×
01.03.2019
219.016.ceca

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ НАЗЕМНЫХ ИСПЫТАНИЙ СИЛОВОЙ УСТАНОВКИ В СОСТАВЕ ЛЕТАТЕЛЬНОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Устройство для наземных испытаний силовой установки в составе летательного аппарата относится к области специальных испытаний авиационных газотурбинных двигателей, в частности, к устройствам для проведения наземных испытаний двигателя в составе летательного аппарата для измерения силы инфракрасного излучения в атмосферу от работающего двигателя и содержит генератор воздушного потока, расположенный перед летательным аппаратом с испытываемой силовой установкой, и датчики измеряемой характеристики силовой установки. Датчики измеряемой характеристики силовой установки выполнены в виде датчиков силы инфракрасного излучения силовой установки в атмосферу, установленных за летательным аппаратом. В качестве генератора воздушного потока выбрана часть двигательной установки вспомогательного самолета, установленная перед летательным аппаратом на одном полукрыле вспомогательного самолета так, чтобы ее продольная ось была размещена вблизи вертикальной плоскости симметрии силовой установки летательного аппарата, перед которым с зазором под углом к земле установлен дефлектор. Изобретение позволяет получить характеристики силы инфракрасного излучения силовой установки наиболее простым устройством с уменьшением капиталоемкости устройства, снижением стоимости самих испытаний и повышением достоверности получаемых результатов. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области специальных испытаний авиационных газотурбинных двигателей, в частности, к устройствам для проведения наземных испытаний двигателя в составе летательного аппарата для измерения силы инфракрасного излучения в атмосферу от работающего двигателя.

Известно реализованное в ЦИАМе устройство для измерения инфракрасного излучения (ИК-излучения) (См. «ИК - заметность выходных устройств», «Научный вклад в создание авиационных двигателей», книга 1, стр.349, М.: Машиностроение, 2000).

Недостатком этого устройства является то, что отсутствует обдув двигателя внешним потоком, что приводит к искажению получаемых результатов и их недостоверности.

Наиболее близким решением по достигаемому эффекту является устройство - «Дозвуковая аэродинамическая труба Т-104» для наземных испытаний силовой установки в составе летательного аппарата, содержащее генератор воздушного потока, расположенный перед летательным аппаратом с испытываемой силовой установкой, и датчики измеряемой характеристики силовой установки (См. Интернет страницу: http://www.tsagi.ru Раздел «Экспериментальная база»).

Недостатком этого технического решения является невозможность разместить датчики ИК-излучения на требуемом расстоянии от хвостовой части летательного аппарата, когда в качестве измеряемой характеристики силовой установки выбрана сила ее инфракрасного излучения в атмосферу. Кроме того, аэродинамические трубы имеют замкнутую схему, что приводит к накоплению аэрозоля в потоке и, соответственно, к искажению реальной картины в случае применения в качестве защиты от ИК-излучения аэрозолей.

Возможные доработки аэродинамических труб в части их перехода к открытой схеме нерациональны по причине большой капиталоемкости и стоимости таких проектов. Испытания такого рода проводятся при создании нового летательного аппарата, которые создаются через довольно большой временной интервал, поэтому создание таких капитальных стендов нерационально.

Техническим эффектом от предлагаемого изобретения является получение характеристики силы ИК-излучения силовой установки наиболее простым устройством для наземных испытаний силовой установки в составе летательного аппарата с уменьшением капиталоемкости устройства, снижением стоимости самих испытаний и повышением достоверности получаемых результатов, а также возможностью размещения датчиков ИК-излучения на требуемом расстоянии.

Технический эффект от предлагаемого изобретения достигается тем, что в устройстве для наземных испытаний силовой установки в составе летательного аппарата, содержащем генератор воздушного потока, расположенный перед летательным аппаратом с испытываемой силовой установкой, и датчики измеряемой характеристики силовой установки, в нем датчики измеряемой характеристики силовой установки выполнены в виде датчиков силы инфракрасного излучения силовой установки в атмосферу, установленных за летательным аппаратом, а в качестве генератора воздушного потока выбрана часть двигательной установки вспомогательного самолета, установленного перед летательным аппаратом на одном полукрыле вспомогательного самолета так, чтобы ее продольная ось была размещена вблизи вертикальной плоскости симметрии силовой установки летательного аппарата, перед которым с зазором под углом к земле установлен дефлектор.

