×
11.03.2019
219.016.d5f9

Результат интеллектуальной деятельности: ПОЛИМЕРНЫЙ КОМПОЗИТ ДЛЯ ЗАЩИТЫ ОТ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ОСНОВЕ ТРЕКОВЫХ МЕМБРАН И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области синтеза радиационно-защитных материалов для атомной и радиотехнической промышленности. Полимерный композит для защиты от ионизирующего излучения включает полимерную матрицу, свинецсодержащий наполнитель и дополнительно содержит полиимидный лак. В качестве полимерной матрицы используется полиимид в виде трековых мембран, в качестве наполнителя - металлический свинец, а также дополнительно содержит полиимидный лак при следующем соотношении компонентов: полиимид - 23-36 мас. %; металлический свинец - 62-76 мас. %; полиимидный лак - 1-2 мас. %. Имеется также способ получения полимерного композита. Группа изобретений позволяет получить полимерный композит для защиты от ионизирующего излучения на основе трековых мембран с повышенной теплостойкостью и высоким пределом прочности при растяжении. 2 н.п. ф-лы, 3 табл.

Изобретение относится к области синтеза радиационно-защитных материалов для атомной и радиотехнической промышленности.

Известен материал для защиты от электромагнитных и радиационных воздействий [Патент RU №2360383, опубликовано 27.06.2009 Бюл. №18], содержащий гибкую основу и защитное покрытие. Защитное покрытие состоит из соединения окислов железа и свинца с наполнителем из смеси клея, стекла, керамики, лака, эмалей, красок, масла или олифы, природных полимеров, элементоорганических полимеров, пенопласта и полиэтилена. В качестве лака могут быть использованы растворы пленкообразующих веществ. В качестве пенопласта могут быть использованы полистирол, поливинилхлорид, полиуретан, эпоксидная смола.

Недостатком данного изобретения является низкий линейный коэффициент ослабления гамма-излучения.

Наиболее близким к предлагаемому решению, принятым за прототип, является материал для защиты от радиоактивного воздействия [Патент RU 2063074, зарегистрирован в Государственном реестре изобретений 27.06.1996], включающий свинецсодержащий органический наполнитель и полистирольную полимерную матрицу. В качестве наполнителя используют высокодисперсный полиэтилсиликонат свинца и материал дополнительно содержит стеарат кальция или гидрофобный мел. Материал для защиты от радиоактивного воздействия готовят следующим образом. Проводят сухое смешение порошкообразных компонентов на лопастном смесителе в течение 3-4 минут, с последующем формованием на шнековом пластификаторе фирмы НПО «Пластик». Режим формования: температура 200°С, давление 150 МПа.

С существенными признаками изобретения в части вещества совпадает следующая совокупность признаков прототипа: полимерная матрица и свинецсодержащий наполнитель. С существенными признаками изобретения в части способа совпадает следующая совокупность признаков прототипа: смешение компонентов и формование методом горячего прессования.

Недостатком известного прототипа в части вещества является низкая теплостойкость и низкие прочные показатели, оцениваемые по пределу прочности при растяжении.

Недостатком известного прототипа в части способа является высокая агрегация наполнителя и, как следствие, неравномерное распределение наполнителя в полимерной матрице, что приводит ухудшению теплостойкости и прочных показателей, оцениваемых по пределу прочности при растяжении.

Задачей предлагаемого изобретения является получение полимерного композита для защиты от ионизирующего излучения на основе трековых мембран с повышенной теплостойкостью и высоким пределом прочности при растяжении.

Это достигается тем, что полимерный композит для защиты от ионизирующего излучения включает полимерную матрицу, свинецсодержащий наполнитель и дополнительно содержит полиимидный лак. В качестве полимерной матрицы используется полиимид в виде трековых мембран, в качестве наполнителя -металлический свинец, а также дополнительно содержит полиимидный лак, при следующем соотношении компонентов: полиимид - 23-36 мас. %; металлический свинец - 62-76 мас. %; полиимидный лак - 1-2 мас. %.

