×
20.02.2019
219.016.c4d3

Результат интеллектуальной деятельности: ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА

Вид РИД

Изобретение

Аннотация: Заряд твердого ракетного топлива, прочно скрепленного с корпусом ракетного двигателя, имеет центральный цилиндрический канал, переходящий в щелевой участок с равномерно увеличивающимися по высоте щелями. Профиль щели в поперечном сечении на расстоянии не менее 1/3 ее высоты от поверхности канала выполнен равномерно расширяющимся с максимальным расширением основания при выходе на канал, определяемым по формуле ρ = 2π•R/N•exp(1,5•(0,28-K)), где R - радиус канала; N - число щелей; К - коэффициент торцевой разгрузки, учитывающий наружный радиус заряда по топливу, радиус канала и длину цилиндрической части заряда без учета щелей. Угол наклона основания щелей к оси канала должен находиться в пределах 35 - 60. Изобретение повышает массу, прочность и надежность заряда твердого топлива. 3 ил.

Изобретение относится к военной технике, а именно к зарядам твердого топлива для ракетных двигателей, и может быть использовано в ракетах (ракетных снарядах) с твердотопливным двигателем.

Объект изобретения представляет собой заряд твердого ракетного топлива (ТРТ), прочно скрепленного с корпусом двигателя и раскрепленного по торцам с днищами корпуса, имеющий внутреннюю камеру горения, образованную центральным каналом и щелевыми вырезами.

Конструкции зарядов с каналом и щелевыми вырезами (канально-щелевые) широко используются в ракетных двигателях твердого топлива, поскольку обеспечивают за счет варьирования геометрических размеров щелей и их количества требуемые характеристики двигателя (тяга, расход, давление и др.).

Одно из основных направлений по обеспечению совершенства зарядов - размещение в корпусе двигателя большего количества топлива. Это достигается только за счет минимизации объема внутренней камеры горения заряда, т.е. за счет уменьшения диаметра канала, оптимизации формы щелевых вырезов и уменьшения числа этих вырезов.

Недостатком канально-щелевого заряда является неравнопрочность его по длине из-за наличия концентрации деформаций в районе выхода щелей на цилиндрический канал при воздействии эксплуатационных нагрузок, что снижает эксплуатационную надежность двигателя в целом (А.И. Мишичев. "Расчетные модели при определении напряжений и напряжений жестко скрепленных зарядов РДТТ", Москва, 1976).

Кроме того, неравномерная конструкция заряда по длине канала ограничивает возможности по размещению в камере сгорания ракетного двигателя максимального количества топлива, поскольку геометрия внутренней камеры горения заряда всецело определяется размерами участка заряда, на который приходится максимальное напряжение, т.е. участка, содержащего концентратор деформаций.

Величина коэффициента концентрации деформаций зависит от длины и количества щелей, радиуса округления и формы основания щелей.

Основная задача проектировщика - создание равнопрочной конструкции, в которой были бы исключены места концентрации деформаций или концентрация деформаций была бы максимально снижена.

Равнопрочная конструкция заряда по выходным параметрам, в том числе и по объему размещенного в нем топлива, будет определяться как оптимальная, а также характеризоваться как обеспечивающая высокую степень надежности работы ракетного двигателя.

Из известных конструкций зарядов наиболее близок к предлагаемой конструкции по всем ограничительным признакам заряд, представленный в патенте США 4936092, F 02 K 9/28, предлагаемый авторами за прототип.

В конструкции-прототипе, содержащем центральный канал, цилиндрический участок переходит в участок с наличием щелевых вырезов, выходящих на канал.

Недостатком прототипа является необеспеченность равнопрочности щелевого и цилиндрического участков, поскольку:
1. Не определен профиль щели в продольном сечении (т.е. отсутствуют рекомендации по выбору угла наклона основания щели к оси канала).

Определение профиля щели в продольном сечении важно, поскольку от него зависит напряженно-деформированное состояние (НДС) основания щели, при этом точка максимума напряжения находится на основании щели на расстоянии (0-0,4)•Е от цилиндрического канала (здесь Е - свод заряда, см. фиг.1).

2. Не определен профиль щели в поперечном сечении (отсутствуют рекомендации по выбору ширины щели и высоты расширяющегося участка щели).

3. Не учитывается изменение НДС на цилиндрической части канала в зависимости от длины цилиндрического участка заряда (Lцил).

Известно, что при уменьшении длины Lцил деформации на канале уменьшаются и тогда для обеспечения равнопрочности необходимо менять профиль щели.

