×
11.03.2019
219.016.d862

Результат интеллектуальной деятельности: РАБОЧАЯ ЧАСТЬ ТРАНСЗВУКОВОЙ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, предлагается сделать в поперечной стойке отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. В результате отверстия и каналы соединяют камеру давления и аэродинамический след от поперечной стойки. В аэродинамическом следе скорость, полное и статическое давление меньше, чем в основном потоке, поэтому газ из камеры давления сам течет в зону за поперечной стойкой. В другом варианте изобретения ниже по потоку от поперечной стойки установлены трубопроводы, имеющие отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. В обоих вариантах камера давления и каналы поперечной стойки или трубопроводы могут быть соединены через вентиляторы. Технический результат заключается в снижении энергозатрат и расширении диапазона чисел Маха при проведении испытаний. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении исследований в трансзвуковых аэродинамических трубах.

Для проведения испытаний моделей летательных аппаратов в трансзвуковых аэродинамических трубах (числа Маха М=0,8-1,2) применяются рабочие части с перфорированными стенками, камерой давления, окружающей рабочую часть, и системой подвески модели с поперечной стойкой. При испытаниях модель вытесняет часть рабочего потока через отверстия перфорации. Далее этот газ должен удаляться из камеры давления, иначе в аэродинамической трубе не реализуется трансзвуковой диапазон чисел Маха из-за ее «запирания». Удаление газа производится, например, отдельным компрессором, так называемый «принудительный отсос» (см. А.Поуп, К.Гойн. Аэродинамические трубы больших скоростей. Издательство «Мир», Москва, 1968, стр.118). Потребляемая системой отсоса мощность достигает иногда 40% мощности основного компрессора трубы.

Известна также взятая за прототип конструкция рабочей части трансзвуковой аэродинамической трубы, включающая перфорированные стенки, камеру давления, узел подвески в потоке испытываемой модели с поперечной стойкой, в которой удаление газа из камеры давления производится с помощью «автоотсоса» (см. Г.Л.Гродзовский, А.А.Никольский, Г.П.Свищев, Г.И.Таганов. Сверхзвуковые течения газа в перфорированных границах. Издательство «Машиностроение», Москва, 1967, стр.90). В этом случае газ удаляется из камеры давления путем его эжектирования основным потоком через специально организуемый уступ в контуре за перфорацией. Недостатком такой конструкции являются большое сопротивление трубы основному потоку и соответственно большая потребная для испытаний мощность ее привода.

Задача настоящего изобретения - модернизировать рабочую часть трансзвуковой аэродинамической трубы.

Технический результат - снижение энергозатрат и расширение диапазона чисел Маха.

Решение задачи и технический результат достигаются тем, что в рабочей части трансзвуковой аэродинамической трубы, включающей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, поперечная стойка имеет отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. Отверстия и каналы соединяют камеру давления и аэродинамический след от поперечной стойки в основном потоке. Под аэродинамическим следом в аэродинамике понимается зона, расположенная ниже по потоку от обтекаемого тела и примыкающая к нему. Эта зона всегда расположена со стороны, противоположной набегающему потоку. В аэродинамическом следе скорость, полное и статическое давление меньше, чем в основном потоке, поэтому газ из камеры давления сам потечет в зону за поперечной стойкой (П.Чжен. Отрывные течения. Пер. с англ., изд. «Мир», Москва, 1972, т.2, стр.86-88).

Решение задачи и технический результат также достигаются тем, что в рабочей части трансзвуковой аэродинамической трубы, включающей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, ниже по потоку от поперечной стойки установлены трубопроводы с отверстиями со стороны, противоположной набегающему потоку, и каналами, соединяющими камеру давления и эти отверстия. В результате камера давления соединяется с аэродинамическим следом от трубопроводов, и в него из камеры давления начинает поступать самотеком газ.

Кроме того, в обоих вариантах камера давления и каналы поперечной стойки или трубопроводов могут быть соединены через вентиляторы.

На фиг.1 приведена схема рабочей части трансзвуковой аэродинамической трубы по первому варианту изобретения.

На фиг.2 приведена схема рабочей части трансзвуковой аэродинамической трубы по второму варианту изобретения.

На фиг.3 показана установка вентиляторов во втором варианте изобретения.

В первом варианте (фиг.1) рабочая часть трансзвуковой аэродинамической трубы состоит из звукового сопла 1, перфорированных стенок 2, камеры давления 3, поперечной стойки 4 узла подвески испытываемой модели и диффузора 5. Внутри поперечная стойка имеет каналы 6 и отверстия 7 со стороны, противоположной набегающему потоку. При испытаниях поток разгоняется в сопле 1, направляется к модели и начинает ее обтекать. Часть потока при трансзвуковых скоростях вытесняется моделью через отверстия перфорации 2 в камеру давления 3. Далее этот газ поступает в полую (с каналами 6) поперечную стойку 4 узла подвески испытываемой модели и через отверстия 7 в ней в зоне обтекания стойки потоком поступает в поток и далее выбрасывается в диффузор.