Способ получения полимерного композита для защиты от ионизирующего излучения включает смешение компонентов путем склеивания полиимидным лаком заполненных металлическим свинцом трековых мембран, полученных гальваническим осаждением металлического свинца в сквозные травленые каналы полиимидных трековых мембран, в многослойный сэндвич, а формование осуществляется методом горячего прессования при температуре 270-300°С и давлении не менее 100 МПа.

Сопоставительный анализ с прототипом в части вещества показывает, что заявляемый полимерный композит для защиты от ионизирующего излучения отличается тем, что в качестве полимерной матрицы используется полиимид в виде трековых мембран, в качестве свинецсодержащего наполнителя - металлический свинец, а также дополнительно содержит полиимидный лак, при следующем соотношении компонентов, мас.%: полиимид - 23-36, металлический свинец - 62-76, полиимидный лак - 1-2.

В части способа - отличается тем, что получение полимерного композита для защиты от ионизирующего излучения осуществляется путем склеивания полиимидным лаком заполненных металлическим свинцом трековых мембран, полученных гальваническим осаждением металлического свинца в сквозные травленые каналы полиимидных трековых мембран, в многослойный сэндвич, а формование осуществляется методом горячего прессования при температуре 270-300°С и давлении не менее 100 МПа.

Таким образом, заявляемые технические решения соответствуют критерию изобретения «новизна».

Сравнение заявляемых решений не только с прототипом, но и с другими известными техническими решениями в данной области техники не подтвердило наличие в последних признаков, совпадающих с их отличительными признаками, или признаков, влияющих на достижение указанного технического результата. Это позволило сделать вывод о соответствии изобретения критерию «изобретательский уровень».

Характеристика используемых компонентов

1. В качестве полимерной матрицы используется полиимид в виде трековых (ядерных) мембран, собранных в многослойный сэндвич необходимой толщины. Трековые (ядерные) мембраны применяются для создания фильтров для очистки жидких и газовых сред [Макаренков В.И., Суранович В.Н. Фильтры для очистки воды на трековых мембранах // Энергия: экономика, техника, экология, 2005, №11, С. 47-49], в литературных источниках нет данных об использовании трековых (ядерных) мембран для создания полимерных композитов для защиты от ионизирующего излучения. Трековые мембраны получают в результате облучения полимерных пленок тяжелыми ионами с высокой энергией и с последующей физико-химической обработкой. В результате выделения энергии вдоль трека частицы происходят химические превращения в структуре облучаемого материала, приводящие к последующему избирательному травлению области трека. В результате исходная пленка превращается в микрофильтрационную мембрану со сквозными порами цилиндрической формы. Размеры пор и их пространственное распределение в трековых мембранах можно варьировать изменяя атомный номер, энергию бомбардирующей частицы и, естественно, материал мишени, а также параметры химической обработки. [В.И. Ролдугин, С.С. Иванчев, А.Б. Ярославцев. Мембраны и нанотехнологии. Российские нанотехнологии. Т. 3, №11-12, 2008, 67-99]. В работе использовались трековые мембраны изотропной структуры из полиимида с диаметрами пор D=300 нм толщиной 25 мкм, синтезированные в Лаборатории ядерных реакций им Г.Н. Флерова ОИЯИ. Данные по средней концентрации пор в полимерной матрице (трековой мембране) используемых для исследуемых составов полимерного композита приведено в табл. 1.

2. В качестве наполнителя использовался металлический свинец, полученный путем гальванического осаждения из раствора борфторида Pb(BF4)2 с концентрацией 160 г/л.

3. Для склеивания мембран, заполненные свинцом использовали полиимидный электроизоляционный лак марки АД-9103 ИС ТУ 2311-007-18805827-2007; производитель ООО «Эстроком».

Оптимальное соотношение компонентов, выраженное в их процентном содержании, определяли экспериментальным путем. В процессе исследования приготовили 5 составов полимерного композита для изучения его свойств. Количественное содержание компонентов предлагаемого полимерного композита и прототипа приведено в табл. 2.