Задачей предлагаемого технического решения является установление требований к выбору конструкции щелевых вырезов в заряде, обеспечивающих равнопрочность щелевого и цилиндрического участков и исключающих, тем самым, разнородные требования к механической прочности топлива на этих участках, что позволяет:
1. Повысить массу заряда при использовании конкретного твердого топлива (с присущим ему уровнем механических характеристик) за счет выбора конфигурации щелевых вырезов.

2. Понизить требования к прочности твердого ракетного топлива.

3. Повысить надежность работы заряда твердого топлива в составе ракетного двигателя.

Указанный технический результат достигается тем, что профиль щели на участке, прилегающем к каналу, на расстоянии не менее 1/3 высоты щели H от поверхности канала выполняется в поперечном сечении равномерно расширяющимся с максимальным расширением (максимальным радиусом) основания щели при выходе на канал ρ (в дальнейшем - параметр щели ρ), определяемым по формуле
ρ = 2π•Rк/N•exp(1,5•(0,28-Kт)), [1]
где Rк - радиус канала;
N - число щелей;
Кт - коэффициент торцевой разгрузки,
при этом угол наклона основания щели к каналу на этом участке должен находиться в пределах 35°≤ α ≤ 60°, что является оптимальным с точки зрения прочности заряда.

Для достаточно длинных зарядов, характеризующихся отношением Lцил/R3≥8 при коэффициенте торцевой разгрузки Кт=1, величина максимального расширения (максимального радиуса) основания щели при выходе на канал выбирается из условия
ρ = 2,1•Rк/N. [2]
Профиль щели (в поперечном сечении) и угол на остальном участке (т.е. на оставшихся 2/3 высоты щели Н) не является лимитирующим с точки зрения прочности и в этой связи он может быть минимизирован в размерах с целью повышения коэффициента объемного заполнения камеры топливом (например, может быть выбран меньший угол наклона основания щели).

Но при этом радиус в вершине щели r должен выбираться из условия
ρ/r≤3, [3]
иначе в месте сопряжения возникает концентратор деформаций.

Рекомендации по выбору профиля щели даны по результатам исследований НДС в вершине и в основании щели на объемных моделях зарядов поляризационно-оптическим методом.

Сущность изобретения поясняется чертежом, представленным на фиг.1, на котором изображена предлагаемая конструкция заряда ТРТ, и на фиг.2, 3 - варианты использования предлагаемого заряда.

Предлагаемый заряд состоит из корпуса 1, в котором размещено топливо 2, прочно скрепленное с корпусом, имеющее центральный сквозной цилиндрический канал и щелевые вырезы в качестве компенсатора поверхности горения.

На фиг.1 показаны:
Lз - длина заряда;
Lцил - длина цилиндрической части заряда;
Lщ - длина щели;
Н - высота щели;
1/3Н - высота участка с расширением щели;
Rк - радиус канала;
Rз - радиус заряда по топливу;
R - радиус щели в вершине (в поперечном сечении);
ρ - максимальное расширение (максимальный радиус) основания щели при выходе в канал;
α - угол наклона основания щели (фиг.1, 2);
γ - угол наклона участка основания щели (фиг.2);
Е - высота свода заряда;
εθ - окружные деформации;
а - в - вершина щели (фиг.1, 2);
в - с - д - основание щели (фиг.1, 2).

В предлагаемом заряде (в качестве примера) выполнено 6 щелей, и он имеет следующие параметры:
Rк=140 мм, Rз=420 мм, Lз=3000 мм, Lщ=800 мм, Кт=0,8.

Основания щелей расположены под углом α = 45° к оси заряда, в поперечном сечении плоский профиль щели переходит в равномерно расширяющийся к каналу на прилегающем к этому каналу участке, участок расположен на расстоянии не менее 1/3 высоты щели Н от поверхности канала. С учетом принятых параметров, используя выражение [1] и [3], найдены значения
ρ = 67 мм, r = 22,3 мм.

На объемной модели поляризационно-оптическим методом рассчитано НДС заряда с выбранным в данном примере профилем щели.

На фиг. 1 показана эпюра распределения окружных деформаций εθ по длине заряда, из которой видно, что максимальные величины окружных деформаций εθ и в щелевой части заряда, и на цилиндрическом участке канала равны.

Равенство величин деформаций εθ свидетельствует о равнопрочности заряда.

При изменении заданных параметров Lз, Lцил, Rз для обеспечения равнопрочности необходимо выбирать новый профиль щели, изменяя параметр ρ, радиус в вершине щели r или изменяя число щелей N.