Кроме того:

- часть двигательной установки вспомогательного самолета может быть выполнена из двух рядом расположенных винтомоторных двигателей или газотурбинных двигателей с большой степенью двухконтурности;

- дефлектор может быть выполнен полым и открытым с торцов, причем на нижней поверхности дефлектора сделана перфорация;

- дефлектор может быть выполнен секционным с регулируемым углом наклона;

- поперечный силовой набор дефлектора - нервюры, могут быть выполнены снаружи дефлектора.

Использование датчиков силы инфракрасного излучения в качестве датчиков измеряемой характеристики силовой установки и установка этих датчиков за летательным аппаратом позволяет замерять в полном объеме характеристики ИК-излучения силовой установки.

Использование в качестве генератора воздушного потока части двигательной установки вспомогательного самолета, установленной перед летательным аппаратом, дает возможность провести замеры характеристики ИК-излучения силовой установки наиболее простым устройством с минимальными затратами и снижением стоимости самих испытаний, так как предполагается использование вспомогательного самолета только на время самих испытаний.

Выполнение части двигательной установки вспомогательного самолета из двух рядом расположенных винтомоторных двигателей или газотурбинных двигателей с большой степенью двухконтурности позволяет производить обдув летательного аппарата с испытываемой силовой установкой более холодным воздухом, а также расширить число самолетов, подходящих для использования в качестве вспомогательного самолета.

Размещение продольной оси части двигательной установки вспомогательного самолета вблизи вертикальной плоскости симметрии испытываемой силовой установки летательного аппарата приближает условия испытания к реальным условиям обтекания летательного аппарата воздушным потоком во время полета и тем самым повышает достоверность испытаний.

Установка перед летательным аппаратом с зазором под углом к земле дефлектора позволяет наиболее рационально и под нужным углом направлять воздух, создаваемый частью двигательной установки вспомогательного самолета, на обдув летательного аппарата, имитируя реальные условия полета летательного аппарата.

Выполнение дефлектора полым и открытым с торцов и перфорированным позволяет реализовать схему с подсосом холодного воздуха через торцы дефлектора и выбросом ее через перфорацию в область разрежения под дефлектором. Смешение подсасываемого холодного воздуха и части газов горячей струи приводит к снижению температуры этой части горячей струи. Соответственно снижается температура воздуха, идущего в воздухозаборники летательного аппарата с испытываемой силовой установкой до приемлемого уровня.

Выполнение дефлектора секционным и с регулируемым углом наклона позволяет направлять поток воздуха на летательный аппарат под нужными для испытания углами.

На фиг.1 показан общий вид устройства.

На фиг.2 показан вид сбоку-сверху на дефлектор.

На фиг.3 показан вид сбоку-снизу на дефлектор.

На фиг.4 показана схема обтекания дефлектора на виде сбоку.

Устройство для наземных испытаний силовой установки в составе летательного аппарата содержит генератор воздушного потока, выполненный в виде части двигательной установки, состоящей из двух винтомоторных двигателей 1 вспомогательного самолета 2, расположенной перед летательным аппаратом 3 с испытываемой силовой установкой 4, и датчики силы инфракрасного излучения 5 в атмосферу, установленные за летательным аппаратом 3. Продольную ось 6 двух воздушных винтов 7 винтомоторных двигателей 1 вспомогательного самолета 2 располагают вблизи вертикальной плоскости симметрии силовой установки 4 летательного аппарата 3. Перед летательным аппаратом 3 с зазором h под углом α к земле установлен дефлектор 8, выполненный в виде полого перевернутого крыла. Дефлектор 8 выполнен открытым с торцов 9, причем на его нижней поверхности 10 сделана перфорация 11. Дефлектор 8 разбит нервюрами 12 на секции. Имеется винтовое устройство 13 для регулирования угла наклона α. Нервюры 12 выполнены снаружи дефлектора 8. Перфорация 11 сообщается с открытыми торцами 9 дефлектора 8. В передней части секции дефлектора при помощи цапф 14 связаны с кронштейнами 15, установленными на фундаменте 16. Кронштейны 15 при помощи специальных прокладок могут регулироваться по высоте, что обеспечивает возможность изменять величину зазора h между дефлектором 8 и землей. За дефлектором 8 на специальной подставке или на собственном шасси устанавливается летательный аппарат 3 с системой аэрозольной защиты. По дуге, на интересующих исследователей ракурсах, устанавливаются датчики силы ИК-излучения 5.

