×
01.03.2019
219.016.cd67

СПОСОБ ЯДЕРНО-МАГНИТНОГО КАРОТАЖА И УСТРОЙСТВО ЯДЕРНО-МАГНИТНОГО КАРОТАЖА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002361247
Дата охранного документа
10.07.2009
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для исследования свойств горных пород в нефтяных и газовых скважинах методом ядерно-магнитного резонанса. Сущность заключается в том, что поляризуют пластовый флюид в скважине, создавая напряженность магнитного поля, возбуждают калибровочный сигнал от калибровочного вещества, по окончанию действия поляризации производят замер калибровочного сигнала поверхностным измерительным устройством, который сравнивают с сигналом свободной прецессии стандартного образца и определяют чувствительность скважинного прибора, повторно создают напряженность магнитного поля, поляризуют пластовый флюид и калибровочное вещество внутри скважинного прибора, после окончания поляризации перед началом измерения сигнала свободной прецессии от пласта поверхностным измерительным устройством на калибровочное вещество воздействуют неоднородным постоянным магнитным полем, исключая влияние калибровочного сигнала на измеряемый сигнал от пласта, учитывая значение чувствительности скважинного прибора, получают значение индекса свободных флюидов, по которому судят об эффективной пористости пластов. Технический результат: повышение точности определения индекса свободного флюида пластов в скважине. 2 н. и 6 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к промысловой геофизике и может быть использовано при исследовании свойств горных пород в нефтяных и газовых скважинах методом ядерно-магнитного резонанса в магнитном поле Земли (в слабом поле), а также в скважинах, пробуренных на воду, на основе измерения индекса свободного флюида (ИСФ).

Известен способ калибровки данных ядерно-магнитного каротажа по данным градуировки аппаратуры на государственном стандартном образце (ГСО) индекса свободного флюида (ИСФ). Измеряется сигнал свободной прецессии от объема стандартного образца, соответствующего 100% ИСФ. Поскольку измеряемый параметр при ядерно-магнитном каротаже, а именно начальная амплитуда сигнала, прямо пропорциональна ИСФ, то основным параметром аппаратуры ядерно-магнитного каротажа при ее градуировке является ее чувствительность к ИСФ, то есть отношение начальной амплитуды сигнала (сигнал на выходе) к значению ИСФ (сигнал на входе). Используя значение чувствительности прибора, при обработке полученных данных ядерно-магнитного каротажа на скважине можно получить кривую в единицах ИСФ, то есть откалибровать данные («Техническая инструкция по проведению геофизических исследований в скважинах». - М.: Недра, 2001).

В известном способе в процессе записи чувствительность аппаратуры может измениться из-за расстройки на частоту прецессии, изменением характера и величины тока поляризации или при изменении добротности основной катушки индуктивности. Следствием этого является недостаточно точное определение индекса свободного флюида пластов в скважине.

Известен помехозащищенный способ комплексных измерений ядерно-магнитных свойств пород в скважине в процессе каротажа (патент РФ №2148843, МПК G01V 3/32, G01N 24/00, опубл. 2000.05.10), при котором в каждой точке разреза последовательно возбуждают сигнал ядерной индукции от водородсодержащего вещества и измеряют его частоту. Затем производят поляризацию окружающих пород, подвергают принятый сигнал индукции от ядер водорода свободного флюида прямому преобразованию Фурье, измеряют амплитуду и ширину спектральной линии протонного резонанса, по которым судят об индексе свободного флюида и приведенном времени поперечной релаксации. После этого производят повторное возбуждение сигнала ядерной индукции от водородсодержащего вещества и измеряют его частоту, сравнивают частоты сигналов ядерной индукции и по соотношению частот при первом и третьем измерениях судят об индукции магнитного поля в скважине до и после поляризации, а по их разности судят об остаточной намагниченности пород, а также об истинном времени поперечной релаксации свободного флюида. Все указанные измерения производят в одной и той же точке пространства. В результате преобразования Фурье исходный сигнал переводится из временного в частотное представление, что позволяет применить эффективную цифровую фильтрацию сигнала и измерить амплитуду и ширину спектральной линии протонного резонанса.