* свинецсодержащий наполнитель представлен в виде чистого металлического свинца;

** содержание металлического свинца в свинецсодержащем наполнителе 68%, что в пересчете на весь прототип составляет 45-60% металлического свинца.

Заполнение полиимида металлическим свинцом осуществлялось путем гальванического осаждения металла в сквозные травленые каналы трековых мембран. На одну из сторон мембраны вакуумно-плотно прижимали металлическую подложку-катод, в качестве которой использовали свинцовую фольгу.

Полученные трековые мембраны со свинцовым катодом на одной стороне погружали в гальваническую ванную. Емкость гальванической ванны наполняли электролитом. Электролит для электроосаждения содержал: раствор борфторида Pb(BF4)2 с концентрацией 160 г/л; кислоту борфтористоводородную HBF4 с концентрацией 40 г/л.

Гальванический процесс проводили при комнатной температуре (20°С) при рH=3,2; использовался режим электроосаждения при фиксированном электрическом потенциале - 0,6 В. При используемых параметрах время осаждения составляло 22 мин. В случае увеличения электрического потенциала, время осаждения уменьшается.

Мембраны, заполненные свинцом, собирали в многослойный сэндвич. Скрепление мембран, заполненных свинцом, между собой осуществлялось путем склеивания полиимидным лаком и выдержкой при температуре от 270-300°С при высоком удельном давлении не менее 100 МПа. При меньшей 270°С температуре не происходит размягчение полимерной матрицы, необходимое для склеивания. При большем 300°С происходит плавление наполнителя - металлического свинца. В случае уменьшения используемого давления менее 100 МПа предел прочности при растяжении полимерного композита значительно уменьшается.

Количество необходимых для скрепления мембран определяли исходя из требуемой толщины полимерного композита для защиты от ионизирующего излучения путем деления их на толщину мембраны (25 мкм).

В табл. 3 представлены данные по эксплуатационным и радиационно-защитным свойствам предлагаемых составов и прототипа. Кратность ослабления и линейный коэффициент ослабления гамма-квантов находили экспериментальным путем при энергии гамма-квантов 662 кэВ. Источником излучения гамма-квантов был радионуклид цезий -137Cs. Линейный коэффициент ослабления гамма-квантов рассчитывали исходя из формулы:

где I - интенсивность поглощения гамма-квантов при использовании полимерного композита для защиты от ионизирующего излучения; интенсивность поглощения гамма-квантов без полимерного композита для защиты от ионизирующего излучения; х -толщина полимерного композита для защиты от ионизирующего излучения.

В результате экспериментов было установлено, что для достижения поставленного технического результата в состав предлагаемого полимерного композита должны присутствовать компоненты в следующем соотношении: полиимид - 23-36 мас. %; свинецсодержащий наполнитель - 62-76 мас. %; полиимидный лак - 1-2 мас. % (составы №2, 3, 4). При 18% мас. и меньше (состав №5) полиимида в составе полимерного композита для защиты от ионизирующего излучения значительно ухудшались его прочные показатели, оцениваемые по пределу прочности при растяжении (табл. 3), так как при малом содержании полимерной матрицы - полиимида происходит значительное повышение концентрация напряжения в порах трековой мембраны, заполненной свинцом.

При 42% мас. и больше (состав №1) полиимида в составе полимерного композита для защиты от ионизирующего излучения значительно ухудшались его радиационно-защитные характеристики, оцениваемые по линейному коэффициенту ослабления гамма-квантов с энергией 662 кэВ (табл. 3).

Способ получения полимерного композита для защиты от ионизирующего излучения на примере состава 3 (табл. 2).

На одну из сторон полиимида в виде трековой мембраны (размером 3×3 см, толщиной 25 мкм, Dпор=0,3 мкм, средняя концентрация пор - 3,3⋅108) вакуумно-плотно прижимали металлическую подложку-катод, в качестве которой использовали свинцовую фольгу толщиной 0,2 мм.

