×
22.02.2019
219.016.c5a2

СПОСОБ ГИДРОГЕНИЗАЦИОННОЙ ПЕРЕРАБОТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу гидрогенизационной переработки углеводородного сырья и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа гидрогенизационной переработки углеводородного сырья, при котором сырье пропускают через реактор с неподвижным слоем пакета катализаторов, состоящим из основного катализатора гидропереработки, в качестве которого используют алюмоникельмолибденовый и/или алюмокобальтмолибденовый катализатор в сульфидной форме, и расположенных над ним защитных слоев в количестве 10-15% реакционного объема, включающих: слой А - инертный материал для удаления механических примесей, обладающий свободным объемом не менее 65%, слой Б - композиционный фильтрующий материл для удаления твердых механических примесей и гидрирования непредельных соединений на основе высокопористого ячеистого материала, обладающий свободным объемом не менее 80%, размером отверстий не более 30 меш, в качестве активных компонентов содержащий соединения никеля и молибдена, при этом содержание никеля составляет не более 3% масс., молибдена - не более 10% масс., слой В - сорбционно-каталитический материал для удаления мышьяка и кремния на основе мезопористого оксида кремния, обладающий удельной поверхностью не ниже 350 м/г, объемом пор не ниже 0,4 см/г, в качестве активных компонентов содержащий соединения никеля и молибдена, при этом содержание никеля составляет не более 6% масс., молибдена - не более 14% масс., слой Г - катализатор деметаллизации на основе гамма-оксида алюминия, обладающий удельной поверхностью не ниже 150 м/г, объемом пор не ниже 0,4 см/г, в качестве активных компонентов содержащий соединения кобальта, никеля и молибдена, при этом содержание кобальта составляет не более 4% масс., никеля - не более 4% масс., молибдена - не более 14% масс., при следующем соотношении защитных слоев в частях по объему - А:Б:В:Г - 0,2:0,6÷2,4:1,2÷1,6:0,2÷1,6. Технический результат - увеличение межрегенерационного цикла эксплуатации основного катализатора в среднем на 50% и продление общего срока его службы. 2 з.п. ф-лы, 1 табл., 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к способу гидрогенизационной переработки углеводородного сырья и может быть использовано в нефтеперерабатывающей промышленности.

Содержание в углеводородном сырье металлов (Si, As, Ni, V, Fe), смолисто-асфальтеновых веществ, гетероатомных соединений является серьезной проблемой, приводящей к необратимой дезактивации катализатора гидрообработки. Применение защитных слоев в реакторах гидропроцессов защищает слой основного катализатора от необратимой дезактивации, улучшает распределение сырьевого потока, снижает гидравлическое сопротивление, предотвращает закоксовывание катализаторов основного слоя продуктами полимеризации, обеспечивает максимальную активность катализаторов основного слоя; увеличивает общий срок службы катализаторов основного слоя; улучшает технико-экономические показатели нефтеперерабатывающего предприятия.

Известен способ двухстадийной гидроочистки нефтяных фракций при повышенных температуре и давлении и циркуляции водородсодержащего газа в присутствии пакета алюмооксидных катализаторов.

(Патент RU 2353644, 27.04.2009 г.)

Пакет катализаторов первой стадии включает катализатор защитного слоя в качестве верхнего удерживающего слоя и алюмоникельмолибденовый катализатор в качестве нижнего слоя, при определенном соотношении компонентов. На второй стадии каталитический пакет включает алюмокобальтмолибденовый либо алюмоникельмолибденовый катализатор в качестве верхнего слоя и алюмокобальтмолибденовый катализатор в качестве нижнего слоя, также при определенном соотношении компонентов.

Недостатком способа является низкая эффективность подготовки углеводородного сырья (особенно дистиллятов вторичного происхождения) к гидропереработке, связанная с использованием в качестве материала защитного слоя катализатора на основе носителя с невысокой полезной внутренней пористостью и объемом внешних пустот, что в конечном итоге, вследствие недостаточного отфильтровывания и деметаллизации, приводит к ускоренной дезактивации катализатора основного слоя и сокращению межрегенерационного цикла его эксплуатации.

Известен способ и катализатор для удаления мышьяка и одного или более соединений других металлов, например, кремния, ванадия и никеля из исходного углеводородного сырья.

