×
20.02.2019
219.016.c30d

Результат интеллектуальной деятельности: СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЯГОЙ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ

Вид РИД

Изобретение

№ охранного документа
0002406849
Дата охранного документа
20.12.2010
Аннотация: Способ автоматического управления тягой газотурбинных двигателей (ГТД) заключается в изменении частот вращения n двигателей по программе n =f(L, Т, Р), где: L - угол поворота рычага управления двигателем, Твх - температура воздуха на входе в ГТД, Р - давление воздуха на входе в ГТД. Предварительно в электронном регуляторе каждого ГТД устанавливают предельные программные значения частот вращения n  для различных этапов полета самолета (взлет, набор высоты, крейсерский режим). В вычислительной системе управления тягой (ВСУТ) обеспечивают формирование данных об этапе полета и передачу их в электронный регулятор каждого двигателя. Обеспечивают формирование численных предельных программных значении частот вращения n  в зависимости от этапа полета. На каждом этапе полета ограничивают величину управляющего корректирующего сигнала частоты вращения рn  из условия n  f(L, Т, Р)+ рn ≤n.. Указанное ограничение исключает возможный перегрев горячей части двигателя, что повышает его надежность. 2 ил.

Изобретение относится к способам управления силовыми установками летательных аппаратов, а более конкретно - к способам автоматического управления тягой газотурбинных двигателей для поддержания заданной скорости полета самолета.

Известен способ управления скоростью полета летательного аппарата, который предусматривает измерение текущей скорости летательного аппарата V(t) и задание управляющего воздействия, пропорционального отклонению текущей V(t) от заданной скорости полета V(t)3, путем перемещения рычага управления двигателем (РУД) летательного аппарата (патент RU №2305307).

Недостатком известного способа является косвенный характер управления, так как изменение положения рычага управления двигателя (Lруд) не позволяет в полной мере оценить последующее изменение тяги газотурбинного двигателя во всех ожидаемых условиях его эксплуатации (температур Твх и давлений Рвх воздуха на входе в двигатель).

Известен способ управления полетом самолета, который предусматривает поддержание заданной скорости V(t)3 в соответствии с алгоритмом, синтезирующим взаимосвязанное перемещение рычага управления двигателем и управление углом наклона траектории. При этом директорно задаваемое через электромеханический привод автомата тяги отклонение рLруд функционально зависит от частоты вращения nвд турбокомпрессора, первой и второй производных nвд, а также ряда параметров, характеризующих динамические свойства двигателя и самолета (патент RU №2249540).

Недостатком известного способа является сложность алгоритма управления тягой, в том числе необходимость вычисления первой и второй производных nвд, а также ускоренная выработка ресурса газотурбинного двигателя из-за возможно глубоких и частых знакопеременных перемещений рычага управления двигателем.

Наиболее близким к заявляемому изобретению является способ, который предусматривает минимизацию рассогласования текущей скорости V(t) от заданной скорости V(t)3 на основе управления двигателем от вычислительной системы управления тягой (ВСУТ), взаимодействующей с вычислительной системой управления полетом самолета. Управление тягой газотурбинного двигателя (частотой вращения nвд) осуществляют по программе регулирования nвдпрог=f(Lруд, Твх, Рвх) путем одновременного перемещения рычагов перемещения всех двигателей в кабине самолета от электромеханического привода, взаимодействующего с вычислительной системой управления тягой (ВСУТ), и/или - в супервизорном режиме, который предусматривает выдачу из ВСУТ в электронный регулятор каждого двигателя корректирующего сигнала частоты вращения рnвдкор, который может принимать отрицательные или положительные значения в заранее установленном фиксированном диапазоне A1<рnвдкop<A2 для уменьшения или увеличения текущей скорости V(t). По полученному корректирующему сигналу рnвдкop электронный регулятор каждого двигателя формирует программное (заданное или установочное) значение частоты вращения при работе с вычислительной системой управления тягой nвдпрог=f(Lруд, Твх, Рвх)+ рnвдкop. Далее, системой автоматического управления двигателем, в состав которой входит электронный регулятор, осуществляется регулирование расхода топлива в камеру сгорания для поддержания заданного значения частоты вращения nвдпрог. («Авиационный двигатель ПС - 90А», под ред. Иноземцева А.А., Москва, Либра - К, 2007 г, стр.195).

Недостатком известного способа, принятого за прототип, является возможный перегрев или повышенная выработка ресурса двигателя при передаче в электронный регулятор значительных положительных значений корректирующего сигнала рnвдкор2>2…5%) на различных этапах полета самолета (взлет, набор высоты, крейсерский режим и т.д.).

Техническая задача, решаемая изобретением, заключается в минимизации повреждаемости горячей части газотурбинного двигателя при совместной работе системы автоматического управления газотурбинным двигателем с вычислительной системой управления тягой за счет вводимых ограничений, налагаемых на верхний диапазон изменения программного значения частоты вращения nвдпрог при значительных положительных значениях корректирующего сигнала частоты вращения рnвдкор.