Известен датчик стандарт-сигнала для аппаратуры ядерного магнитного каротажа (а.с. СССР №177373, МПК H05D, G01N, опубл. 18.12.1965), состоящий из трех идентичных тороидов, оси которых взаимно-перпендикулярны, а внутренние полости наполнены рабочим веществом. При работе датчика реализуется способ каротажа, ближайший по технической сущности к заявленному и принятый за прототип способа, при котором сигнал свободной прецессии, регистрируемый от пластов, пересеченных скважиной, калибруется по величине сигнала свободной прецессии от рабочей жидкости, находящейся внутри тороидов, подключаемых вместо основной катушки на время получения и регистрации калибровочного сигнала, который используют для установки масштаба записываемой кривой.

Известно устройство калибровки данных ядерно-магнитного каротажа (а.с. №620882, МПК G01N 27/78, G01V 3/14, опубл. 25.08.1978), ближайшее по технической сущности к заявляемому устройству и принятое за прототип, содержащее основную и калибровочную катушки, калибровочное вещество, коммутатор, усилитель, измерительную схему, размещенные на одном уровне по оси устройства и погруженные в контейнер с калибровочным веществом, частота ядерного магнитного резонанса которого отличается от частоты измеряемого сигнала. Устройство снабжено подстроенной емкостью, а катушки соединены с коммутатором, связанным с усилителем и подстроечной емкостью.

В приведенных способах и устройствах получения калибровочного сигнала основная катушка индуктивности в момент создания и измерения калибровочного сигнала находится в отключенном состоянии или соединена с калибровочной катушкой. Измеренная величина сигнала при этом не отображает изменение чувствительности основной катушки вследствие, например, изменения характера выключения тока поляризации, величины тока поляризации, изменения настройки на частоту прецессии или изменения добротности основной катушки индуктивности в процессе проведения каротажа. Величина измеряемого сигнала свободной прецессии, эквивалентная какому-либо значению ИСФ, должна изменяться строго в соответствии с изменением чувствительности прибора и всего измерительного тракта за счет изменения параметров схемы и режима ее работы. Поэтому описанные выше способы и устройства не могут эффективно использоваться для калибровки в единицах ИСФ результатов замера ядерно-магнитного каротажа.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении точности определения индекса свободного флюида (ИСФ) пластов в скважине путем использования при интерпретации полученных данных ядерно-магнитного каротажа калибровочного сигнала, создаваемого и принимаемого основной катушкой индуктивности непосредственно в процессе его проведения в скважинных условиях.

Технический результат достигается тем, что в способе ядерно-магнитного каротажа, при котором сигнал свободной прецессии от пластов калибруется по величине сигнала свободной прецессии от калибровочного вещества в скважинном приборе, новым является то, что поляризуют пластовый флюид в скважине, создавая напряженность магнитного поля, возбуждают калибровочный сигнал от калибровочного вещества, по окончанию действия поляризации производят замер калибровочного сигнала поверхностным измерительным устройством, который сравнивают с сигналом свободной прецессии стандартного образца, и определяют чувствительность скважинного прибора, повторно создают напряженность магнитного поля, поляризуют пластовый флюид и калибровочное вещество внутри скважинного прибора, после окончания поляризации перед началом измерения сигнала свободной прецессии от пласта поверхностным измерительным устройством на калибровочное вещество воздействуют неоднородным постоянным магнитным полем, исключая влияние калибровочного сигнала на измеряемый сигнал свободной прецессии от пласта, учитывая значение чувствительности скважинного прибора, получают значение индекса свободных флюидов, по которому судят об эффективной пористости пластов.

Действие неоднородного постоянного магнитного поля, воздействующего на калибровочное вещество, завершают до начала измерения сигнала свободной прецессии от пласта поверхностным измерительным устройством.

Замер калибровочного сигнала от калибровочного вещества при определении чувствительности скважинного прибора выполняют в интервале отсутствия пластов или против пластов, где их эффективная пористость не превышает 1-2%.

В устройстве ядерно-магнитного каротажа, содержащем основную и дополнительную катушки индуктивности, соединенные с коммутатором, контейнер с калибровочным веществом, усилитель и поверхностное измерительное устройство, новым является то, что контейнер с калибровочным веществом установлен внутри основной катушки индуктивности, а дополнительная катушка для создания неоднородного магнитного поля намотана на контейнер и сообщена с источником импульсного тока.

