×
11.03.2019
219.016.d6c3

Результат интеллектуальной деятельности: ТЕСТОВАЯ СТРУКТУРА ДЛЯ ГРАДУИРОВКИ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА

Вид РИД

Изобретение

№ охранного документа
0002244254
Дата охранного документа
10.01.2005
Аннотация: Изобретение относится к области туннельной и атомно-силовой микроскопии, а точнее к устройствам, обеспечивающим градуировку сканирующих зондовых микроскопов (СЗМ). Сущность изобретения заключается в том, что в тестовой структуре для градуировки СЗМ, состоящей из основания и расположенных на нем искусственных упорядоченных микроструктур с известными геометрическими параметрами, в качестве искусственных микроструктур используются искусственные наносферы или микросферы, внешняя поверхность которых покрыта тонким проводящим слоем. Подобное выполнение тестовой структуры обеспечивает существенное расширение функциональных возможностей предлагаемой тестовой структуры за счет увеличения числа калибровочных параметров, расширение диапазона эталонных линейных размеров, возможности использовать тестовую структуру, как в атомно-силовом, так и в туннельном режимах, и повышение экспрессности измерений. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области туннельной и атомно-силовой микроскопии, а точнее устройствам, обеспечивающим градуировку сканирующих зондовых микроскопов (СЗМ).

Известна тестовая структура [1], представляющая собой основание с расположенными на нем микровыступами, сформированными с помощью технологий литографии и травления. Микроструктуры имеют горизонтальную верхнюю грань и выполнены в виде гофр. Подобная структура после соответствующей аттестации линейных размеров микровыступов или ямок независимыми методами позволяет градуировать зонды СЗМ для исследования микрообъектов по направлениям X, Y, Z.

Недостатками данной тестовой структуры является то, что она, во-первых, не охватывает диапазон латеральных линейных размеров (примерно от 10 нм до 200 нм), который является наиболее интересным в СЗМ. Во-вторых, эта тестовая структура (если она 2-мерная) позволяет калибровать сканер по углу лишь при значении 90°, и, следовательно, с помощью нее затруднительно провести градуировку и выявить линейность сканера по углу.

Из известных тестовых структур наиболее близкой к заявляемой по функциональному назначению и технической сущности является тестовая структура, описанная в патенте [2], в котором в качестве калибровочных элементов используются углеродные нанотрубки.

Недостатками данной тестовой структуры являются следующие ее особенности.

1. Поскольку углеродные нанотрубки произвольно осаждаются на поверхность, то для их поиска необходимо дополнительное сканирование, что существенно понижает экспрессность процедуры калибровки.

2. Неконтролируемость процесса осаждения нанотрубок, с точки зрения их пространственного положения, приводит к их пространственному разупорядочению на поверхности, что, в свою очередь, приводит к уменьшению точности измерений, т.к. в этом случае необходимо в каждом измерении (сканировании) изменять азимутальный угол образца так, чтобы ось нанотрубки была перпендикулярна направлению сканирования. Если же при этом трубка непрямая, то погрешность при определении ее размеров еще более возрастает.

3. Измерение на индивидуальном объекте существенно повышает погрешность измерений из-за флуктуации реального размера нанотрубки. Для решения этой проблемы в данном патенте предлагается использовать кластеры нанотрубок. Однако, во-первых, размеры такого рода кластеров невелики (100-500 трубок), а, во-вторых, найти кластер с упорядоченной структурой затруднительно, поскольку, как говорилось выше, процесс осаждения нанотрубок на поверхность неконтролируем. Кроме того, поскольку нанотрубки достаточно длинные (вплоть до одного микрона), то закрепление их на поверхности может осуществляться лишь в отдельных точках по их длине, что также приводит к нарушению периодичности нанотрубок в кластере, т.е. к повышению погрешности.

4. При использовании непроводящей подложки к данной тестовой структуре может быть применен только атомно-силовой режим СЗМ, что снижает ее функциональные возможности.

5. Поскольку тестовая структура с одиночной углеродной нанотрубкой представляет собой, по сути, одномерный объект, то градуировка СЗМ при однонаправленном сканировании осуществляется только по одной координате, что снижает ее функциональные возможности.