(Международная заявка WO 2004101713 А1, 25.11.2004).

Катализатор на подложке содержит соединение молибдена и соединение никеля. Площадь поверхности катализатора составляет не менее 200 м2/г. Кроме удаления примесей катализатор обладает гидрообессеривающей, гидродеазотирующей и гидрирующей функциями.

Недостатком данного способа является использование катализатора, структура носителя которого содержит поры с неконтролируемым размером и широким распределением по размерам, что не обеспечивает высокую селективность процесса в отношении удаления никеля и ванадия. Также данный катализатор не решает проблемы удаления асфальтенов, что может привести к закоксовыванию катализатора основного слоя при последующей переработке очищенного углеводородного сырья.

Известен способ деасфальтизации и деметаллизации тяжелого нефтяного сырья

(Патент RU 2610525, 13.02.2017)

Способ осуществляют следующим образом. Тяжелую нефть или мазут пропускают через неподвижный слой адсорбента при повышенных температуре и давлении. В данном способе используют адсорбент, состоящий из гамма-оксида алюминия, полученный с помощью темплатного синтеза. Адсорбент содержит макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 500 нм составляет не менее 30% в общем удельном объеме пор.

Используемый в данном методе адсорбент на основе макропористого оксида алюминия обеспечивает эффективное удаление асфальтенов и металлов из тяжелых нефтей и остатков атмосферной перегонки нефти, но не предназначен для деметаллизации среднедистиллятных фракций вторичного происхождения.

Известен процесс Hyvahl™ - процесс, являющийся типичным процессом переработки атмосферных и вакуумных остатков в неподвижном слое с помощью каталитического гидрирования.

(Успехи химии 84 (9) 2015, А.Г. Окунев, Е.В. Пархомчук и др. «Каталитическая гидропереработка тяжелого нефтяного сырья» стр. 990-991).

Переработка сырья происходит в последовательно соединенных реакторах, загруженных катализаторами разных типов: реактор предварительной очистки, в который загружен защитный материал без активного компонента, реактор гидродеметаллизации (ГДМ), реактор гидродеметаллизации и гидрообессеривания (ГОС), реактор гидрообессеривания. Характеристики катализаторов, используемых в данном процессе, отражены в таблице 1.

Недостатками данного процесса являются сложность аппаратурного оформления, а также то, что процесс предназначен только для переработки тяжелых углеводородных остатков.

Задачей изобретения является разработка способа гидрогенизационной переработки углеводородного сырья, с использованием комплексной сорбционно-каталитической системы, обладающей высокой адсорбционной емкостью в отношении твердых механических примесей и металлов (мышьяка, никеля и ванадия), обеспечивающей получение из смесевого углеводородного сырья, выкипающего в интервале температур 70-380°C, гидрооблагороженного продукта с остаточным содержанием: серы - не более 10 мг/кг, никеля и ванадия - не более 0,5 мг/кг, мышьяка - не более 0,5 мг/кг, кремния - не более 0,5 мг/кг.

Данная задача решается способом гидрогенизационной переработки углеводородного сырья, при котором сырье пропускают через реактор с неподвижным слоем, содержащим пакет катализаторов, состоящий из основного катализатора гидропереработки и расположенных над ним защитных слоев в количестве 10-15% реакционного объема.

Защитные слои включают:

слой А - инертный материал для удаления механических примесей,

слой Б - композиционный фильтрующий материл для удаления твердых механических примесей и гидрирования непредельных соединений, на основе высокопористого ячеистого материала,

слой В - сорбционно-каталитический материал для удаления мышьяка и кремния, на основе мезопористого оксида кремния,

слой Г - катализатор деметаллизации на основе гамма-оксида алюминия.

Соотношение защитных слоев, в частях по объему - А : Б : В : Г - 0,2 : 0,6÷2,4 : 1,2÷1,6 : 0,2÷1,6. Материалы слоев Б, В, Г содержат активные компоненты.

В качестве углеводородного сырья используют смеси углеводородных фракций, выкипающих в интервале температур 70-380°C.

В качестве основного катализатора гидропереработки используют промышленный алюмоникельмолибденовый и/или алюмокобальтмолибденовый катализатор в сульфидной форме.