Дополнительная катушка намотана по всей длине контейнера с калибровочным веществом, расстояние между витками дополнительной катушки составляет 0,01-0,5 поперечного диаметра контейнера, а соседние витки дополнительной катушки имеют встречное направление намотки.

На фиг.1 представлена блок-схема устройства ядерно-магнитного каротажа.

На фиг.2а) приведена временная диаграмма поляризации Нп, на фиг.2б) - диаграмма действия дополнительного неоднородного магнитного поля Ни, на фиг.2в) изображена диаграмма принимаемого сигнала от пласта Нс.

На фиг.3 представлен фрагмент записи калибровочного сигнала, на котором справа изображены кривые амплитуд (в милливольтах) калибровочного сигнала U1(КС) и U2(KC), начальная амплитуда калибровочного сигнала U0(KC) и его время релаксации Т2(КС) в миллисекундах.

На фиг.4 представлены диаграммы стандартного комплекса геофизических исследований скважин, кривые амплитуд сигнала свободной прецессии, а также кривые общей пористости и кривая индекса свободного флюида, рассчитанная по предлагаемому способу с использованием предлагаемого устройства.

Здесь: 1 - основная катушка; 2 - контейнер с калибровочным веществом; 3 - дополнительная катушка; 4 - источник импульсного тока; 5 - ключ; 6 - коммутатор; 7 - усилитель; 8 - поверхностное измерительное устройство.

Сущность способа заключается в том, что при проведении ядерно-магнитного каротажа, непосредственно в процессе его проведения в скважинных условиях, осуществляют калибровку скважинного прибора по величине свободной прецессии от калибровочного вещества в скважинном приборе. Первоначально получают калибровочный сигнал, для чего поляризуют пластовый флюид в скважине, создавая напряженность магнитного поля, возбуждают калибровочный сигнал от калибровочного вещества, по окончанию действия поляризации производят замер калибровочного сигнала поверхностным измерительным устройством, который сравнивают с сигналом свободной прецессии стандартного образца, и определяют чувствительность скважинного прибора. Замер калибровочного сигнала выполняют в интервале отсутствия пластов или против пластов, где их эффективная пористость не превышает 1-2%.

Для проведения непосредственно каротажа повторно поляризуют пластовый флюид и калибровочное вещество внутри скважинного прибора, после окончания поляризации перед началом измерения сигнала свободной прецессии от пласта поверхностным измерительным устройством на калибровочное вещество воздействуют неоднородным постоянным магнитным полем, исключая влияние калибровочного сигнала на измеряемый сигнал свободной прецессии от пласта, учитывая значение чувствительности скважинного прибора, получают значение индекса свободных флюидов, по которому судят об эффективной пористости пластов.

Устройство ядерно-магнитного каротажа содержит основную катушку индуктивности 1 для поляризации пластов и измерения сигнала свободной прецессии от пластов и дополнительную катушку индуктивности 3, соединенные с коммутатором 6, который переключает основную катушку 1 с режима поляризации на режим измерения, контейнер 2 с калибровочным веществом, в качестве которого использована водородосодержащая жидкость (вода, керосин, спирт, трансформаторное масло и т.д.), усилитель 7, поверхностное измерительное устройство 8 для регистрации и предварительной обработки поступающих со скважинного прибора информационных сигналов. Контейнер 2 с калибровочным веществом установлен внутри основной катушки индуктивности 1, а дополнительная катушка 3 намотана на контейнер 2 и сообщена с источником импульсного тока 4. Дополнительная катушка индуктивности 3 намотана по всей длине контейнера 2 с калибровочным веществом. Расстояние между витками катушки 3 составляет 0,01-0,5 от максимального поперечного размера контейнера 2. При этом соседние витки имеют встречное направление намотки. При несоблюдении расстояния между соседними витками дополнительной катушки 3 эффективность исключения сигнала от калибровочного вещества в контейнере 2 падает, что снижает точность определения ИСФ.

Работает устройство следующим образом.

Величина калибровочного сигнала от калибровочного вещества будет изменяться в соответствии с изменением чувствительности скважинного прибора, обусловленной изменением его параметров: добротности и индуктивности основной катушки, точности настройки его на частоту прецессии, величины (неточность установки) и режима выключения тока поляризации, коэффициента передачи сигнала всего измерительного тракта, но в то же время она всегда будет соответствовать индексу свободного флюида, измеренного на государственном стандартном образце индекса свободного флюида («Техническая инструкция по проведению исследований в скважине», Москва, Недра, 2001 г.).

