×
01.03.2019
219.016.c8fe

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ САМОЛЕТОМ ПОСЛЕ ПУСКА УПРАВЛЯЕМОЙ РАКЕТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к военной авиации и может использоваться при ведении воздушного боя. Согласно предлагаемому способу, самолет после пуска ракеты отворачивают на ортогональный курс. Этот курс непрерывно корректируют, сохраняя его ортогональность. Синхронно с отворотом самолета поворачивают антенну его бортовой радиолокационной станции, обеспечивая сопровождение ею самолета противника и наведение на него выпущенной ракеты. Одновременно с отворотом самолета на ортогональный курс производят снижение высоты его полета. Возможные во время ортогонального маневра препятствия выявляют с помощью установленной на самолете лазерной локационной станции и огибают их. Техническим результатом изобретения является снижение вероятности поражения самолета воздушным противником при условии продолжения наведения на противника выпущенной с самолета ракеты. 1 з.п. ф-лы, 8 ил.

Изобретение относится к области военной авиации.

При существующих способах управления самолетом после пуска управляемой ракеты часто происходит срыв наведения выпущенных самолетом ракет из-за отворота средств наведения ракет от направления на цель (А.И.Канащенков, В.И.Меркулов, О.Ф.Самарин. Облик перспективных бортовых радиолокационных систем. М., 2002. С.18-20).

Таким образом, к недостаткам существующих способов можно отнести следующее:

- снижение вероятности сопровождения цели или полный срыв ее сопровождения;

- невозможность атаки цели в момент совершения маневра;

- срыв сопровождения ракеты из-за большой скорости маневрирования и увеличения динамических ошибок ее сопровождения.

Технический результат, на достижение которого направлено изобретение, заключается в повышении возможностей самолетов по ведению действий с использованием активного ортогонального маневрирования для исключения необходимости перемещения самолета вслед выпущенной ракете с целью ее сопровождения до момента захвата цели, что повышает опасность быть пораженным ответной атакой противника.

Для достижения указанного технического результата самолет после пуска ракеты по самолету противника отворачивают на ортогональный курс относительно траектории самолета противника, при этом ортогональный маневр может оставаться активным, т.е. самолет непрерывно направляет выпущенную им ракету на цель. Это обеспечивается тем, что ось диаграммы направленности бортовой радиолокационной станции (БРЛС) самолета сохраняет прежнее положение (БРЛС одновременно с самолетом поворачивается также на 90° - следит за целью в автоматическом режиме), и БРЛС продолжает наводить выпущенную по цели ракету.

Самолет постоянно меняет курс таким образом, чтобы его траектория была ортогональна прямой, соединяющей самолет и цель в любой момент времени.

Самолет осуществляет в вертикальной плоскости крутое, возможное для него, пикирование, снижаясь до высоты, когда он будет трудно различим визуально на фоне земли(Н<3 км).

Ортогональный маневр самолета завершается после попадания ракеты в цель.

Для предотвращения столкновения с препятствиями при снижении самолет оборудуют лазерной локационной станцией (ЛЛС), обеспечивающей возможность заблаговременно выявить препятствия и обогнуть их.

При использовании на самолете фазированной антенной решетки ее выполняют подвижной в азимутальной плоскости на угол ϕа=±(90°-α), где α - максимальный угол сканирования антенны.

При использовании щелевой антенны ее выполняют с возможностью отклонения в азимутальной плоскости на угол ±90°, по углу места на ˜ 10-15° с расположением оси диаграммы направленности в горизонтальной плоскости самолета, путем подбора расстояний между щелями в ряду и между рядами щелей антенны. Угол в 10-15° обеспечивается установкой антенны на скошенной плоскости установки антенны узла ее установки.

При активном ортогональном маневре самолет оказывается в диапазоне "слепых скоростей" для БРЛС соперника и лишает его возможности себя сопровождать, в виду того, что современные БРЛС работают по доплеровской частоте. Доплеровская частота образуется с момента касания электромагнитных волн БРЛС до отхода от обнаруживаемого самолета, при этом длина волны изменяется на увеличение, если цель удаляется от облучающей ее РЛС, и на уменьшение, если цель сближается с БРЛС. Доплеровская частота равна:

где Vц - скорость цели;

λ - длина волны облучающей ее станции;

η - доплеровская частота;

αц - угол между направлением на цель и скоростью цели.