6. При адсорбции нанотрубок на подложку в их расположении не существует двух взаимно строго ориентированных направлений. Следовательно, в этом случае не существует эталонного объекта для калибровки по углу, что снижает функциональные возможности тестовой структуры.

Целью настоящего изобретения является расширение диапазона эталонных размеров в тестовых решетках, повышение экспрессности измерений и повышение универсальности тестовых решеток, т.е. использование их как в атомно-силовом режиме, так и в режиме измерений туннельного тока, а также проведение одновременно калибровки и по координатам X, Y, Z, и по азимутальному углу ϕ, что приводит к существенному расширению функциональных возможностей. Поставленная цель достигается тем, что в тестовой структуре для градуировки СЗМ, состоящей из основания и расположенных на нем искусственных упорядоченных микроструктур с известными геометрическими параметрами, в качестве искусственных микроструктур используются искусственные наносферы или микросферы, внешняя поверхность которых покрыта тонким проводящим слоем.

Тестовые структуры иллюстрируются на фиг.1-4.

На фиг.1 приведено сечение однослойной упорядоченной тестовой структуры.

На фиг.2 приведено сечение тестовой структуры, покрытой слоем проводящего материала.

На фиг.3 приведена упорядоченная тестовая структура из искусственных наносфер или микросфер (вид сверху). Стрелками "а" и "б" выделены "кристаллографические" направления с минимальным углом между ними 60°.

На фиг.4 приведено сечение многослойной упорядоченной тестовой структуры из искусственных наносфер или микросфер.

Примеры выполнения тестовой структуры.

Пример 1. Тестовая структура состоит из основания 1 (см. на фиг.1) и расположенных на нем искусственных наносфер или микросфер 2. В частности, искусственные наносферы или микросферы могут быть синтезированы по технологии синтеза искусственных опалов [3, 4, 5].

Пример 2. Тестовая структура состоит из основания 3 (см. на фиг.2) и расположенных на нем искусственных наносфер или микросфер 4, образующих на поверхности упорядоченную структуру. Для использования данной тестовой структуры в режиме измерений туннельного тока ее покрывают тонким (10-40 нм) слоем проводящего материала 5. В качестве проводящего материала можно использовать и полупроводниковые материалы, и металлы. Но наиболее подходящим для этих целей является золото.

Пример 3. В результате синтеза опаловой матрицы может быть получена многослойная структура, в которой роль подложки выполняют нижележащие слои. На фиг.4 приведена многослойная упорядоченная тестовая структура из искусственных наносфер или микросфер. 6 - проводящее покрытие; 7 - верхний упорядоченный слой, который выполняет функцию тестовой структуры; 8 - нижележащие слои, выполняющие функцию подложки.

Поскольку плотная упаковка одинаковых сфер представляет собой гексагональную структуру, то, кроме эталонных отрезков по различным "кристаллографическим" направлениям, имеется эталон угла между этими "кристаллографическими" направлениями, минимальный из которых равен 60° (см. фиг.3). Максимальная длина эталонных отрезков, состоящих из отдельных сфер, определяется максимальной площадью сканирования. Толщина проводящего слоя выбирается из двух условий: во-первых, слой должен быть сплошным, а во-вторых, не должен сглаживать рельеф. Современная технология синтеза опаловых матриц позволяет легко варьировать размерами получаемых сфер в рамках одной технологии, что позволяет без существенных затрат иметь набор тестовых структур, состоящих из сфер диаметром от 10 нм до микрона. Минимальный диаметр сфер определяется физическим пределом для используемого материала, ниже которого материал уже нельзя рассматривать как непрерывный континуум.

Процедура калибровки СЗМ с помощью предлагаемой тестовой структуры проводится следующим образом. Тестовую структуру помещают в позицию измерения на столик сканера и производят стандартное сканирование поверхности тестовой структуры в режиме измерения туннельного тока или в атомно-силовом режиме. Получив в результате этого сканирования топографическое изображение поверхности тестовой структуры, выбирают произвольный линейный отрезок вдоль "кристаллографического" направления, например вдоль направления "а" на фиг.3, который равен целому числу диаметров сфер (в данном примере четырем диаметрам). Поскольку диаметр сфер, составляющих тестовую решетку, известен, то известна и реальная длина этого отрезка. Сравнив это эталонное значение с показаниями микроскопа, вводят корректирующие коэффициенты в измерительную систему микроскопа. Подробнее процесс калибровки см. в [6, 7].