Для определения чувствительности скважинного прибора замеряют калибровочный сигнал от калибровочного вещества в контейнере 2. Для замера калибровочного сигнала скважинный прибор опускается в скважину. Сначала производят поляризацию (фиг.2а) и создается в окружающей среде напряженность магнитного поля Нп. При замере калибровочного сигнала источник импульсного тока 4 находится в отключенном состоянии. После окончания поляризации коммутатор 6 подключает основную катушку 1 на вход измерительного усилителя 7. Сигнал от калибровочного вещества в контейнере 2 усиливается и подается на поверхностное устройство 8. Начальная амплитуда этого калибровочного сигнала (КС) U0(KC) будет соответствовать ИСФ, определенному на ГСО, то есть ИСФ (КС). Тогда чувствительность прибора S будет равна:

Замер калибровочного сигнала выполняется в интервале отсутствия пластов или против пластов, где их эффективная пористость не превышает 1-2%, чтобы сигнал от них вносил минимальную погрешность.

Далее осуществляется цикл режима работы ядерно-магнитного каротажа, при котором производится регистрация сигналов от пластов и исключается сигнал от калибровочного вещества в контейнере 2. При выполнении скважинного замера ядерно-магнитного каротажа поляризуется как пластовый флюид, так и калибровочное вещество внутри контейнера 2 в основной катушке 1. Если не принять специальных мер, то полезные сигналы от пластов невозможно будет выделить на фоне сигнала от калибровочного вещества, поскольку они гораздо меньше по значениям индекса свободного флюида в несколько раз.

Для исключения такого влияния во время между окончанием поляризации и до момента начала измерения сигнала от пласта внутри контейнера 2 создается неоднородное постоянное магнитное поле.

Для этого в промежуток времени между окончанием поляризации, то есть окончанием действия поля Нп и началом измерения сигнала от пласта коммутатор 6 подключает дополнительную катушку 3 к источнику импульсного тока 4, то есть создается дополнительное расфазирующее постоянное магнитное поле. В результате этого действия калибровочный сигнал от калибровочного вещества внутри контейнера 2 затухнет до начала измерения сигнала от пласта и в процессе регистрации получится диаграмма ядерно-магнитного каротажа в виде кривой начальной амплитуды, соответствующая обычному режиму его проведения. Используя значение чувствительности, полученное по методике, описанной выше, можно перевести кривую начальной амплитуды, полученную в скважине, к единицам ИСФ, а именно, делением кривой начальной амплитуды сигналов от пластов на значение чувствительности прибора.

Для опробования предлагаемого устройства и способа в скважине был изготовлен контейнер и заполнен калибровочным веществом. Измеренное значение ИСФ от калибровочного вещества в контейнере соответствовало 83%, а время поперечной релаксации равно 740 мс.

На контейнер была намотана дополнительная катушка для исключения сигнала от калибровочного вещества, то есть для создания расфазирующего постоянного магнитного поля. Этот контейнер был установлен в скважинный прибор. Скважинный прибор был опущен в скважину (фиг.3). В интервале 2597-2601 м был проведен замер сигнала от калибровочного вещества в контейнере, то есть калибровочный сигнал. В этом интервале были выбраны значения амплитуд сигнала с временами релаксации, близкими по значению к времени релаксации сигнала от калибровочного вещества в контейнере, измеренному на ГСО. Среднее значение начальной амплитуды сигнала от калибровочного вещества в контейнере с учетом коэффициентов усиления тракта равно 4640 мВ со временем релаксации 758 мс.

Тогда чувствительность прибора в этой скважине:

Для обеспечения обычного режима проведения ядерно-магнитного каротажа, следуя описанной выше методике, исключаем влияние сигнала от калибровочного вещества в контейнере и получаем кривую начальной амплитуды по разрезу скважины. Деля кривую начальной амплитуды на значение чувствительности, получается кривая в единицах ИСФ или, другими словами, кривая эффективной пористости.