Часть двигательной установки вспомогательного самолета 2 может быть выполнена в виде двух рядом распложенных газотурбинных двигателей с большой степенью двухконтурности (на чертежах не показаны).

Устройство работает следующим образом.

Дефлектор 8 при помощи специальных подкладок под кронштейны 15 устанавливается с заданным зазором h и выставляется при помощи винтового устройства 13 для регулирования угла под необходимый угол α. Таким образом, обеспечивается возможность тонкой настройки устройства для наземных испытаний силовой установки в составе летательного аппарата под геометрические размеры и характеристики летательного аппарата 3.

Затем вспомогательный самолет 2 выставляется перед дефлектором 8 так, чтобы продольная ось 6 двух воздушных винтов 7 проходила через середину длины дефлектора 8. Летательный аппарат 3 с испытываемой силовой установкой 4 устанавливается за дефлектором 8 на отведенное ему место. При этом он может стоять на собственном шасси или на специальной подставке. Затем запускают силовую установку летательного аппарата 3 и два винтомоторных двигателя 1 вспомогательного самолета 2. Воздушный поток от винтомоторных двигателей 1 на расстоянии 3-5 калибров воздушной струи присасывается к земле. Проходя над и под дефлектором 8, поток отклоняется вверх на угол β, отрывается от земли и обтекает летательный аппарат 3, моделируя полетные условия. Горячая струя выхлопных газов части двигательной установки вспомогательного самолета 2 частично смешивается с холодным потоком от воздушного винта 7, а частично сохраняет свое ядро. Для устранения помпажа испытываемой силовой установки 4 реализована схема с подсосом холодного воздуха через торцы 9 дефлектора 8 и выбросом ее через перфорацию 11 в область разрежения под дефлектором. Смешение подсасываемого холодного воздуха и части горячей струи приводит к снижению температуры этой части горячей струи. Соответственно снижается температура воздуха, идущего в воздухозаборники летательного аппарата 3 до приемлемого уровня. Во время работы испытываемой силовой установки 4 осуществляется запись сигнала с датчиков замера силы ИК-излучения 5, по расшифровке которых можно судить об инфракрасной заметности испытываемой силовой установки.

Предложенное изобретение существенно упрощает устройство, уменьшает его капиталоемкость и снижает стоимость. Уменьшается количество агрегатов, из которых состоит устройство. При этом, для создания воздушного потока без доработок используется временно снимаемый с летной эксплуатации (2-3 часа) самолет. Очень важным эффектом является предотвращение попадания горячего воздуха из двигателей вспомогательного самолета в воздухозаборники летательного аппарата с исследуемой силовой установкой, а также возможность размещения датчиков инфракрасного излучения на требуемом расстоянии от хвостовой части летательного аппарата с исследуемой силовой установкой.

Источник поступления информации: Роспатент

Showing 61-70 of 102 items.
19.04.2019
№219.017.31e5

Способ работы газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам работы газотурбинных двигателей, предназначенных для эксплуатации на сверхзвуковых самолетах. Двигатель выполнен двухконтурным, содержащим турбокомпрессорную группу, включающую установленный в подшипниках ротор, в...
Тип: Изобретение
Номер охранного документа: 0002458234
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.31f1

Авиационный газотурбинный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Авиационный газотурбинный двигатель содержит корпус, турбокомпрессорную группу, камеру сгорания, реактивное сопло, систему автоматического управления и снабженные насосными группами топливную...
Тип: Изобретение
Номер охранного документа: 0002458237
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.31f3

Газотурбинный двигатель

Изобретение относится к области авиадвигателестроения, а именно к газотурбинным двигателям, предназначенным для эксплуатации на сверхзвуковых самолетах. Газотурбинный двигатель содержит корпус, турбокомпрессорную группу, включающую установленный в опорных и опорно-упорных подшипниках ротор не...
Тип: Изобретение
Номер охранного документа: 0002458233
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.31f9