При отвороте самолета на ортогональный от цели курс αц=90°, Cos 90°=0, доплеровская частота η=0 и БРЛС соперника "не видит" самолет, совершивший маневр, не может наводить свою ракету, летящую по начальному курсу и пролетающую мимо отвернувшего на ортогональный курс самолета.

При невозможности точного выдерживания ортогонального курса самолетом уменьшают заметность его БРЛС путем рассогласования оси диаграммы направленности и продольной оси антенной системы, для чего крепежную поверхность антенной системы выполняют наклонной. При этом значение угла наклона Θ находится в пределах А≤Θ≤30°.

А=0,61 λ/а для круглых антенн;

А=λ/а для прямоугольных антенн,

где λ - длина волны облучающей станции;

а - габаритный размер антенны.

Для щелевой антенной системы отклонение оси диаграммы направленности от продольной оси антенной системы обеспечивается за счет фазовых сдвигов x1 и x2 между токами соседних рядов щелей и щелями в ряду, определяемых в соответствии с выражениями (Айзенберг Г.З. Антенны УКВ. М.: Связь, 1977. С.119):

x1=(2πd11)·SinΘCosϕ;

x2=(2πd21)·SinΘCosϕ,

где λ1 - рабочая длина волны антенны,

d1 - расстояние между рядами щелей,

d2 - расстояние между щелями в ряду,

Θ - отклонение поверхности антенны в вертикальной плоскости,

ϕ - отклонение поверхности антенны в горизонтальной плоскости.

Боковую поверхность антенной системы выполняют параллельно оси диаграммы направленности, а не перпендикулярно поверхности антенны, что обеспечивает возможность уменьшения габаритов и массы обтекателя, под которым устанавливается антенная система.

Волноводы располагают наклонно к поверхности антенны на угол Θ, а не перпендикулярно, чем обеспечивается сохранение зоны обзора фазированной антенной решетки (ФАР).

Изобретение пояснено чертежами.

На фиг.1 представлена схема способа активного ортогонального маневра самолета при пуске ракеты по цели, осуществляющей маневрирование известным способом.

На фиг.2 - схема поворачивающейся одновременно с самолетом ФАР РЛС.

На фиг.3 - схема активного ортогонального маневра самолета.

На фиг.4 - схема бортовой системы ортогонального маневрирования.

На фиг.5 - схема РЛС с уменьшенной заметностью антенны.

На фиг.6 - схема выполнения щелевой антенны.

На фиг.7 - схема размещения антенны на самолете.

На фиг.8 - закон изменения эффективности поверхности рассеяния антенны в зависимости от угла ее установки.

Способ управления самолетом после пуска управляемой ракеты осуществляется следующим образом.

После обнаружения и захвата цели самолет 1 (фиг.1) производит пуск ракеты 2 по самолету-цели 3, осуществившему пуск ракеты, совершает тактический отворот на ортогональный курс траектории движения самолета-цели со снижением высоты полета.

Самолет 1 становится "невидимым" для РЛС самолета-цели 3, ракета 4 которого становится неуправляемой и не может поразить самолет 1.

Антенна 5 самолета 1, автоматически поворачиваясь, следит за самолетом-целью 3, ракета 2 самолета 1 продолжает наводиться на самолет-цель 3 и поражает его. После этого самолет 1 завершает активный ортогональный маневр.

В случае неточного соблюдения ортогонального курса самолетом 1 самолет-цель 3 не захватит самолет 1 после его отворота, так как антенна 5 самолета 1 направлена на самолет 3 так, что не "видима" для его РЛС.

При этом бортовая система ортогонального маневрирования работает следующим образом.