Источник поступления информации: Роспатент

Showing 1-10 of 25 items.
27.05.2013
№216.012.44e3

Способ гидродинамических исследований горизонтальных скважин в масштабе реального времени

Изобретение относится к нефтяной промышленности и может быть использовано при гидродинамических исследованиях действующих горизонтальных скважин. Техническим результатом является возможность получения оперативной информации о свойствах продуктивности горизонтального ствола в реальном времени в...
Тип: Изобретение
Номер охранного документа: 0002483212
Дата охранного документа: 27.05.2013
10.10.2013
№216.012.7454

Датчик угловой скорости и угловых перемещений и способ его работы

Изобретение относится к измерительным приборам, выполняющим измерения с помощью оптических и электрических средств, и может быть использовано для контроля угловой скорости вращения, угловых перемещений и поворота механизмов. Датчик содержит автономный источник электропитания, преобразователь...
Тип: Изобретение
Номер охранного документа: 0002495437
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7469

Устройство ядерно-магнитного каротажа

Изобретение относится к геофизическим методам исследования скважин, в частности к ядерно-магнитному каротажу (ЯМК), и может быть использовано для исследования нефтяных и газовых скважин. Заявлено устройство ядерно-магнитного каротажа, состоящее из по меньшей мере одного длинного магнита,...
Тип: Изобретение
Номер охранного документа: 0002495458
Дата охранного документа: 10.10.2013
10.01.2014
№216.012.94d8

Способ освоения и эксплуатации скважин и устройство для его осуществления

Способ освоения и эксплуатации скважин с высоковязкой продукцией и устройства для его реализации относятся к области нефтедобывающей промышленности и могут быть использованы для подъема продукции скважины при их освоении и эксплуатации. Для подъема жидкости до устья применяют желонку, а для...
Тип: Изобретение
Номер охранного документа: 0002503798
Дата охранного документа: 10.01.2014
20.08.2015
№216.013.6f11

Способ определения интервала поступления свободного газа из пласта в действующей горизонтальной скважине

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов поступления свободного газа из пласта в ствол горизонтальной скважины при исследованиях нефтяных скважин с использованием многодатчиковой технологии. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002560003
Дата охранного документа: 20.08.2015
27.11.2015
№216.013.938b

Скважинная установка с системой контроля и управления эксплуатацией месторождений

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для одновременно-раздельной эксплуатации многопластовых скважин. В скважинной установке с системой контроля и управления эксплуатацией месторождений, включающей по меньшей мере одну колонну (1)...
Тип: Изобретение
Номер охранного документа: 0002569390
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.938c

Способ определения заколонного перетока жидкости в скважине в интервалах перекрытых насосно-компрессорными трубами

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов заколонного перетока жидкости из пластов, перекрытых насосно-компрессорными трубами (НКТ). В скважину, в зону предполагаемого заколонного перетока жидкости, спускаются термоизолированные...
Тип: Изобретение
Номер охранного документа: 0002569391
Дата охранного документа: 27.11.2015
13.01.2017
№217.015.7598

Многоэлементная приемная антенна прибора акустического каротажа

Изобретение относится к автономной аппаратуре волнового акустического каротажа и играет существенную роль при проведении геофизических исследований в сильнонаклонных и горизонтальных скважинах с доставкой на бурильных трубах. Техническим результатом предложенного решения является возможность...
Тип: Изобретение
Номер охранного документа: 0002598406
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.8b1b

Способ определения эффективности гидроразрыва пласта скважины

Изобретение относится к разработке нефтяных залежей и может быть применено для проведения геолого-технических мероприятий по увеличению добычи нефти. Способ заключается в том, что до осуществления ГРП проводят предварительные комплексные геофизические исследования скважины (ГИС) и производят...
Тип: Изобретение
Номер охранного документа: 0002604247
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8da3

Изолятор прибора акустического каротажа в процессе бурения

Изобретение относится к области геофизики и может быть использовано в процессе акустического каротажа в процессе бурения нефтяных и газовых скважин. Заявлен изолятор прибора акустического каротажа в процессе бурения, который содержит несущую трубу из стеклопластика со стальными окончаниями,...
Тип: Изобретение
Номер охранного документа: 0002604561
Дата охранного документа: 10.12.2016
Showing 1-10 of 18 items.
10.10.2013
№216.012.7436