На фиг. 2 показан вариант профиля щели, у которого в продольном сечении основание щели выполнено сопряжением двух участков, расположенных:
- под углом α = 35° (участок, прилегающий к каналу, расположенный на расстоянии, равном 1/3 высоты щели Н);
- под углом γ = 10° (участок, расположенный на расстоянии, равном оставшимся 2/3 высоты щели Н).

Профиль щели в поперечном сечении остается неизменным, т.е. таким же, как и в варианте на фиг.1.

На фиг.2 приведена эпюра распределения деформаций εθ для данного варианта щелей.

Как видно из эпюр в обоих вариантах (фиг.1, 2), деформации εθ в основании щелевых вырезов при выходе на канал одинаковы.

На участке, расположенном на расстоянии, равном по высоте оставшимся 2/3 высоты щели Н, деформации не превысили уровень деформаций в основании щели, и к вершине щели уровень деформаций снижается.

В этой связи конструкция, приведенная на фиг.2, является предпочтительной, т.к. для нее коэффициент объемного заполнения камеры топливом выше примерно на 4% в сравнении с конструкций, представленной на фиг.1.

На фиг.3 показан вариант конструкции заряда, у которого щель в основании (при выходе на канал) представляет собой часть овала, образованного сопряжением трех окружностей:
- двух окружностей малого радиуса;
- одной окружности большого радиуса при соотношении радиусов большого и малого, как 5:1.

Для этого случая вычисленный по формуле [1] параметр щели ρ должен быть больше или равен большему радиусу из радиусов, аппроксимирующих овал, а соотношение радиусов большого и малого должно быть равным, как 5:1.

В качестве примера рассчитан вариант заряда (фиг.3) с параметрами: Rк=60 мм, Rз=153 мм, Lз=1207 мм, Lщ=290 мм, К=0,8.

Параметр щели ρ, рассчитанный по формуле [1] и обеспечивающий равнопрочность, равен для данного варианта 25 мм.

Таким образом, при аппроксимации основания щели в виде овала в рассмотренном варианте заряда большой радиус овала принят 25 мм, а малый радиус - 5 мм.

Конструкция (фиг. 3) предпочтительнее конструкции (фиг.1, 2), поскольку позволяет принять ширину щели h меньше, чем h=2ρ, как это имеет место в вариантах (фиг.1, 2) ввиду того, что в них конфигурация основания щели аппроксимирована окружностью.

Обеспечение равнопрочности цилиндрического и щелевого участков канально-щелевого заряда позволяет увеличить массу топлива в габаритах заряда за счет оптимизации конфигурации щелевых вырезов в заряде, более полно использовать прочностные характеристики топлива и повысить тем самым выходные параметры двигателя с сохранением заданной надежности.

Отработка двигателя с предлагаемой конфигурацией заряда подтвердила его высокую надежность в экстремальных по действующим нагрузкам условиях.

Зарядтвердогоракетноготоплива,прочноскрепленногоскорпусомракетногодвигателя,имеющийцентральныйцилиндрическийканал,переходящийвщелевойучастоксравномерноувеличивающимисяповысотещелями,отличающийсятем,чтопрофильщеливпоперечномсечениинарасстояниинеменее1/3еевысотыотповерхностиканалавыполненравномернорасширяющимсясмаксимальнымрасширениемоснованияпривыходенаканал,определяемымпоформулеρ=2π•R/N•exp(1,5•(0,28-K)),гдеR-радиусканала;N-числощелей;K-коэффициентторцевойразгрузки,учитывающийнаружныйрадиусзарядапотопливу,радиусканалаидлинуцилиндрическойчастизарядабезучетащелей,приэтомуголнаклонаоснованиящелейкосиканаладолженнаходитьсявпределах35-60.
Источник поступления информации: Роспатент

Showing 21-30 of 157 items.
20.02.2019
№219.016.c070

Состав для герметизации элементов формообразующей оснастки

Изобретение относится к области изготовления изделий из наполненного термореактивного материала (ТПМ), а конкретно - к разработке состава для герметизации элементов формообразующей оснастки, используемого при формовании изделий из ТПМ. Состав для герметизации формообразующей оснастки включает...
Тип: Изобретение
Номер охранного документа: 0002303620
Дата охранного документа: 27.07.2007
20.02.2019
№219.016.c08d

Способ ликвидации заряда крупногабаритного ракетного двигателя на твердом топливе без соплового блока методом сжигания