Полученные трековые мембраны со свинцовым катодом на одной стороне погружали в гальваническую ванную. Размеры ванны позволяли одновременно загружать 40 мембран заданных размеров. Емкость гальванической ванны наполняли электролитом. Электролит для электроосаждения содержал: раствор борфторида Pb(BF4)2 с концентрацией 160 г/л; кислоту борфтористоводородную HBF4 с концентрацией 40 г/л.

Гальванический процесс проводили при комнатной температуре (20°С) при рН=3,2; использовался режим электроосаждения при фиксированном электрическом потенциале - 0,6 В. Время осаждения составляло 22 мин. После этого заполненные металлическим свинцом трековые мембраны вынимали из гальванической ванны и сушили при комнатной температуре до полного высыхания от электролита.

Высушенные трековые мембраны, заполненные металлическим свинцом, собирали в многослойный сэндвич, склеивали полиимидным лаком и выдерживали при температуре 280°С при удельном давлении 100 МПа. Сэндвич состоял из 40 трековые мембраны, заполненные металлическим свинцом, толщина полученного при этом полимерного композита для защиты от ионизирующего излучения составляла 1 мм.

Полученные данные показывают, что заявляемый полимерный композит обладает более высокой теплостойкостью, а также более высоким пределом прочности при растяжении в сравнении с прототипом.

Предложенное решение позволяет увеличить теплостойкость и предел прочности при растяжении при одинаковых радиационно-защитных свойствах в сравнении с прототипом за счет предлагаемого состава и способа при котором происходит равномерное распределение тяжелого свинецсодержащего наполнителя в объеме легкой полимерной матрицы, что приводит к высокой степени однородности его структуры и сверхвысокой плотности упаковки атомов свинецсодержащего наполнителя в трековых мембранах, и, как следствие, к улучшенным эксплуатационным характеристикам.

Преимущества предлагаемого полимерного композита заключаются в следующем:

- увеличена теплостойкость полимерного композита для защиты от ионизирующего излучения до 300°С;

- композит обладает почти в 2 раза большим пределом прочности при растяжении в сравнении с прототипом.

Таким образом, использование предложенного состава полимерного композита и предлагаемый способ его получения позволяет получить полимерному композиту новые, более высокие эксплуатационные показатели при практически одинаковых радиационно-защитных свойствах, оцениваемых по кратности ослабления и линейному коэффициенту ослабления гамма-квантов.

Источник поступления информации: Роспатент

Showing 51-60 of 140 items.
20.06.2018
№218.016.644d

Многоступенчатый барботажный экстрактор

Изобретение относится к химическим аппаратам для экстракции в системах «жидкость-жидкость», широко используемых в химической и смежной с нею отраслях промышленности. Многоступенчатый барботажный экстрактор включает вертикальный корпус, разделенный перегородками на секции-отстойники с...
Тип: Изобретение
Номер охранного документа: 0002658053
Дата охранного документа: 19.06.2018
25.06.2018
№218.016.65fb

Центробежный дисковый измельчитель

Изобретение относится к устройствам для измельчения различных материалов и может быть использовано при производстве строительных материалов, а также в других отраслях промышленности. Центробежный дисковый измельчитель содержит цилиндрический корпус 1 с загрузочным 2 и разгрузочным 3 патрубками,...
Тип: Изобретение
Номер охранного документа: 0002658702
Дата охранного документа: 22.06.2018
25.06.2018
№218.016.66ac

Способ получения силикат-глыбы

Изобретение относится к стекольной промышленности. Плавление шихты осуществляют плазменной горелкой, расположенной перпендикулярно к поверхности расплава на расстоянии 280-310 мм, а гомогенизацию расплава осуществляют плазменной струей этой плазменной горелки при мощности работы плазмотрона...
Тип: Изобретение
Номер охранного документа: 0002658413
Дата охранного документа: 21.06.2018
06.07.2018
№218.016.6d34