При поиске цели поверхность 6 антенны 5 со щелями 7 (см. фиг.5, 6) вращается совместно с наклонной крепежной поверхностью 8 корпуса 9 с помощью гидравлических цилиндров 10. Благодаря наклонному положению крепежной поверхности 8 расположение оси 11 диаграммы направленности направлено на цель при ее обнаружении, а продольная ось 12 антенны отклонена при этом на угол Θ и поверхность 6 антенны 5 не перпендикулярна оси диаграммы направленности. Излучения РЛС самолета-цели 3, падая на поверхность 6 антенны 5, отражаются в пространство, не попадая на РЛС самолета-цели 3.

Поиск цели осуществляется сканированием луча антенной системы с помощью фазовращателей. Выявленная цель 3 удерживается антенной системой самолета 1 для проведения предпусковых операций, пуска и наведения ракеты. При пуске ракеты в сторону цели ось диаграммы направленности антенны располагается на цель, поверхность 6 антенны 5 отклонена на угол Θ. Волноводы 14 наклонены к оси антенны 5 на угол Θ.

При щелевых антенных системах и ФАР эффективная поверхность рассеяния (ЭПР) уменьшается (фиг.8).

Самолет 1 выходит в район предполагаемой цели с помощью спутниковой навигационной системы (СНС) 15 (фиг.4) и инерциальной навигационной системы (ИНС) 16. Бортовая радиолокационная станция (БРЛС) 17 самолета 1 обнаруживает цель 3.

На многофункциональном цифровом индикаторе (МФЦИ) 18 высвечивается цель 3, дальность до цели, ее курсовой угол, вычисленные с помощью бортовой, центральной вычислительной машины (БЦВМ) 19; на МФЦИ 18 через БЦВМ 19 поступают и координаты ракеты 4 противника 3, определяемые теплопеленгатором (ТП) 20.

Летчик с помощью пульта 21 управления комплекса системы управления (КСУ) 22 через КСУ 22 направляет самолет 1 на самолет-цель 3 и с помощью пульта 23 системы управления вооружением (СУВ) 24 осуществляет через СУВ 24 пуск ракеты 2. В БЦВМ 19 поступают данные по высоте полета самолета 1 от радиовысотомера (РВМ) 25 и данные о наличии препятствий перед самолетом 1 от лазерной локационной станции (ЛЛС) 26. После пуска ракеты 2 самолет 1 по заложенной в БЦВМ 19 программе производит ортогональный курсу самолета-цели 3 отворот и снижение до заданной высоты. Самолет 1 в автоматическом режиме сопровождает с помощью антенны 5 самолет-цель 3 до поражения ее ракетой 2.

При использовании на самолете 1 щелевой антенны 5 при отвороте самолета 1 на ортогональный курс антенна 5 в соответствии с заложенной в БЦВМ 19 программой поворачивается на цель синхронно с отворотом самолета 1.

При использовании на самолете 1 фазированной антенной решетки ее поворот не обязательно должен быть синхронным с отворотом самолета 1 вследствие возможности сканирования луча ФАР, но к моменту окончания отворота самолета 1 поворот антенны 5 на угол также должен быть завершен, что обеспечивается соответствующей программой в БЦВМ 19.

1.Способуправлениясамолетомпослепускауправляемойракеты,согласнокоторомусамолетпослепускаракетыотворачиваютнакурс,ортогональныйлинии,соединяющейэтотсамолетссамолетомпротивника,непрерывнокорректируюткурссамолета,сохраняяуказаннуюортогональностьприизмененииположениясамолетапротивника,синхронносотворотомсамолетаповорачиваютантеннубортовойрадиолокационнойстанции,обеспечиваясопровождениееюсамолетапротивникаинаведениенанеговыпущеннойракеты,авозможныевовремяортогональногоманеврапрепятствиявыявляютспомощьюустановленнойнасамолетелазернойлокационнойстанциииогибаютих.12.Способпоп.1,вкоторомодновременносотворотомсамолетанаортогональныйкурспроизводятснижениевысотыегополета.2
Источник поступления информации: Роспатент

