×
11.03.2019
219.016.d862

Результат интеллектуальной деятельности: РАБОЧАЯ ЧАСТЬ ТРАНСЗВУКОВОЙ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, предлагается сделать в поперечной стойке отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. В результате отверстия и каналы соединяют камеру давления и аэродинамический след от поперечной стойки. В аэродинамическом следе скорость, полное и статическое давление меньше, чем в основном потоке, поэтому газ из камеры давления сам течет в зону за поперечной стойкой. В другом варианте изобретения ниже по потоку от поперечной стойки установлены трубопроводы, имеющие отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. В обоих вариантах камера давления и каналы поперечной стойки или трубопроводы могут быть соединены через вентиляторы. Технический результат заключается в снижении энергозатрат и расширении диапазона чисел Маха при проведении испытаний. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении исследований в трансзвуковых аэродинамических трубах.

Для проведения испытаний моделей летательных аппаратов в трансзвуковых аэродинамических трубах (числа Маха М=0,8-1,2) применяются рабочие части с перфорированными стенками, камерой давления, окружающей рабочую часть, и системой подвески модели с поперечной стойкой. При испытаниях модель вытесняет часть рабочего потока через отверстия перфорации. Далее этот газ должен удаляться из камеры давления, иначе в аэродинамической трубе не реализуется трансзвуковой диапазон чисел Маха из-за ее «запирания». Удаление газа производится, например, отдельным компрессором, так называемый «принудительный отсос» (см. А.Поуп, К.Гойн. Аэродинамические трубы больших скоростей. Издательство «Мир», Москва, 1968, стр.118). Потребляемая системой отсоса мощность достигает иногда 40% мощности основного компрессора трубы.

Известна также взятая за прототип конструкция рабочей части трансзвуковой аэродинамической трубы, включающая перфорированные стенки, камеру давления, узел подвески в потоке испытываемой модели с поперечной стойкой, в которой удаление газа из камеры давления производится с помощью «автоотсоса» (см. Г.Л.Гродзовский, А.А.Никольский, Г.П.Свищев, Г.И.Таганов. Сверхзвуковые течения газа в перфорированных границах. Издательство «Машиностроение», Москва, 1967, стр.90). В этом случае газ удаляется из камеры давления путем его эжектирования основным потоком через специально организуемый уступ в контуре за перфорацией. Недостатком такой конструкции являются большое сопротивление трубы основному потоку и соответственно большая потребная для испытаний мощность ее привода.

Задача настоящего изобретения - модернизировать рабочую часть трансзвуковой аэродинамической трубы.

Технический результат - снижение энергозатрат и расширение диапазона чисел Маха.

Решение задачи и технический результат достигаются тем, что в рабочей части трансзвуковой аэродинамической трубы, включающей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, поперечная стойка имеет отверстия со стороны, противоположной набегающему потоку, и каналы, соединяющие камеру давления и эти отверстия. Отверстия и каналы соединяют камеру давления и аэродинамический след от поперечной стойки в основном потоке. Под аэродинамическим следом в аэродинамике понимается зона, расположенная ниже по потоку от обтекаемого тела и примыкающая к нему. Эта зона всегда расположена со стороны, противоположной набегающему потоку. В аэродинамическом следе скорость, полное и статическое давление меньше, чем в основном потоке, поэтому газ из камеры давления сам потечет в зону за поперечной стойкой (П.Чжен. Отрывные течения. Пер. с англ., изд. «Мир», Москва, 1972, т.2, стр.86-88).

Решение задачи и технический результат также достигаются тем, что в рабочей части трансзвуковой аэродинамической трубы, включающей перфорированные стенки, камеру давления и узел подвески в потоке испытываемой модели с поперечной стойкой, ниже по потоку от поперечной стойки установлены трубопроводы с отверстиями со стороны, противоположной набегающему потоку, и каналами, соединяющими камеру давления и эти отверстия. В результате камера давления соединяется с аэродинамическим следом от трубопроводов, и в него из камеры давления начинает поступать самотеком газ.

Кроме того, в обоих вариантах камера давления и каналы поперечной стойки или трубопроводов могут быть соединены через вентиляторы.

На фиг.1 приведена схема рабочей части трансзвуковой аэродинамической трубы по первому варианту изобретения.

На фиг.2 приведена схема рабочей части трансзвуковой аэродинамической трубы по второму варианту изобретения.

На фиг.3 показана установка вентиляторов во втором варианте изобретения.