Рабочая часть трансзвуковой аэродинамической трубы по второму варианту изобретения (фиг.2) состоит из звукового сопла 1, перфорированных стенок 2, камеры давления 3, поперечной стойки 4 узла подвески испытываемой модели, диффузора 5 и специальных трубопроводов 6 с каналами 7 и отверстиями 8, расположенных за поперечной стойкой 4 ниже по потоку в ее аэродинамическом следе. Специальные трубопроводы 6 через каналы 7 открыты в камеру давления, и в то же время они открыты через отверстия 8 в поток со стороны, противоположной набегающему потоку. При испытаниях поток разгоняется в сопле 1, направляется к модели и начинает ее обтекать. Часть потока при трансзвуковых скоростях вытесняется моделью через отверстия перфорации 2 в камеру давления 3. Далее этот газ поступает в полые (с каналами 7) трубопроводы 6, установленные за поперечной стойкой 4, и через отверстия 8 в них в зоне обтекания трубопроводов 6 потоком поступает в поток и затем выбрасывается в диффузор.

Статическое давление в аэродинамическом следе существенно (иногда вдвое) меньше статического давления в рабочей части и камере давления, поэтому газ потечет сам из камеры давления в аэродинамический след, если сделать соответствующие каналы. Для увеличения расхода этого газа в обоих вариантах изобретения камера давления и каналы стойки или дополнительных трубопроводов могут соединяться через вентиляторы 9 (фиг.3). Статическое давление в аэродинамическом следе действительно мало и большого напора не потребуется.

Использование изобретения позволит уменьшить сопротивление аэродинамической трубы основному потоку и повысить экономичность испытаний. Кроме этого, при изменении скорости потока во время пуска аэродинамической трубы отсос газа через предлагаемую систему отверстий в области стойки и дополнительных трубопроводов позволит продвинуться в область больших чисел Маха.

Данное предложение может применяться как альтернатива автоотсосу и принудительному отсосу, так и одновременно с ними.

Источник поступления информации: Роспатент

Showing 201-210 of 255 items.
19.06.2019
№219.017.8b81

Пульсатор быстропеременного давления

Изобретение относится к измерительной технике и может быть использовано для калибровки датчиков пульсаций давления. Пульсатор содержит сильфон, эталонный и калибруемый датчики давления, расположенные внутри рабочей камеры пульсаций давления сильфона. Вход эталонного датчика через аппаратуру...
Тип: Изобретение
Номер охранного документа: 0002467297
Дата охранного документа: 20.11.2012
02.07.2019
№219.017.a315

Способ управления давлением в замкнутом объеме

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний летательных аппаратов. В процессе реализации предложенного способа увеличение давления воздуха в замкнутом объеме, в частности в фюзеляже, происходит за счет открытия большерасходного и...
Тип: Изобретение
Номер охранного документа: 0002692935
Дата охранного документа: 28.06.2019
05.07.2019
№219.017.a660

Крыло летательного аппарата

Изобретение относится к крыльям дозвуковых самолетов. Крыло летательного аппарата состоит из центроплана и консоли, выполнено с удлинением λ=8÷11, сужением η=3.0÷4.5 и имеет сверхкритические профили. Передняя кромка при виде сверху в области от 0 до 25% размаха крыла выполнена с изломом и...
Тип: Изобретение
Номер охранного документа: 0002693389
Дата охранного документа: 02.07.2019
10.07.2019
№219.017.ac3e

Гиперзвуковой пульсирующий детонационный двигатель и способ его функционирования

Гиперзвуковой пульсирующий детонационный двигатель содержит корпус, воздухозаборник, полузамкнутую детонационную камеру сгорания, сопловой аппарат, топливную систему и систему управления. Воздухозаборник выполнен кольцевым. Центральным телом является корпус с топливным баком, теплообменником и...
Тип: Изобретение
Номер охранного документа: 0002347097
Дата охранного документа: 20.02.2009
10.08.2019
№219.017.bda2

Цифровой тензометрический преобразователь на несущей частоте

Изобретение относится к области измерительной техники и промышленной электроники и служит для измерения деформаций, усилий, давлений и других физических величин с помощью тензорезисторных датчиков, собранных в измерительный мост. Предлагается цифровой тензометрический преобразователь на несущей...
Тип: Изобретение
Номер охранного документа: 0002696930
Дата охранного документа: 07.08.2019
10.08.2019
№219.017.bdd6