Пропускание сырья через пакет катализаторов производят при температуре 330-380°C, давлении 5,0-10,0 МПа, циркуляции водородсодержащего газа (ВСГ) 300-1000 нм33 сырья, объемной скорости подачи сырья 0,5-2,0 ч-1.

Слой А - инертный материал обладает свободным объемом не менее 65%.

Слой Б - композиционный фильтрующий материал обладает свободным объемом не менее 80%, размером отверстий не более 30 меш, а в качестве активных компонентов содержит соединения никеля и молибдена, при этом содержание никеля оставляет не более 3% масс., молибдена - не более 10% масс.

Слой В - сорбционно-каталитический материал для удаления мышьяка и кремния обладает удельной поверхностью не ниже 350 м2/г, объемом пор не ниже 0,4 см3/г, а в качестве активных компонентов содержит соединения никеля и молибдена, при этом содержание никеля составляет не более 6% масс, молибдена - не более 14% масс.

Слой Г - катализатор деметаллизации обладает удельной поверхностью не ниже 150 м2/г, объемом пор не ниже 0,4 см3/г, а в качестве активных компонентов содержит соединения кобальта, никеля и молибдена, при этом содержание кобальта составляет не более 4% масс., никеля - не более 4% масс., молибдена - не более 14% масс.

Основным преимуществом данного способа является использование определенных защитных слоев, расположенных в определенной последовательности при различных соотношениях, совместно с основным катализатором гидропереработки, что позволяет на выходе получить продукт с требуемым характеристиками. Пропускание через основной катализатор гидропереработки предварительно частично очищенного сырья увеличивает межрегенерационный цикл эксплуатации катализатора в среднем на 50% и продлевает общий срок его службы.

В качестве слоя А - инертного материала для удаления механических примесей используют промышленные инертные материалы, со свободным объемом не менее 65%, например, инертный материал OptiTrap (Medalion), выпускаемый фирмой Criterion Catalysts & Technologies (USA).

Слой Б - композиционный фильтрующий материл для удаления твердых механических примесей и гидрирования непредельных соединений получают путем нанесения на носитель, представляющий собой высокопористый ячеистый материал, активных компонентов - соединений никеля и молибдена.

Высокопористый ячеистый материал для данного носителя получают путем пропитывания пенополиуритановой матрицы суспензией (шликером), содержащей альфа-оксид алюминия, далее производят сушку при температуре 100-120°C и прокаливание при температуре 1000-1100°C. На полученный таким образом высокопористый ячеистый материал наносят гамма-оксид алюминия пропитыванием его раствором алюмозоля с последующей сушкой при 100-120°C и прокаливанием при 500-600°C. Полученный носитель пропитывают растворами тетрагидрата молибдата аммония (NH4)6Mo7O24⋅4H2O⋅ и гексагидрата нитрата никеля Ni(NO3)2⋅6H2O.

В результате получают композиционный фильтрующий материал для удаления твердых механических примесей и гидрирования непредельных соединений, содержащихся в углеводородном сырье, на основе высокопористого ячеистого материала, со свободным объемом не менее 80% и размером отверстий не более 30 меш, содержащий активные компоненты - соединения никеля и молибдена. Массовое содержание никеля составляет не более 3% масс, молибдена - не более 10% масс.

Слой В - сорбционно-каталитический материал для удаления мышьяка и кремния получают путем нанесения активных компонентов - соединений металлов на носитель - мезопористый оксид кремния.

В качестве мезопористого оксида кремния используют, например, материал SBA-15, имеющий удельную поверхность 630 м2/г, средний диаметр пор 10 нм, объем пор 1,46 см3/г, или SBA-16, имеющий удельную поверхность 700-900 м2/г, диаметр пор 3-5 нм, объем пор 1,2 см3/г., полученные темплатным синтезом. Данные материалы производятся фирмой ACS Material, LLC (USA).

Носитель - мезопористый оксид кремния пропитывают растворами тетрагидрата молибдата аммония (NH4)6Мо7О24⋅4H2O⋅ и гексагидрата нитрата никеля Ni(NO3)2⋅6H2O с последующей сушкой при 100°C и прокаливанием при 500°C.

В результате получают сорбционно-каталитический материал для удаления мышьяка и кремния с удельной поверхностью не ниже 350 м2/г и общим объемом пор не ниже 0,4 см3/г на основе мезопористого оксида кремния. Массовое содержание никеля составляет не более 6% масс, молибдена - не более 14% масс.