Showing 21-28 of 28 items.
19.04.2019
№219.017.2d10

Легкий многоцелевой самолет с повышенными маневренными возможностями

Изобретение предназначено для построения высокоманевренных многоцелевых самолетов, действующих в составе группы. Самолет содержит фюзеляж, крыло, оперение, шасси, основную и вспомогательную силовые установки, воздухозаборники и многопозиционный интегрированный комплекс бортового оборудования....
Тип: Изобретение
Номер охранного документа: 0002252899
Дата охранного документа: 27.05.2005
18.05.2019
№219.017.554e

Система управления самолетом

Изобретение относится к авиационному пилотажному оборудованию с процессорными управляющими комплектами и предназначено для использования при приведении в действие органов управления самолетом, изменяющих или поддерживающих его положение во время полета. Система управления самолетом содержит...
Тип: Изобретение
Номер охранного документа: 02235043
Дата охранного документа: 27.08.2004
18.05.2019
№219.017.5550

Способ управления самолетом

Изобретение относится к технике авиационного пилотирования с процессорными управляющими комплектами. С помощью системы управления самолета осуществляют ограничение предельных эксплуатационных значений угла атаки и нормальной перегрузки, ограничение отклонения руля направления, управление...
Тип: Изобретение
Номер охранного документа: 02235042
Дата охранного документа: 27.08.2004
18.05.2019
№219.017.5724

Самолет ближне-среднемагистральный

Изобретение относится к области авиации. Самолет выполнен в пропорции L/C=1/1, где L - длина фюзеляжа с диаметром d≥4,18 м, С - размах крыла, образованного сверхкритическими профилями и выполненного со следующими параметрами: удлинение λ≥11,5, стреловидность по линии 1/4 хорд χ≥26,5°, угол...
Тип: Изобретение
Номер охранного документа: 0002384463
Дата охранного документа: 20.03.2010
19.06.2019
№219.017.845d

Самолет с системой управления общесамолетным оборудованием

Изобретение относится к авиационной технике и предназначено для использования при реализации управления учебно-тренировочными полетами. Самолет содержит фюзеляж, крыло, оперение, шасси, двигатели основной силовой установки, воздухозаборники с ограниченными крылом каналами. На крыле с...
Тип: Изобретение
Номер охранного документа: 0002263044
Дата охранного документа: 27.10.2005
29.06.2019
№219.017.9af7

Интегрированный комплекс бортового оборудования легкого учебно-боевого самолета

Изобретение относится к системам управления учебно-тренировочными и учебно-боевыми самолетами и предназначено для обучения летчиков-курсантов и повышения квалификации летчиков вооруженных сил. Комплекс содержит распределенную бортовую цифровую вычислительную систему обработки информации и...
Тип: Изобретение
Номер охранного документа: 02203200
Дата охранного документа: 27.04.2003
29.06.2019
№219.017.9b76

Способ крепления внешних подвесных объектов на крыле летательного аппарата

Изобретение относится к оборудованию летательных аппаратов. Способ заключается в использовании нервюры в качестве элемента, к которому крепятся узлы подвески объектов. В качестве пилона и/или держателя объекта используют нервюру, в которой также располагают оборудование для пуска или сброса...
Тип: Изобретение
Номер охранного документа: 02232106
Дата охранного документа: 10.07.2004
29.06.2019
№219.017.9b78

Универсальное устройство для крепления на летательном аппарате внешних подвесных объектов

Изобретение относится к авиационной технике. Устройство содержит пилон 1 с разными узлами для подвески внешних объектов. В пилоне расположены модульные блоки 5 отсоединения и/или запуска соответствующих объектов. Пилон выполнен с соответствующими отсеками для размещения указанных блоков,...
Тип: Изобретение
Номер охранного документа: 02232107
Дата охранного документа: 10.07.2004
Showing 21-21 of 21 items.
18.05.2019
№219.017.5724

Самолет ближне-среднемагистральный

Изобретение относится к области авиации. Самолет выполнен в пропорции L/C=1/1, где L - длина фюзеляжа с диаметром d≥4,18 м, С - размах крыла, образованного сверхкритическими профилями и выполненного со следующими параметрами: удлинение λ≥11,5, стреловидность по линии 1/4 хорд χ≥26,5°, угол...
Тип: Изобретение
Номер охранного документа: 0002384463
Дата охранного документа: 20.03.2010
+ добавить свой РИД