографической видеокамеры

Изобретение относится к технологии конструирования видеокамер высокого разрешения, в частности к созданию оптических систем для голографических видеокамер, работающих в условиях недостаточного освещения. Оптическая система голографической видеокамеры включает в себя оптический волновод с...
Тип: Изобретение
Номер охранного документа: 0002464608
Дата охранного документа: 20.10.2012
14.03.2020
№220.018.0bd1

Гиперспектрометр с повышенной спектральной разрешающей способностью

Изобретение относится к области оптического приборостроения и касается гиперспектрометра с повышенной спектральной разрешающей способностью. Гиперспектрометр включает в себя изображающий объектив, многоканальный спектрометр и электронный блок обработки сигналов. В многоканальном спектрометре...
Тип: Изобретение
Номер охранного документа: 0002716454
Дата охранного документа: 11.03.2020
16.05.2023
№223.018.63c8

Устройство регистрации результатов пцр с монохроматором

Изобретение относится к устройству регистрации результатов полимеразной цепной реакции (ПЦР). Устройство регистрации результатов ПЦР содержит источник света (1) с широким спектром излучения, осветительный объектив (8), кювету (9) с образцами и систему регистрации. Между источником света (1) и...
Тип: Изобретение
Номер охранного документа: 0002774888
Дата охранного документа: 24.06.2022
+ добавить свой РИД