Слой Г - катализатор деметаллизации получают пропитыванием гамма-оксида алюминия растворами, содержащими предшественники активных компонентов (никеля, кобальта и молибдена) и моногидрат лимонной кислоты с последующей термообработкой.

Гамма-оксид алюминия в присутствии моногидрата лимонной кислоты С6Н8О7⋅H2O последовательно пропитывают растворами гексамолибдоникелевой гетерополикислоты Н4[Ni(ОН)6Mo6O18] и гидроксокарбоната никеля NiCO3⋅nNi(ОН)2⋅mH2O, гексамолибдокобальтовой гетерополикислоты Н4[Со(ОН)6Mo6O18] и карбоната кобальта CoCO3⋅nH2O.

После сушки и прокаливания получают катализатор деметаллизации на основе гамма-оксида алюминия, обладающий удельной поверхностью не ниже 150 м2/г, объемом пор не ниже 0,4 см3/г. Массовое содержание никеля составляет не более 4% масс, кобальта - не более 4% масс, молибдена - не более 14% масс.

Реализация способа иллюстрируется следующими примерами.

Пример 1

В реактор гидропереработки загружают защитные материалы, занимающие 10% реакционного объема, и промышленный сульфидный алюмокобальтмолибденовый катализатор основного слоя, занимающий 90% реакционного объема.

Соотношение защитных слоев, в частях по объему - А : Б : В : Г - 0,2 : 2,4 : 1,2 : 0,2.

Загрузка защитных материалов А, Б, В и Г осуществляется известным способом, использующимся для загрузки катализаторов в реактор гидроочистки.

Слой А - инертный материал OptiTrap (Medalion) фирмы Criterion Catalysts & Technologies (USA), характеризующий свободным объемом 65-70%.

Слой Б - композиционный фильтрующий материал на основе высокопористого ячеистого материла, характеризующийся свободным объемом 80%, размером отверстий 30 меш. Массовое содержание никеля составляет 1,5% масс, молибдена - 5,6% масс.

Слой В - сорбционно-каталитический материал на основе мезопористого материала SBA-15 фирмы ACS Material, LLC (USA), характеризующийся удельной поверхностью 500 м2/г, объемом пор 0,77 см3/г. Массовое содержание никеля составляет 2% масс, молибдена - 7,4% масс.

Слой Г - катализатор деметаллизации, характеризующийся удельной поверхностью 180 м2/г, объемом пор 0,48 см3/г. Массовое содержание никеля составляет 1,1% масс, кобальта - 1,7% масс, молибдена - 9,7% масс.

Углеводородное сырье представляет собой смесь, состоящую из 85% прямогонной дизельной фракции (ПДФ) - пределы выкипания 178-355°C, плотность при 20°C - 853 кг/м3, содержание серы - 0,5% масс., йодное число - 2,3 г I2/100 г и 15% бензина замедленного коксования (БЗК) - пределы выкипания 70-182°C, плотность при 20°C - 736 кг/м3, содержание серы - 0,55% масс, йодное число - 80 г 12/100 г.

Содержание металлов в смесевом сырье: мышьяка - 1 мг/кг, кремния - 1,5 мг/кг.

Гидропереработку смесевого сырья проводят при объемной скорости подачи сырья 2 ч-1, температуре 330°C, давлении 5,0 МПа, циркуляции ВСГ 300 нм33.

В результате гидрооблагораживания получают продукт с содержанием серы - 8 мг/кг, полициклических ароматических углеводородов (ПЦА) - 5% масс, суммарное содержание мышьяка и кремния - менее 0,2 мг/кг.

Пример 2

В реактор гидропереработки загружают защитные материалы, занимающие 10% реакционного объема, и промышленные сульфидные алюмокобальтмолибденовый и алюмоникельмолибденовый катализаторы основного слоя, занимающие 90% реакционного объема.

Соотношение защитных слоев, в частях по объему - А : Б : В : Г - 0,2 : 2,4 : 1,2 : 0,2.

Загрузка защитных материалов А, Б, В и Г осуществляется известным способом, использующимся для загрузки катализаторов в реактор гидроочистки.