Изобретение относится к способам ликвидации зарядов крупногабаритных ракетных двигателей без сопловых блоков на открытых и закрытых стендах с системами газоочистки. В способе предлагается введение в центральный канал заряда топлива секционированной сопловой насадки, секции которой двумя...
Тип: Изобретение
Номер охранного документа: 0002301959
Дата охранного документа: 27.06.2007
20.02.2019
№219.016.c0d6

Установка производства порошкообразного состава на основе минеральных солей для различных классов пожаров

Изобретение относится к области огнетушащих средств, используемых для тушения пожаров различных горючих материалов, и предназначено для получения порошкообразных составов. Установка для приготовления порошкообразных смесей на основе минеральных солей содержит бункер для приема исходного...
Тип: Изобретение
Номер охранного документа: 0002366479
Дата охранного документа: 10.09.2009
23.02.2019
№219.016.c66f

Способ модификации поверхности октогена полиакриламидом

Изобретение относится к области ракетной техники, а именно к способу получения компонентов смесевого твердого ракетного топлива (СТРТ) и баллиститного топлива, а также к промышленным взрывчатым веществам. Способ высаживания частиц полиакриламида на октоген заключается в том, что готовят раствор...
Тип: Изобретение
Номер охранного документа: 0002458895
Дата охранного документа: 20.08.2012
23.02.2019
№219.016.c78d

Твердотопливный газогенератор для катапультного поршневого устройства ракеты

Изобретение относится к области ракетной техники и может быть использовано при проектировании, отработке и изготовлении газогенераторов твердого топлива к катапультным устройствам ракет и другим динамично работающим устройствам с использованием твердотопливных зарядов. Твердотопливный...
Тип: Изобретение
Номер охранного документа: 0002372511
Дата охранного документа: 10.11.2009
01.03.2019
№219.016.c900

Способ смешения компонентов взрывчатого состава

Изобретение относится к области смешения взрывчатых составов, содержащих полидисперсный порошкообразный окислитель и жидковязкие компоненты в смесителе непрерывного действия. Способ включает запыление линии пневмотранспорта перед первым транспортированием порошкообразного окислителя на...
Тип: Изобретение
Номер охранного документа: 0002263094
Дата охранного документа: 27.10.2005
01.03.2019
№219.016.c950

Заряд твердого ракетного топлива для разгонно-маршевого ракетного двигателя управляемой ракеты

Заряд твердого ракетного топлива для разгонно-маршевого ракетного двигателя управляемой ракеты включает топливную шашку, бронированную по заднему торцу и боковой поверхности ацетилцеллюлозным бронесоставом. Поверх бронесостава нанесен экранирующий поверхностный пленочный слой на основе...
Тип: Изобретение
Номер охранного документа: 0002282741
Дата охранного документа: 27.08.2006
01.03.2019
№219.016.c954

Способ смешения компонентов взрывчатых составов

Изобретение относится к способам смешения компонентов взрывчатых составов с применением смесителя непрерывного действия. Предложен способ смешения компонентов взрывчатого состава, который включает приготовление порошкообразного окислителя в смесителе периодического действия, выгрузку в...
Тип: Изобретение
Номер охранного документа: 0002280630
Дата охранного документа: 27.07.2006
01.03.2019
№219.016.ca0d

Способ бронирования твердотопливных зарядов

Изобретение относится к изготовлению вкладных бронированных твердотопливных зарядов, преимущественно используемых в ракетных системах различного назначения. Способ включает нанесение адгезионного подслоя на топливную шашку, сушку подслоя, установку и центрирование ее в пресс-форме, разогрев...
Тип: Изобретение
Номер охранного документа: 02209135
Дата охранного документа: 27.07.2003
01.03.2019
№219.016.ca37

Способ бронирования заряда твердого ракетного топлива

Изобретение относится к области изготовления вкладных зарядов твердого топлива. Предложенный способ бронирования заряда твердого ракетного топлива включает нанесение адгезионного миграционностойкого подслоя на шашку-заготовку и бронирование ее с помощью шнек-пресса экструзионным методом. В...
Тип: Изобретение
Номер охранного документа: 0002259919
Дата охранного документа: 10.09.2005
Showing 21-30 of 79 items.
08.03.2019
№219.016.d5d0

Способ изготовления заряда смесевого твердого ракетного топлива

Изобретение относится к способам изготовления заряда смесевого твердого ракетного топлива (СТРТ) в смесителях непрерывного действия. Способ изготовления заряда СТРТ включает дозирование порошкообразных и жидковязких компонентов, просеивание и транспортирование шнеком порошкообразных компонентов...
Тип: Изобретение
Номер охранного документа: 02198864
Дата охранного документа: 20.02.2003
11.03.2019
№219.016.d6b6