Способ синтеза силикат-глыбы

Изобретение относится к стекольной промышленности. Плавление гранул шихты 4 осуществляют при подаче в плазменную горелку 1 перпендикулярно и параллельно оси плазменного факела 9. Подачу расплава 5 в воду осуществляют отходящими плазмообразующими газами 10 при мощности работы плазмотрона 12-15...
Тип: Изобретение
Номер охранного документа: 0002660138
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6d38

Дезинтегратор

Изобретение относится к устройствам для измельчения и смешения различных материалов и может быть использовано, например, при производстве строительных материалов. Дезинтегратор содержит цилиндрический корпус 1 с осевым загрузочным и тангенциальным разгрузочным устройствами. В цилиндрическом...
Тип: Изобретение
Номер охранного документа: 0002660267
Дата охранного документа: 05.07.2018
24.07.2018
№218.016.73c4

Модифицированный полимерцементный композиционный материал для 3d печати

Изобретение относится к строительным материалам, в частности, к композиционным материалам на основе цемента для строительной трехмерной печати с помощью аддитивных технологий. Задачей, на решение которой направлено заявляемое изобретение, является расширение арсенала технических средств за...
Тип: Изобретение
Номер охранного документа: 0002661970
Дата охранного документа: 23.07.2018
28.07.2018
№218.016.75df

Способ обезжелезивания воды для периодического водозабора

Изобретение может быть использовано в промышленном и хозяйственно-питьевом водоснабжении для очистки подземных железосодержащих вод, имеющих в своем составе свободную углекислоту, от примесей двухвалентного железа, сероводорода, тяжелых металлов, гуматов. Способ обезжелезивания воды (1) для...
Тип: Изобретение
Номер охранного документа: 0002662534
Дата охранного документа: 26.07.2018
02.08.2018
№218.016.773d

Модифицированный полимерцементный композиционный материал для 3d печати

Изобретение относится к строительным материалам, в частности к композиционным материалам на основе цемента для строительной трехмерной печати с помощью аддитивных технологий. Технический результат - расширение арсенала технических средств за счет получения модифицированного полимерцементного...
Тип: Изобретение
Номер охранного документа: 0002662838
Дата охранного документа: 31.07.2018
29.08.2018
№218.016.8100

Центробежная мельница

Изобретение относится к устройствам для измельчения различных материалов и может быть использовано при производстве строительных материалов, а также в других отраслях промышленности. Центробежная мельница содержит два корпуса 1, размещенных в одной плоскости и соединенных между собой...
Тип: Изобретение
Номер охранного документа: 0002665102
Дата охранного документа: 28.08.2018
29.08.2018
№218.016.8136

Центробежный дисковый измельчитель

Изобретение относится к устройствам для измельчения различных материалов и может быть использовано при производстве строительных материалов, а также в других отраслях промышленности. Устройство содержит цилиндрический корпус (1) с загрузочным (2) и разгрузочным (3) патрубками. Устройство...
Тип: Изобретение
Номер охранного документа: 0002665100
Дата охранного документа: 28.08.2018
Showing 11-20 of 20 items.
17.02.2018
№218.016.2d80

Способ получения порошка кристаллического соединения силиката висмута bisio

Изобретение относится к области получения порошка кристаллического соединения BiSiO и может быть использовано в радиоэлектронике для создания электро- и магнито-оптических модуляторов лазерного излучения. Синтез BiSiO осуществляют растворением пятиводного нитрата висмута в ацетоне при комнатной...
Тип: Изобретение
Номер охранного документа: 0002643563
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.317e

Сердечник гипсокартонного листа на основе модифицированного гипсового вяжущего

Изобретение относится к строительным материалам и может быть использован для производства гипсокартонных изделий. Сердечник гипсокартонного листа на основе модифицированного гипсового вяжущего включает 46,4-52,6 мас.% строительного гипса и 33,3-34,2 мас.% воды. При этом сердечник дополнительно...
Тип: Изобретение
Номер охранного документа: 0002645000
Дата охранного документа: 15.02.2018
28.11.2018
№218.016.a131