Слой А - инертный материал OptiTrap (Medalion) фирмы Criterion Catalysts & Technologies (USA), характеризующий свободным объемом 65-70%.

Слой Б - композиционный фильтрующий материал на основе высокопористого ячеистого материла, характеризующийся свободным объемом 80%, размером отверстий 30 меш. Массовое содержание никеля составляет 1,5%, молибдена - 5,6%.

Слой В - сорбционно-каталитический материал на основе мезопористого материала SBA-15 фирмы ACS Material, LLC (USA), характеризующийся удельной поверхностью 350 м2/г, объемом пор 0,65 см3/г. Массовое содержание никеля составляет 5,4% масс, молибдена - 14,0% масс.

Слой Г - катализатор деметаллизации, характеризующийся удельной поверхностью 180 м2/г, объемом пор 0,48 см3/г. Массовое содержание никеля составляет 1,1% масс, кобальта - 1,7% масс, молибдена - 9,7% масс.

Углеводородное сырье представляет собой смесь, состоящую из 70% ПДФ - пределы выкипания 178-355°C, плотность при 20°C - 853 кг/м3, содержание серы - 0,5% масс., йодное число - 2,3 г I2/100 г и 30% БЗК - пределы выкипания 70-182°C, плотность при 20°C - 736 кг/м3, содержание серы - 0,55% масс., йодное число - 80 г I2/100 г.

Содержание металлов в смесевом сырье: мышьяка - 1,5 мг/кг, кремния - 3,0 мг/кг.

Гидропереработку смесевого сырья проводят при объемной скорости подачи сырья 1,5 ч-1, температуре 340°C, давлении 5,0 МПа, циркуляции ВСГ 400 нм33.

В результате гидрооблагораживания получают продукт с содержанием серы - 10 мг/кг, ПЦА - 7% масс., суммарное содержание мышьяка и кремния - менее 0,5 мг/кг.

Пример 3

В реактор гидропереработки загружают защитные материалы, занимающие 12% реакционного объема, и промышленные сульфидные алюмокобальтмолибденовый и алюмоникельмолибденовый катализаторы основного слоя, занимающие 88% реакционного объема.

Соотношение защитных слов, в частях по объему - А : Б : В : Г - 0,2 : 1,6 : 1,4 : 0,8.

Загрузка защитных материалов А, Б, В и Г осуществляется известным способом, использующимся для загрузки катализаторов в реактор гидроочистки.

Слой А - аналогичен примеру 1

Слой Б - композиционный фильтрующий материал на основе высокопористого ячеистого материла, характеризующийся свободным объемом 80%, размером отверстий 10 меш. Массовое содержание никеля составляет 2,5% масс, молибдена - 9,0% масс.

Слой В - сорбционно-каталитический материал на основе мезопористого материала SBA-16 фирмы ACS Material, LLC (USA), характеризующийся удельной поверхностью 373 м2/г, объемом пор 0,53 см3/г. Массовое содержание никеля составляет 2,5% масс, молибдена - 11,7% масс.

Слой Г - катализатор деметаллизации, характеризующийся удельной поверхностью 236 м2/г, объемом пор 0,55 см3/г. Массовое содержание никеля составляет 1,2% масс, кобальта - 1,8% масс, молибдена - 10,9% масс.

Углеводородное сырье представляет собой смесь, состоящую из 80% ПДФ-пределы выкипания 178-355°C, плотность при 20°C - 853 кг/м3, содержание серы - 0,5% масс., йодное число - 2,3 г I2/100 г, 12% легкого газойля каталитичекого крекинга (ЛГКК) - пределы выкипания 180-350°C, плотность при 20°C - 935 кг/м3, содержание серы - 1,3% масс., йодное число - 16,0 г I2/100 г, содержание ароматических углеводородов - 77% масс. и 8% легкого газойля замедленного коксования (ЛГЗК) - пределы выкипания 270-380°C, плотность при 20°C - 900 кг/м3, содержание серы - 1,1% масс., йодное число - 35 г I2/100 г, содержание ароматических углеводородов - 45% масс.

Содержание металлов в смесевом сырье: мышьяка - 2 мг/кг, кремния - 1 мг/кг, никеля - 0,4 мг/кг, ванадия - 0,4 мг/кг.