В первом варианте (фиг.1) рабочая часть трансзвуковой аэродинамической трубы состоит из звукового сопла 1, перфорированных стенок 2, камеры давления 3, поперечной стойки 4 узла подвески испытываемой модели и диффузора 5. Внутри поперечная стойка имеет каналы 6 и отверстия 7 со стороны, противоположной набегающему потоку. При испытаниях поток разгоняется в сопле 1, направляется к модели и начинает ее обтекать. Часть потока при трансзвуковых скоростях вытесняется моделью через отверстия перфорации 2 в камеру давления 3. Далее этот газ поступает в полую (с каналами 6) поперечную стойку 4 узла подвески испытываемой модели и через отверстия 7 в ней в зоне обтекания стойки потоком поступает в поток и далее выбрасывается в диффузор.

Рабочая часть трансзвуковой аэродинамической трубы по второму варианту изобретения (фиг.2) состоит из звукового сопла 1, перфорированных стенок 2, камеры давления 3, поперечной стойки 4 узла подвески испытываемой модели, диффузора 5 и специальных трубопроводов 6 с каналами 7 и отверстиями 8, расположенных за поперечной стойкой 4 ниже по потоку в ее аэродинамическом следе. Специальные трубопроводы 6 через каналы 7 открыты в камеру давления, и в то же время они открыты через отверстия 8 в поток со стороны, противоположной набегающему потоку. При испытаниях поток разгоняется в сопле 1, направляется к модели и начинает ее обтекать. Часть потока при трансзвуковых скоростях вытесняется моделью через отверстия перфорации 2 в камеру давления 3. Далее этот газ поступает в полые (с каналами 7) трубопроводы 6, установленные за поперечной стойкой 4, и через отверстия 8 в них в зоне обтекания трубопроводов 6 потоком поступает в поток и затем выбрасывается в диффузор.

Статическое давление в аэродинамическом следе существенно (иногда вдвое) меньше статического давления в рабочей части и камере давления, поэтому газ потечет сам из камеры давления в аэродинамический след, если сделать соответствующие каналы. Для увеличения расхода этого газа в обоих вариантах изобретения камера давления и каналы стойки или дополнительных трубопроводов могут соединяться через вентиляторы 9 (фиг.3). Статическое давление в аэродинамическом следе действительно мало и большого напора не потребуется.

Использование изобретения позволит уменьшить сопротивление аэродинамической трубы основному потоку и повысить экономичность испытаний. Кроме этого, при изменении скорости потока во время пуска аэродинамической трубы отсос газа через предлагаемую систему отверстий в области стойки и дополнительных трубопроводов позволит продвинуться в область больших чисел Маха.

Данное предложение может применяться как альтернатива автоотсосу и принудительному отсосу, так и одновременно с ними.

Источник поступления информации: Роспатент

Showing 121-130 of 255 items.
25.08.2017
№217.015.b78f

Мотогондола двигателя на крыле летательного аппарата

Предлагаемое изобретение относится к авиационной технике. Мотогондола (1) на крыле (3) летательного аппарата установлена так, что координата по оси X составляет 0.7÷0.8 средней аэродинамической хорды крыла, отложенной от передней кромки крыла (6) до среза сопла мотогондолы (5), по оси Y...
Тип: Изобретение
Номер охранного документа: 0002614870
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b84a

Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем

Изобретение относится к области летательных аппаратов околозвуковых скоростей. Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем на обтекаемой поверхности включает выполнение выдува струй округлой поперечной формы из обтекаемой поверхности перед скачком...
Тип: Изобретение
Номер охранного документа: 0002615251
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.cc1d

Осесимметричная носовая часть фюзеляжа летательного аппарата

Изобретение относится к области авиационной техники. Осесимметричная носовая часть фюзеляжа затуплена по торцу и ее боковая поверхность имеет образующую, которая составлена из двух дуг окружностей и элемента, задаваемого степенной зависимостью радиуса от продольной координаты. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002620455
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cffe

Имитатор сигналов мостовых тензорезисторных датчиков

Изобретение относится к измерительной технике и предназначено для имитации сигналов мостовых тензорезисторных датчиков при проведении метрологических исследований и калибровке быстродействующих измерительных систем в автоматическом режиме. Имитатор сигналов мостовых тензорезисторных датчиков...
Тип: Изобретение
Номер охранного документа: 0002620895
Дата охранного документа: 30.05.2017
26.08.2017
№217.015.e18f

Способ теплопрочностных испытаний обтекателей гиперзвуковых летательных аппаратов и установка для его реализации

Изобретение относится к методике теплопрочностных испытаний носовых обтекателей и передних кромок воздухозаборника гиперзвуковых летательных аппаратов (далее ГЛА) с помощью инфракрасных нагревателей по программе гиперзвукового полета и касается способа создания большой величины плотности...
Тип: Изобретение
Номер охранного документа: 0002625637
Дата охранного документа: 17.07.2017
29.12.2017
№217.015.f2fc