Использование в качестве эталонных микроструктур искусственных наносфер или микросфер выгодно отличает предлагаемую тестовую структуру от указанного прототипа, т.к.:

- перекрывается диапазон линейных эталонов, недоступный при использовании тестовых структур в указанном прототипе, что расширяет функциональные возможности предлагаемой тестовой структуры;

- упорядоченную структуру при использовании искусственных наносфер или микросфер легко получить на гораздо большей площади, чем площадь, которую занимает кластер нанотрубок в указанном прототипе. Этот фактор существенно повышает экспрессность процедуры калибровки;

- плотная упаковка наносфер или микросфер образует "кристаллографические" направления, со строго фиксированными углами, которые могут быть использованы в качестве эталонов для калибровки по углу, что расширяет функциональные возможности предлагаемой тестовой структуры и понижает погрешность измерений.

В результате покрытия предлагаемой тестовой структуры проводящим материалом она может быть использована для калибровки и в силовом режиме СЗМ, и в режиме измерения туннельного тока, независимо от электропроводности подложки, что расширяет функциональные возможности предлагаемой тестовой структуры.

Помимо этого проводящий слой упрочняет и капсюлирует тестовую структуру, что понижает погрешность измерений.

Поскольку энергия связи между сферами в плотноупакованном слое достаточно высока, то при нанесении нескольких слоев сфер (в зависимости от диаметра сфер количество слоев варьируется примерно от 10 и более) структура сохраняет свои геометрические характеристики (расположение сфер в пространстве) без использования подложки, что повышает надежность реализации плотноупакованной структуры и, следовательно, уменьшает погрешность измерений, так как поверхность реальной подложки имеет конечную шероховатость, действие которой направлено на разупорядочение слоя наносфер или микросфер.

Экономическая эффективность от использования предлагаемой тестовой структуры, в отличие от тестовой структуры, в указанном прототипе заключается в существенном снижении материальных затрат на изготовление тестовой структуры.

Источники информации

1. Патент RU № 2158899, кл. G 01 В 15/00, 2000.

2. Патент US № 6354133, кл. G 01 В 5/28, 2002.

3. Р.Jiang, J.F.Bertone, K.S.Hwang and V.L.Colvin. Chem. Mater. 11, 2132 (1999).

4. W.Stober, A.Fink and E.Bohn, J.Colloidal Interface Sci. 26, 62 (1968).

5. G.A.Emelchenko, K.A.Aldushm, V.M.Masalov, A.V.Bazhenov, A.V.Gorbunov. Phys. Low-Dim. Struc., 1/2(2002)99112.

6. Зондовая микроскопия для биологии и медицины. В.А.Быков и др. Сенсорные системы, т.12, № 1, 1998, с.99-121.

7. Сканирующая туннельная и атомно-силовая микроскопия в электрохимии поверхности. А.И.Данилов, Успехи химии, 64 (8), 1995, с.818-833.

1.Тестоваяструктурадляградуировкисканирующегозондовогомикроскопа,состоящаяизоснованияирасположенныхнанемискусственныхупорядоченныхмикроструктурсизвестнымигеометрическимипараметрами,отличающаясятем,чтовкачествеискусственныхмикроструктуриспользуютсянаносферыилимикросферы.12.Тестоваяструктурапоп.1,отличающаясятем,чтоповерхностьупорядоченныхмикроструктурпокрытатонкимпроводящимслоем.23.Тестоваяструктурапоп.1,отличающаясятем,чтодиапазондиаметровискусственныхсферможетварьироватьсяотминимальныхразмеров,определяющихсяфизическимпределомматериаладомикрометров.34.Тестоваяструктурапоп.1,отличающаясятем,чтовкачествеоснованияможетбытьиспользованамногослойнаяструктураизискусственныхнаносферилимикросфер.4
Источник поступления информации: Роспатент

Showing 1-3 of 3 items.
09.06.2019
№219.017.774d

Многозондовый датчик контурного типа для сканирующего зондового микроскопа

Изобретение относится к области сканирующей зондовой микроскопии, а более конкретно к устройствам, обеспечивающим наблюдение, измерение и модификацию поверхности объектов. Сущность изобретения заключается в том, что в многозондовый датчик контурного типа для сканирующего зондового микроскопа,...
Тип: Изобретение
Номер охранного документа: 0002244256
Дата охранного документа: 10.01.2005
11.07.2019
№219.017.b2e5