Гидропереработку смесевого сырья проводят при объемной скорости подачи сырья 1 ч-1, температуре 360°C, давлении 8,0 МПа, циркуляции ВСГ 650 нм33.

В результате гидрооблагораживания получают продукт с содержанием серы - 8 мг/кг, ПЦА - 7% масс., суммарное содержание мышьяка, кремния, никеля и ванадия - менее 0,2 мг/кг.

Пример 4

Осуществляют аналогично примеру 2.

Гидропереработку смесевого сырья проводят при объемной скорости подачи сырья 0,5 ч-1, температуре 380°C, давлении 6,0 МПа, циркуляции ВСГ 1000 нм33.

В результате гидрооблагораживания получают продукт с содержанием серы - 10 мг/кг, ПЦА - 11% масс., суммарное содержание мышьяка, кремния, никеля и ванадия - менее 0,3 мг/кг.

Пример 5

В реактор гидропереработки загружают защитные материалы, занимающие 15% реакционного объема, и промышленный сульфидный алюмоникельмолибденовый катализатор основного слоя, занимающий 85% реакционного объема.

Соотношение защитных слоев, в частях по объему - А : Б : В : Г - 0,2 : 0,6 : 1,6 : 1,6.

Загрузка защитных материалов А, Б, В и Г осуществляется известным способом, использующимся для загрузки катализаторов в реактор гидроочистки.

Слой А - аналогично примеру 1

Слой Б - аналогично примеру 2

Слой В - аналогично примеру 2

Слой Г - аналогично примеру 2

Углеводородное сырье представляет собой смесь, состоящую из 50% ПДФ - пределы выкипания 200-380°C, плотность при 20°C - 865 кг/м3, содержание серы - 0,7% масс., йодное число - 2,5 г I2/100 г, 20% ЛГКК - пределы выкипания 280-350°C, плотность при 20°C - 935 кг/м3, содержание серы - 1,3% масс., йодное число - 16,0 г I2/100 г, содержание ароматических углеводородов - 77% масс., 20% ЛГЗК - пределы выкипания 270-380°C, плотность при 20°C - 900 кг/м3, содержание серы - 1,1% масс., йодное число - 35 г I2/100 г, содержание ароматических углеводородов - 45% масс. и 10% БЗК - пределы выкипания 70-182°C, плотность при 20°C - 736 кг/м3, содержание серы - 0,55% масс., йодное число - 80 г I2/100 г.

Содержание металлов в смесевом сырье: мышьяка - 3 мг/кг, кремния 5 мг/кг суммарное содержание никеля и ванадия - 0,3 мг/кг.

Гидропереработку смесевого сырья проводят при объемной скорости подачи сырья 0,7 ч-1, температуре 360°C, давлении 10,0 МПа, циркуляции ВСГ 550 нм33.

В результате гидрооблагораживания получают продукт с содержанием серы - 5 мг/кг, ПЦА - 4% масс., суммарное содержание мышьяка, кремния, никеля и ванадия - менее 0,4 мг/кг.

Таким образом, приведенные примеры показывают, что разработанный способ гидрогенизационной переработки углеводородного сырья, с использованием пакета катализаторов, обеспечивает получение из смесевого углеводородного сырья, выкипающего в интервале температур 70-380°C, гидрооблагороженного продукта с остаточным содержанием: серы - не более 10 мг/кг, никеля и ванадия - не более 0,5 мг/кг, мышьяка - не более 0,5 мг/кг, кремния - не более 0,5 мг/кг, что соответствует поставленной задаче, при этом межрегерационный пробег основного катализатора гидропереработки увеличивается в среднем на 50%.

Источник поступления информации: Роспатент

Showing 1-10 of 34 items.
25.08.2017
№217.015.9e6b

Многофункциональная добавка к авиационным бензинам (варианты)

Изобретение раскрывает многофункциональную добавку к авиационным бензинам, которая включает тетраэтилсвинец, 1,2-дибромэтан и 2,6-ди-трет-бутил-4-метилфенол, добавка имеет температуру начала кристаллизации не выше минус 40°C и содержит углеводородную фракцию, имеющую температуру конца кипения...
Тип: Изобретение
Номер охранного документа: 0002605953
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9e7b