Полимерный композит для защиты от космической радиации и способ его получения

Изобретение относится к области космического материаловедения, в частности к разработкам материалов, обеспечивающих дополнительную защиту элементной базы, отдельных узлов и блоков радиоэлектронной аппаратуры от повреждающего воздействия ионизирующего излучения космического пространства....
Тип: Изобретение
Номер охранного документа: 0002673336
Дата охранного документа: 26.11.2018
27.04.2019
№219.017.3def

Способ получения наноразмерного гидроксилапатита

Изобретение относится к технологии получения неорганических материалов, а именно к способам получения наноразмерного высокочистого гидроксилапатита (ГАП) в виде коллоидного раствора или геля, который может быть использован для производства лечебно-профилактических препаратов для стоматологии,...
Тип: Изобретение
Номер охранного документа: 0002342319
Дата охранного документа: 27.12.2008
24.05.2019
№219.017.5ff2

Способ получения материала с ультрамелкозернистой или субмикрокристаллической структурой деформированием с обеспечением интенсивной пластической деформации (варианты)

Изобретения относятся к обработке давлением и могут быть использованы при изготовлении изделий из полуфабрикатов, полученных термомеханической обработкой. Производят последовательное по этапам сжатие заготовки в сквозном прямоугольном канале матрицы. Разность между размерами сторон канала...
Тип: Изобретение
Номер охранного документа: 0002334582
Дата охранного документа: 27.09.2008
29.05.2019
№219.017.6479

Кальций-фосфатное покрытие на титане и титановых сплавах и способ его нанесения

Изобретение относится к медицинской технике, а именно к технологии формирования покрытий на поверхности имплантатов, изготовленных из титана, находящегося в рекристаллизованном и в наноструктурном состоянии. Покрытие содержит, мас.%: титанат кальция 7-9; пирофосфат титана 16-28;...
Тип: Изобретение
Номер охранного документа: 0002291918
Дата охранного документа: 20.01.2007
13.06.2019
№219.017.812e

Способ формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов

Изобретение относится к способу формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов , в частности ультрамелкозернистых (далее УМЗ) и крупнозернистых (далее КЗ) магниевых сплавов системы Mg-Al. Способ включает подготовку поверхности УМЗ деформируемого...
Тип: Изобретение
Номер охранного документа: 0002691154
Дата охранного документа: 11.06.2019
24.04.2020
№220.018.188f

Многослойный полимер-углеродный композит для защиты от космического воздействия и способ его получения

Изобретение относится к области космического материаловедения, в частности к разработкам материалов, обеспечивающих дополнительную защиту элементной базы, отдельных узлов и блоков радиоэлектронной аппаратуры от повреждающего космического воздействия. Многослойный полимер-углеродный композит для...
Тип: Изобретение
Номер охранного документа: 0002719682
Дата охранного документа: 21.04.2020
15.05.2023
№223.018.59b5

Способ нанесения титаново-медного покрытия на частицы порошкообразного гидрида титана

Изобретение относится к порошковой металлургии и ядерной энергетике и может быть использовано при изготовлении нейтронопоглощающего материала. На частицы порошкообразного гидрида титана наносят двухслойное титаново-медное барьерное покрытие путем электроосаждения. Для этого используют катод,...
Тип: Изобретение
Номер охранного документа: 0002761099
Дата охранного документа: 03.12.2021
15.05.2023
№223.018.59b6

Способ нанесения титаново-медного покрытия на частицы порошкообразного гидрида титана

Изобретение относится к порошковой металлургии и ядерной энергетике и может быть использовано при изготовлении нейтронопоглощающего материала. На частицы порошкообразного гидрида титана наносят двухслойное титаново-медное барьерное покрытие путем электроосаждения. Для этого используют катод,...
Тип: Изобретение
Номер охранного документа: 0002761099
Дата охранного документа: 03.12.2021
+ добавить свой РИД