Законцовка крыла летательного аппарата

Изобретение относится к авиационной технике. Законцовка крыла самолета серповидной формы имеет переднюю и заднюю кромки, выполненные нелинейной формы, выпуклой по всей длине, состоит из профилей с увеличенной относительно концевого сечения крыла кривизной (f=0.005-0.02), меньшей относительной...
Тип: Изобретение
Номер охранного документа: 0002637233
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f3ac

Импульсный плазменный тепловой актуатор эжекторного типа

Изобретение относится к системам управления обтеканием летательного аппарата при дозвуковых и околозвуковых скоростях полета. Импульсный плазменный тепловой актуатор эжекторного типа содержит подводной канал с обратным клапаном, разрядную камеру со встроенными игольчатыми электродами, сопло...
Тип: Изобретение
Номер охранного документа: 0002637235
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f409

Гибридная композитная панель для авиаконструкций

Изобретение относится к области разработки многослойных композитных авиационных конструкций с повышенной ударной прочностью и высокими деформационно-прочностными характеристиками. В гибридной композитной панели для авиаконструкции, например панели фюзеляжа летательного аппарата, слои, состоящие...
Тип: Изобретение
Номер охранного документа: 0002637001
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f45a

Спироидный винглет

Группа изобретений относится к области летательных аппаратов. Спироидный винглет представляет продолжение конца крыла в виде расположенной над ним несущей поверхности замкнутой формы. Несущая поверхность винглета выполнена постоянно сужающейся, с хордой на конце ее горизонтального участка,...
Тип: Изобретение
Номер охранного документа: 0002637149
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.f633

Крыло летательного аппарата с убирающимся воздушным винтом

Группа изобретений относится к авиационной технике. Крыло летательного аппарата с убирающимся воздушным винтом включает передний и задний лонжерон, предкрылок, двигатель, воздушный винт, лопасти воздушного винта. В первом варианте двигатель воздушного винта установлен на переднем лонжероне...
Тип: Изобретение
Номер охранного документа: 0002637277
Дата охранного документа: 01.12.2017
Showing 1-7 of 7 items.
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
10.02.2014
№216.012.9f8e

Способ управления гибкими стенками сопла аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Способ заключается в том, что управление гибкими стенками сопла осуществляют автоматическими приводными механизмами по заданной программе. Задание на изменение контура...
Тип: Изобретение
Номер охранного документа: 0002506554
Дата охранного документа: 10.02.2014
20.08.2014
№216.012.ed23

Аэродинамическая труба

Изобретение относится к экспериментальной аэродинамике, в частности к аэродинамическим установкам (трубам), и может быть использовано для испытаний моделей лопастей воздушных винтов. Устройство содержит входной тракт с задвижкой и дросселем для ввода сжатого воздуха, форкамеру, пульсатор,...
Тип: Изобретение
Номер охранного документа: 0002526515
Дата охранного документа: 20.08.2014
10.04.2015
№216.013.3e71

Рабочая часть аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. Рабочая часть аэродинамической трубы включает камеру давления, перфорированные стенки на границах потока и шумоглушащие сетки. При этом...
Тип: Изобретение
Номер охранного документа: 0002547473
Дата охранного документа: 10.04.2015
10.08.2019
№219.017.bdf2

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при разработке аэродинамических труб и проведении в них испытаний. Аэродинамическая труба содержит эжектор, который состоит из трех стволов, из которых как минимум один содержит перфорированное сопло....
Тип: Изобретение
Номер охранного документа: 0002696938
Дата охранного документа: 07.08.2019
17.08.2019
№219.017.c111

Устройство для измерения аэродинамической силы и момента

Изобретение относится к измерительной технике и предназначено для измерения составляющих векторов аэродинамической силы и момента, действующих на модели летательных аппаратов при исследованиях в аэродинамических трубах (АДТ). Устройство содержит внутримодельные тензовесы с узлом крепления к...
Тип: Изобретение
Номер охранного документа: 0002697570
Дата охранного документа: 15.08.2019
16.05.2023
№223.018.60f4

Способ определения нестационарной силы и устройство для его реализации

Изобретение относится к области измерительной техники и позволяет определять нестационарные силы с помощью динамометров с высокой точностью в широком диапазоне частот как в инерциальной, так и в неинерциальной системах координат. Сущность: осуществляют приложение силы к динамометру и...
Тип: Изобретение
Номер охранного документа: 0002743778
Дата охранного документа: 25.02.2021
+ добавить свой РИД