Способ смешения компонентов взрывчатых составов и формования из них изделий

Изобретение относится к военной области, конкретно к способу смешения компонентов взрывчатых составов. Способ включает смешение компонентов в вертикальном смесителе планетарного типа без вакуумирования. Вакуумирование при остаточном давлении от 0,5 до 20 мм рт.ст. производят после...
Тип: Изобретение
Номер охранного документа: 0002247100
Дата охранного документа: 27.02.2005
11.03.2019
№219.016.d7c2

Устройство для смешения компонентов взрывчатых составов и прессования изделий из них

Изобретение относится к области смешения взрывчатых составов, в том числе порохов и твердых ракетных топлив, и прессованных изделий из них. Устройство включает в себя верхний и нижний смесители с разъемными корпусами, мешалками с узлами уплотнений и подшипниковыми узлами, и шнековыми...
Тип: Изобретение
Номер охранного документа: 02219149
Дата охранного документа: 20.12.2003
11.03.2019
№219.016.dde7

Предохранительное взрывчатое вещество

Изобретение относится к области разработки промышленных взрывчатых веществ (ПВВ) высокого класса предохранительности. Согласно изобретению предохранительное взрывчатое вещество содержит аммиачную селитру, хлорид щелочного металла, тринитротолуол, а в качестве хлорида щелочного металла - хлорид...
Тип: Изобретение
Номер охранного документа: 02179545
Дата охранного документа: 20.02.2002
11.03.2019
№219.016.ddfb

Заряд твердого топлива для ракетного двигателя

Заряд твердого топлива для ракетного двигателя со звездообразным каналом и углублениями вдоль образующих на наружной поверхности, расположенными по осям симметрии выступов звездообразного канала, выполнен вкладным и всестороннего горения. Профили участков канала заряда между выступами...
Тип: Изобретение
Номер охранного документа: 02178092
Дата охранного документа: 10.01.2002
11.03.2019
№219.016.de06

Ракетный двигатель баллиститного твердого топлива

В ракетном двигателе с вкладными зарядами всестороннего горения в виде цилиндрической шашки с центральным звездообразным каналом на всю длину, работающем в широком температурном диапазоне боевого применения от минус 50°С до плюс 60°С, при коэффициентах концентрации напряжений в вершинах лучей...
Тип: Изобретение
Номер охранного документа: 02168648
Дата охранного документа: 10.06.2001
11.03.2019
№219.016.de17

Твердотопливный заряд для ракетного двигателя

Изобретение относится к области ракетной техники. Заряд состоит из пороховой шашки с нанесенным на нее слоем ацетилцеллюлозного бронепокрытия. Поверх ацетилцеллюлозного бронепокрытия нанесен экранирующий пленочный слой. Экранирующий пленочный слой предпочтительно выполнен из синтетического...
Тип: Изобретение
Номер охранного документа: 02164616
Дата охранного документа: 27.03.2001
11.03.2019
№219.016.de4e

Способ изготовления зарядов сртт

Изобретение относится к области изготовления зарядов ракетного двигателя из смесевого ракетного твердого топлива (СРТТ), а именно к технологии формования зарядов из СРТТ методом литья под давлением в смесителе непрерывного действия. Способ изготовления зарядов СРТТ включает приготовление...
Тип: Изобретение
Номер охранного документа: 02198153
Дата охранного документа: 10.02.2003
15.03.2019
№219.016.e162

Полимерная композиция

Изобретение относится к полимерным композициям на основе поливинилхлорида для получения пленочных материалов и искусственной кожи. Описывается композиция, включающая поливинилхлорид суспензионный, наполнитель, фталатный пластификатор, смесь диоксановых спиртов и их высококипящих эфиров с числом...
Тип: Изобретение
Номер охранного документа: 02173325
Дата охранного документа: 10.09.2001
20.03.2019
№219.016.e3fb

Ракетный двигатель твёрдого ракетного топлива

Ракетный двигатель твердого топлива содержит прочно скрепленный с корпусом и раскрепленный по торцам с помощью манжет канальный заряд. Манжеты выполнены с утолщением в горловине. При выходе на горловину размер утолщения манжеты вдоль образующей горловины составляет 1,5-2,5 толщины манжеты....
Тип: Изобретение
Номер охранного документа: 0002245450
Дата охранного документа: 27.01.2005
+ добавить свой РИД