Сканирующий зондовый микроскоп с системой автоматического слежения за кантилевером

Сканирующий зондовый микроскоп с системой слежения за кантилевером содержит сопряженный с основанием сканер с кантилевером, закрепленным на сканере с возможностью взаимодействия с образцом, первое зеркало, связанное со сканером, и лазер, оптически сопряженный с первым зеркалом, кантилевером и...
Тип: Изобретение
Номер охранного документа: 02227333
Дата охранного документа: 20.04.2004
12.07.2019
№219.017.b31a

Сканирующий зондовый микроскоп, совмещенный с оптическим микроскопом

Изобретение относится к измерительной технике, а именно к устройствам измерения с помощью сканирующего зондового микроскопа (СЗМ) физических характеристик поверхности объектов с одновременным оптическим наблюдением зоны сканирования. Сущность изобретения состоит в том, что в СЗМ, совмещенном с...
Тип: Изобретение
Номер охранного документа: 0002244332
Дата охранного документа: 10.01.2005
Showing 21-27 of 27 items.
09.06.2019
№219.017.8027

Способ выявления веществ, обладающих адаптогенными свойствами, in vitro

Изобретение относится к медицине и может быть использовано, в частности, в фармакологии. При этом в качестве тест-объектов используют ферменты глутатионредуктазу или супероксиддисмутазу и глутатионпероксидазу или катализу, определяют скорости ферментативной реакции веществ на тест-объектах, при...
Тип: Изобретение
Номер охранного документа: 0002181890
Дата охранного документа: 27.04.2002
09.06.2019
№219.017.8038

Способ получения технического дигоксина

Изобретение относится к химико-фармацевтической промышленности и касается способа получения технического дигоксина. Способ осуществляется путем ферментации с последующей экстракцией водным раствором этилового спирта листьев наперстянки шерстистой, упаривания экстракта, извлечения дигоксина...
Тип: Изобретение
Номер охранного документа: 02186069
Дата охранного документа: 27.07.2002
Тип: Изобретение
Номер охранного документа: 0000215008
Дата охранного документа: 11.06.1968
29.06.2019
№219.017.a204

Фармацевтическая композиция, обладающая антигистаминным действием

Изобретение относится к медицине и касается фармацевтической композиции с антигистаминной активностью. Композиция содержит, вес. %: мебгидролин 5,01-54,8, а в качестве целевых добавок - патоку крахмальную 5-20, сахар 40-75 и глянцующие вещества - до 100. Новая фармацевтическая композиция...
Тип: Изобретение
Номер охранного документа: 02145222
Дата охранного документа: 10.02.2000
29.06.2019
№219.017.a212

Способ бальзамирования тела

Изобретение относится к проведению мероприятий, направленных на сохранность тела умерших, т.е. на профилактику развития гнилостных изменений трупов и их сохранение, прежде всего внешнего облика покойного. Способ бальзамирования трупа включает санитарную обработку и введение фиксирующего...
Тип: Изобретение
Номер охранного документа: 0002185060
Дата охранного документа: 20.07.2002
11.07.2019
№219.017.b2e5

Сканирующий зондовый микроскоп с системой автоматического слежения за кантилевером

Сканирующий зондовый микроскоп с системой слежения за кантилевером содержит сопряженный с основанием сканер с кантилевером, закрепленным на сканере с возможностью взаимодействия с образцом, первое зеркало, связанное со сканером, и лазер, оптически сопряженный с первым зеркалом, кантилевером и...
Тип: Изобретение
Номер охранного документа: 02227333
Дата охранного документа: 20.04.2004
12.07.2019
№219.017.b31a

Сканирующий зондовый микроскоп, совмещенный с оптическим микроскопом

Изобретение относится к измерительной технике, а именно к устройствам измерения с помощью сканирующего зондового микроскопа (СЗМ) физических характеристик поверхности объектов с одновременным оптическим наблюдением зоны сканирования. Сущность изобретения состоит в том, что в СЗМ, совмещенном с...
Тип: Изобретение
Номер охранного документа: 0002244332
Дата охранного документа: 10.01.2005
+ добавить свой РИД