Способ экспериментального определения аэродинамических характеристик модели при проведении квазистатических испытаний в аэродинамической трубе

Изобретение относится к экспериментальной аэродинамике летательных аппаратов при проведении экспериментальных исследований в аэродинамической трубе. Способ заключается в том, что исследуемую модель устанавливают в рабочей части аэродинамической трубы на поддерживающем устройстве. Проводят...
Тип: Изобретение
Номер охранного документа: 0002696942
Дата охранного документа: 07.08.2019
10.08.2019
№219.017.bdea

Электропневматический генератор звука

Изобретение относится к технической акустике и может быть использовано для испытаний конструкций на акустическую усталостную прочность. Электропневматический генератор звука содержит корпус, форкамеру, постоянные магниты, обмотки возбуждения, упругие элементы, неподвижную и подвижную...
Тип: Изобретение
Номер охранного документа: 0002696946
Дата охранного документа: 07.08.2019
10.08.2019
№219.017.bdf2

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при разработке аэродинамических труб и проведении в них испытаний. Аэродинамическая труба содержит эжектор, который состоит из трех стволов, из которых как минимум один содержит перфорированное сопло....
Тип: Изобретение
Номер охранного документа: 0002696938
Дата охранного документа: 07.08.2019
12.08.2019
№219.017.bebb

Крыло летательного аппарата

Изобретение относится к авиационной технике. Крыло летательного аппарата содержит обшивку, силовой набор, двигатель и воздушный винт, последние выполнены как единый моноблок с возможностью перемещения и/или поворота, крыло содержит отсек длиной 10-25% местной хорды для убирания моноблока при...
Тип: Изобретение
Номер охранного документа: 0002696681
Дата охранного документа: 05.08.2019
17.08.2019
№219.017.c111

Устройство для измерения аэродинамической силы и момента

Изобретение относится к измерительной технике и предназначено для измерения составляющих векторов аэродинамической силы и момента, действующих на модели летательных аппаратов при исследованиях в аэродинамических трубах (АДТ). Устройство содержит внутримодельные тензовесы с узлом крепления к...
Тип: Изобретение
Номер охранного документа: 0002697570
Дата охранного документа: 15.08.2019
Showing 1-7 of 7 items.
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
10.02.2014
№216.012.9f8e

Способ управления гибкими стенками сопла аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Способ заключается в том, что управление гибкими стенками сопла осуществляют автоматическими приводными механизмами по заданной программе. Задание на изменение контура...
Тип: Изобретение
Номер охранного документа: 0002506554
Дата охранного документа: 10.02.2014
20.08.2014
№216.012.ed23

Аэродинамическая труба

Изобретение относится к экспериментальной аэродинамике, в частности к аэродинамическим установкам (трубам), и может быть использовано для испытаний моделей лопастей воздушных винтов. Устройство содержит входной тракт с задвижкой и дросселем для ввода сжатого воздуха, форкамеру, пульсатор,...
Тип: Изобретение
Номер охранного документа: 0002526515
Дата охранного документа: 20.08.2014
10.04.2015
№216.013.3e71

Рабочая часть аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. Рабочая часть аэродинамической трубы включает камеру давления, перфорированные стенки на границах потока и шумоглушащие сетки. При этом...
Тип: Изобретение
Номер охранного документа: 0002547473
Дата охранного документа: 10.04.2015
10.08.2019
№219.017.bdf2

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при разработке аэродинамических труб и проведении в них испытаний. Аэродинамическая труба содержит эжектор, который состоит из трех стволов, из которых как минимум один содержит перфорированное сопло....
Тип: Изобретение
Номер охранного документа: 0002696938
Дата охранного документа: 07.08.2019
17.08.2019
№219.017.c111

Устройство для измерения аэродинамической силы и момента

Изобретение относится к измерительной технике и предназначено для измерения составляющих векторов аэродинамической силы и момента, действующих на модели летательных аппаратов при исследованиях в аэродинамических трубах (АДТ). Устройство содержит внутримодельные тензовесы с узлом крепления к...
Тип: Изобретение
Номер охранного документа: 0002697570
Дата охранного документа: 15.08.2019
16.05.2023
№223.018.60f4

Способ определения нестационарной силы и устройство для его реализации

Изобретение относится к области измерительной техники и позволяет определять нестационарные силы с помощью динамометров с высокой точностью в широком диапазоне частот как в инерциальной, так и в неинерциальной системах координат. Сущность: осуществляют приложение силы к динамометру и...
Тип: Изобретение
Номер охранного документа: 0002743778
Дата охранного документа: 25.02.2021
+ добавить свой РИД