Альтернативное автомобильное топливо и способ его получения

Предлагаемое альтернативное автомобильное топливо с октановым числом не менее 92,0 ед., определенным по исследовательскому методу, включает в себя этиловый спирт и углеводородную фракцию и отличается тем, что в качестве углеводородной фракции содержит бензиновую фракцию процесса гидрокрекинга,...
Тип: Изобретение
Номер охранного документа: 0002605952
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9e7f

Альтернативное автомобильное топливо и способ его получения

Изобретение раскрывает альтернативное автомобильное топливо с октановым числом не менее 85,0 ед., определенным по моторному методу, которое включает в себя этиловый спирт и углеводородную фракцию, при этом в качестве углеводородной фракции используется бензиновая фракция процесса гидрокрекинга,...
Тип: Изобретение
Номер охранного документа: 0002605954
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9e85

Способ переработки вакуумных дистиллатов

Изобретение относится к способу переработки вакуумных дистиллатов с получением дизельного топлива класса ЕВРО-5, применяемого в холодной и арктической зонах. Способ включает стадии гидрогенизационного облагораживания исходного сырья и каталитического крекинга остаточной фракции, полученной из...
Тип: Изобретение
Номер охранного документа: 0002605950
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9e8a

Способ получения композиционного топлива и установка для его осуществления

Изобретение описывает способ получения композиционного топлива, включающий измельчение твердого компонента, смешивание измельченных частиц с жидким компонентом, при этом в качестве твердого компонента используют горючий сланец, измельчение осуществляют ударно-скалывающим воздействием ударом со...
Тип: Изобретение
Номер охранного документа: 0002605951
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.abc3

Способ гидрогенизационной переработки вакуумного дистиллата

Изобретение относится к области нефтепереработки, конкретно к способу переработки вакуумного дистиллата. Предлагается способ гидрогенизационной переработки вакуумного дистиллата, включающий мягкий гидрокрекинг вакуумного дистиллата при повышенных температуре и давлении в присутствии...
Тип: Изобретение
Номер охранного документа: 0002612133
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ac03

Катализатор гидроизодепарафинизации среднедистиллятных углеводородных фракций

Изобретение относится к области нефтепереработки, в частности к разработке катализатора гидроизодепарафинизации среднедистиллятных углеводородных фракций, а именно, смесевого сырья нефтяного и растительного происхождения, с получением базовых компонентов авиационных керосинов и дизельных топлив...
Тип: Изобретение
Номер охранного документа: 0002612134
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b3cc

Способ переработки нефтяных остатков

Изобретение относится к способу переработки нефтяных остатков. Способ включает вакуумную перегонку мазута с выделением вакуумного дистиллята и гудрона, деасфальтизацию гудрона углеводородным растворителем, дальнейшее гидрогенизационное облагораживание смеси вакуумного дистиллята и...
Тип: Изобретение
Номер охранного документа: 0002613634
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.bfc8

Способ получения синтетической нефти

Изобретение относится к способу получения синтетической нефти. Способ получения синтетической нефти осуществляют из нетрадиционного нефтяного сырья. Способ включает предварительную подготовку нефтяного сырья путем приготовления эмульгированной суспензии из нефтяного остатка, измельченного...
Тип: Изобретение
Номер охранного документа: 0002616607
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c08a

Высокооктановый автомобильный бензин и антидетонационная добавка для его получения

Изобретение раскрывает высокооктановый автомобильный бензин с октановым числом не менее 91 ед., определенным по исследовательскому методу, включающий в себя в качестве основного компонента бензиновую фракцию, выкипающую до 225°С, характеризующийся тем, что для повышения детонационной стойкости...
Тип: Изобретение
Номер охранного документа: 0002616606
Дата охранного документа: 18.04.2017
Showing 1-10 of 65 items.
20.09.2013
№216.012.6a87

Состав и способ синтеза катализатора гидродеоксигенации кислородсодержащего углеводородного сырья

Изобретение относится к катализаторам и их получению. Описан катализатор гидродеоксигенации кислородсодержащего углеводородного сырья или совместной гидроочистки нефтяных фракций и кислородсодержащих соединений, полученных из растительного (возобновляемого) сырья, содержащий соединения...
Тип: Изобретение
Номер охранного документа: 0002492922
Дата охранного документа: 20.09.2013
20.02.2014
№216.012.a0cd