Устройство прецизионного перемещения полноразмерного керна в датчике ямр

Предложено устройство прецизионного перемещения полноразмерного керна в датчике ЯМР. Устройство содержит подающий и приемный конвейерные модули. Контейнер керна вместе с капроновым буксировочным тросиком, объединяющим подающий и приемный конвейерные модули, образует замкнутый контур....
Тип: Изобретение
Номер охранного документа: 0002495407
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7469

Устройство ядерно-магнитного каротажа

Изобретение относится к геофизическим методам исследования скважин, в частности к ядерно-магнитному каротажу (ЯМК), и может быть использовано для исследования нефтяных и газовых скважин. Заявлено устройство ядерно-магнитного каротажа, состоящее из по меньшей мере одного длинного магнита,...
Тип: Изобретение
Номер охранного документа: 0002495458
Дата охранного документа: 10.10.2013
10.01.2014
№216.012.94d8

Способ освоения и эксплуатации скважин и устройство для его осуществления

Способ освоения и эксплуатации скважин с высоковязкой продукцией и устройства для его реализации относятся к области нефтедобывающей промышленности и могут быть использованы для подъема продукции скважины при их освоении и эксплуатации. Для подъема жидкости до устья применяют желонку, а для...
Тип: Изобретение
Номер охранного документа: 0002503798
Дата охранного документа: 10.01.2014
20.08.2015
№216.013.6f11

Способ определения интервала поступления свободного газа из пласта в действующей горизонтальной скважине

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов поступления свободного газа из пласта в ствол горизонтальной скважины при исследованиях нефтяных скважин с использованием многодатчиковой технологии. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002560003
Дата охранного документа: 20.08.2015
27.11.2015
№216.013.938c

Способ определения заколонного перетока жидкости в скважине в интервалах перекрытых насосно-компрессорными трубами

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов заколонного перетока жидкости из пластов, перекрытых насосно-компрессорными трубами (НКТ). В скважину, в зону предполагаемого заколонного перетока жидкости, спускаются термоизолированные...
Тип: Изобретение
Номер охранного документа: 0002569391
Дата охранного документа: 27.11.2015
10.05.2016
№216.015.3a45

Устройство для осуществления ядерного магнитного каротажа в поле постоянного магнита

Использование: для исследования материалов с помощью ядерного магнитного резонанса (ЯМР). Сущность изобретения заключается в том, что в зазоре между двумя основными постоянными цилиндрическими магнитами (1, 5) помещают два дополнительных цилиндрических малых магнита (2, 4). Дополнительные...
Тип: Изобретение
Номер охранного документа: 0002583881
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.7598

Многоэлементная приемная антенна прибора акустического каротажа

Изобретение относится к автономной аппаратуре волнового акустического каротажа и играет существенную роль при проведении геофизических исследований в сильнонаклонных и горизонтальных скважинах с доставкой на бурильных трубах. Техническим результатом предложенного решения является возможность...
Тип: Изобретение
Номер охранного документа: 0002598406
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.8da3

Изолятор прибора акустического каротажа в процессе бурения

Изобретение относится к области геофизики и может быть использовано в процессе акустического каротажа в процессе бурения нефтяных и газовых скважин. Заявлен изолятор прибора акустического каротажа в процессе бурения, который содержит несущую трубу из стеклопластика со стальными окончаниями,...
Тип: Изобретение
Номер охранного документа: 0002604561
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9743

Изолятор автономного прибора акустического каротажа

Изобретение относится к области геофизики и может быть использовано в процессе акустического каротажа. Согласно заявленному предложению предложен изолятор автономного прибора акустического каротажа, содержащий наружный несущий корпус, выполненный из стеклопластиковой трубы со стальными...
Тип: Изобретение
Номер охранного документа: 0002609440
Дата охранного документа: 01.02.2017
04.04.2018
№218.016.3557

Способ ядерного магнитного каротажа и устройство для его реализации

Использование: для каротажа скважин с помощью ядерного магнитного резонанса (ЯМР). Сущность изобретения заключается в том, что осуществляют перемещение вдоль скважины устройства для каротажа, в котором двумя основными соосными постоянными магнитами, сориентированными одноименными полюсами друг...
Тип: Изобретение
Номер охранного документа: 0002645909
Дата охранного документа: 28.02.2018
+ добавить свой РИД