Способ работы авиационного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В заявленном изобретении авиационный газотурбинный двигатель содержит корпус, турбокомпрессорную группу, камеру сгорания, реактивное сопло, системы автоматического управления, подачи воздуха,...
Тип: Изобретение
Номер охранного документа: 0002458236
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.31fd

Способ регулирования авиационного турбореактивного двигателя

Способ регулирования авиационного турбореактивного двигателя относится к способам регулирования, чувствительным к параметрам двигателя и внешней среды, в частности к температуре окружающего воздуха, и позволяет кратковременно на время, не меньшее чем время пробега самолета по палубе авианосца,...
Тип: Изобретение
Номер охранного документа: 0002456464
Дата охранного документа: 20.07.2012
19.04.2019
№219.017.3200

Опора вала газотурбинного двигателя

Изобретение относится к конструкциям опор газотурбинных двигателей, в частности, к конструкциям цапф вала. Реализация изобретения позволяет облегчить отток масла через маслоотводящие отверстия на цапфе вала, что препятствует его излишнему скапливанию в масляной полости и, как следствие,...
Тип: Изобретение
Номер охранного документа: 0002456463
Дата охранного документа: 20.07.2012
19.04.2019
№219.017.3201

Маслобак

Маслобак относится к области смазки машин и двигателей и может быть использован в авиадвигателестроении, а именно в системе смазки сверхзвуковых маневренных самолетов. Внутри корпуса маслобака установлен масляный фильтр, корпус которого торцевыми основаниями жестко зафиксирован относительно...
Тип: Изобретение
Номер охранного документа: 0002456462
Дата охранного документа: 20.07.2012
19.04.2019
№219.017.3230

Двухконтурный газотурбинный двигатель

Двухконтурный газотурбинный двигатель содержит компрессор с думисной полостью, камеру сгорания, турбину высокого и низкого давления, теплообменник. Теплообменник размещен в наружном контуре, вход которого сообщен со вторичной зоной камеры сгорания, а выход через управляющие клапаны с воздушным...
Тип: Изобретение
Номер охранного документа: 0002459967
Дата охранного документа: 27.08.2012
19.04.2019
№219.017.3273

Героторный насос

Героторный насос относится к области авиадвигателестроения и, в частности, к маслонасосам системы смазки авиационного газотурбинного двигателя. Героторный насос содержит приводной вал 6, установленную на нем по меньшей мере одну пару эксцентрично расположенных шестерен 2 и 3 и элементы осевой...
Тип: Изобретение
Номер охранного документа: 0002402691
Дата охранного документа: 27.10.2010
19.04.2019
№219.017.3277

Осевой героторный насос

Осевой героторный насос относится к области авиадвигателестроения и, в частности, к маслонасосам системы смазки авиационного газотурбинного двигателя. Осевой героторный насос содержит приводной вал 3, установленную на нем по меньшей мере одну пару эксцентрично расположенных шестерен 2 и 5,...
Тип: Изобретение
Номер охранного документа: 0002402690
Дата охранного документа: 27.10.2010
Showing 61-70 of 296 items.
20.05.2015
№216.013.4c23

Турбореактивный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30° по часовой стрелке для...
Тип: Изобретение
Номер охранного документа: 0002551005
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c25

Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до...
Тип: Изобретение
Номер охранного документа: 0002551007
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c2b

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства газотурбинного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не...
Тип: Изобретение
Номер охранного документа: 0002551013
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c2d

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002551015
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c31

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. На стадии доводки опытный ТРД подвергают испытанию по многоцикловой программе. При выполнении этапов испытания...
Тип: Изобретение
Номер охранного документа: 0002551019
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4cac

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. После сборки производят испытания двигателя на влияние...
Тип: Изобретение
Номер охранного документа: 0002551142
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d13

Способ эксплуатации турбореактивного двигателя и турбореактивный двигатель, эксплуатируемый этим способом

Изобретение относится к области авиадвигателестроения. В способе эксплуатации ТРД перед каждым запуском двигателя осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически...
Тип: Изобретение
Номер охранного документа: 0002551245
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d14

Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до...
Тип: Изобретение
Номер охранного документа: 0002551246
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d15

Турбореактивный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Двигатель испытан по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по...
Тип: Изобретение
Номер охранного документа: 0002551247
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d16

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002551248
Дата охранного документа: 20.05.2015
+ добавить свой РИД