Пылеулавливатель

Изобретение относится к технике пылеулавливания и может применяться в машиностроении и других отраслях промышленности для очистки запыленных газов. Техническим результатом изобретения является повышение эффективности процесса пылеулавливания отходящих газов различных технологических процессов....
Тип: Изобретение
Номер охранного документа: 0002506880
Дата охранного документа: 20.02.2014
10.12.2014
№216.013.0ed4

Катализатор и способ гидроизомеризации дизельных дистиллятов с его использованием

Изобретение относится к области нефтепереработки, в частности к катализаторам для гидроизомеризации нефтяного сырья. Предлагаемый катализатор включает гидрирующий металлический компонент на носителе, содержащем цеолит и оксид алюминия. При этом в качестве гидрирующего металлического компонента...
Тип: Изобретение
Номер охранного документа: 0002535213
Дата охранного документа: 10.12.2014
20.02.2015
№216.013.2768

Способ получения гидрохлоридов аминов адамантанового ряда

Изобретение относится к способу получения гидрохлоридов аминов адамантанового ряда, в том числе гидрохлоридов 1-аминоадамантана или 3,5-диметил-1-аминоадамантана, которые являются фармацевтической субстанцией препаратов «Мидантан» и «АкатинполМемантин». Способ заключается в окислении...
Тип: Изобретение
Номер охранного документа: 0002541545
Дата охранного документа: 20.02.2015
20.07.2015
№216.013.6465

Катализатор, способ его приготовления и процесс селективного гидрообессеривания олефинсодержащего углеводородного сырья

Изобретение относится к катализатору селективного гидрообессеривания олефинсодержащего углеводородного сырья. Данный катализатор состоит из соединений металлов Со или Ni, Mo и Na или К, нанесенных на носитель. При этом предлагаемый катализатор содержит биметаллическое комплексное соединение...
Тип: Изобретение
Номер охранного документа: 0002557248
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.664c

Установка для пылеулавливания

Изобретение относится к технике пылеулавливания, может применяться для исследования процессов центробежного пылеулавливания, а также в машиностроении и других отраслях промышленности для очистки запыленных газов. Техническим результатом изобретения является улучшение условий исследования...
Тип: Изобретение
Номер охранного документа: 0002557741
Дата охранного документа: 27.07.2015
27.11.2015
№216.013.94af

Состав и способ приготовления носителя и катализатора глубокой гидроочистки углеводородного сырья

Изобретение относится к катализатору глубокой гидроочистки углеводородного сырья, состоящему из одно или несколько биметаллических комплексных соединений металлов VIII и VIB групп, нанесенных на модифицированный носитель определенного состава. Катализатор имеет удельную поверхность 180-350 м/г,...
Тип: Изобретение
Номер охранного документа: 0002569682
Дата охранного документа: 27.11.2015
20.01.2016
№216.013.a3bf

Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья

Изобретение относится к катализатору гидрообессеривания углеводородного сырья, состоящему из гетерополисоединения, содержащего как минимум один из следующих гетерополианионов [CoMoOH], [Co(OH)MoO], [Ni(OH)MoO], [NiMoOH], [PMoO], [РМоО], [SiMoO], [Co(OH)WO], [PWO], [SiWO], [PMoWO] (где n=1-11),...
Тип: Изобретение
Номер охранного документа: 0002573561
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c442

Способ получения носителя на основе активного оксида алюминия для катализаторов гидроочистки

Изобретение относится к способу получения носителя на основе активного оксида алюминия для катализаторов гидроочистки. Данный способ включает осаждение гидроксида алюминия из раствора алюмината натрия азотной кислотой, его стабилизацию, обработку кислотой, формовку, сушку и прокаливание. При...
Тип: Изобретение
Номер охранного документа: 0002574583
Дата охранного документа: 10.02.2016
25.08.2017
№217.015.9e85

Способ переработки вакуумных дистиллатов

Изобретение относится к способу переработки вакуумных дистиллатов с получением дизельного топлива класса ЕВРО-5, применяемого в холодной и арктической зонах. Способ включает стадии гидрогенизационного облагораживания исходного сырья и каталитического крекинга остаточной фракции, полученной из...
Тип: Изобретение
Номер охранного документа: 0002605950
Дата охранного документа: 10.01.2017
+ добавить свой РИД