Сущность технического решения заключается в том, что в способе автоматического управления тягой газотурбинных двигателей, заключающемся в изменении частот вращения nвд газотурбинных двигателей по программе nвдпрог=f(Lруд, Твх, Рвх), где: Lруд - угол поворота рычага управления двигателем, Твх - температура воздуха на входе в газотурбинный двигатель, Рвх - давление воздуха на входе в газотурбинный двигатель, путем формирования и передачи из бортовой вычислительной системы управления тягой в электронный регулятор каждого газотурбинного двигателя управляющего корректирующего сигнала частоты вращения рnвдкор, согласно изобретению, предварительно в электронном регуляторе каждого газотурбинного двигателя устанавливают предельные программные значения nвдпрог. пр. частот вращения для различных этапов полета самолета (взлет, набор высоты, крейсерский режим), затем дополнительно в вычислительной системе управления тягой обеспечивают формирование данных об этапе полета самолета (взлет, набор высоты, крейсерский режим) и их передачу в электронный регулятор каждого двигателя, а также формирование численных предельных программных значений частот вращения nвдпрог. пр. в зависимости от этапа полета, при этом на каждом этапе полета самолета величину управляющего корректирующего сигнала частоты вращения рnвдкор ограничивают из условия nвдпрог=f(Lруд, Твх, Рвх)+рnвдкор≤nвдпрог.пр..

Ограничение на каждом этапе полета самолета величины управляющего корректирующего сигнала частоты вращения рnвдпрог=f(Lруд, Твх, Рвх)+рnвдкор≤nвдпрог.пр. позволяет исключить возможный перегрев или повышенную выработку ресурса двигателя, что повышает надежность газотурбинных двигателей.

На фиг.1 - представлена структурная схема устройства для реализации заявляемого способа.

На фиг.2 - график формирования nвдпрог.пр. для условий крейсерского режима работы газотурбинного двигателя.

1 - Вычислительная система управления тягой (ВСУТ). Является оборудованием самолета.

2 - Электромеханический привод, обеспечивающий перемещение рычага управления двигателем (РУД) по сигналу из ВСУТ через механическую тросовую связь.

3 - Рычаг управления двигателем.

4 - Датчик положения РУД (типовой синусно-косинусный вращающийся трансформатор или датчики-сигнализаторы).

5 - Датчик температуры воздуха Твх на входе в газотурбинный двигатель (ГТД).

6 - Датчик давления воздуха Рвх на входе в ГТД.

7 - Электронный регулятор двигателя.

Электронный регулятор двигателя представляет собой специализированную электронную цифровую вычислительную машину, предназначенную для управления ГТД и оснащенную устройствами сопряжения с датчиками, сигнализаторами, исполнительными элементами, а также системами самолета, включая вычислительные системы управления тягой и полетом самолета.

7.1 - Блок формирования программного значения частоты вращения ГТД nвдпрог=f(Lруд, Твх, Рвх). В указанном блоке на основе измеренных значений параметров Lруд (4), Твх (5), Рвх (6) и по заранее установленной зависимости формируется nвдпрог, которое обычно используется при отключенной ВСУТ (при управлении тягой непосредственно экипажем).

7.2 - Сумматор сигналов программного значения частоты вращения nвдпрог и управляющего сигнала частоты вращения рnвдкор.

7.3 - Блок формирования предельных (предельно-допустимых) значений nвдпрог.пр.. В указанном блоке на основе принятой информации об этапе полета самолета (взлет, набор высоты, крейсерский режим) и по заранее установленной зависимости формируется предельное значение частоты вращения nвдпрог.пр., выше которого, согласно изобретения, эксплуатация двигателя при работе со ВСУТ не предусматривается.

Формирование nвдпрог.пр. осуществляют следующим образом. Как правило, каждому этапу полета самолета соответствует свой режим работы ГТД. В частности, для взлета самолета требуется максимальный режим работы ГТД, для набора высоты - номинальный режим работы ГТД, для крейсерского (горизонтального) этапа полета - крейсерский режим работы ГТД. Кроме того, для каждого режима работы ГТД предусмотрен соответствующий диапазон перемещения рычага управления двигателем. Поэтому в качестве параметра nвдпрог.пр. для каждого этапа полета используют расчетное значение nвдпрог=f(Lмруд, Твх, Рвх), где: Lмруд - максимальное значение Lруд для режима работы ГТД, обеспечивающего данный этап полета. На фиг.2 представлено формирование nвдпрог.пр. для условий крейсерского режима полета. L1-Lм - диапазон изменения Lруд для крейсерского режима работы ГТД.

7.4 - Блок формирования управляющего воздействия. Блок имеет два входа, на которые поступают параметр nвдпрог=f(Lруд, Твх, Рвх)+ рnвдкор и параметр nвдпрог.пр.. На выходе блока формируется управляющее воздействие программного значения частоты вращения nвдпрог, которое принимает значение J= f(Lруд, Твх, Рвх)+рnвдкор≤nвдпрог.пр.. Ограничение величиной nвдпрог.пр. также проиллюстрировано на фиг.2.

Способ осуществляется следующим образом. По измеренным значениям параметров Lруд, Твх, Рвх в электронном регуляторе (в блоке 7.1) формируется программное значение частоты вращения nвдпрог=f(Lруд, Твх, Рвх). При отклонении текущей скорости самолета от заданной, например при воздействии попутного или встречного ветра, турбулентности атмосферы, на выходе ВСУТ формируется управляющий корректирующий сигнал частоты вращения рnвдкор, который поступает в электронный регулятор двигателя 7 и в блоке 7.2 суммируется со значением nвдпрог из блока 7.1. Суммарный сигнал из блока 7.2 поступает на первый вход блока 7.4 электронного регулятора 7. Одновременно в электронный регулятор двигателя из ВСУТ 1 поступает информация об этапе полета самолета (взлет, набор высоты, крейсерский режим), на основании которой в блоке 7.3 формируется предельное программное значение частоты вращения nвдпрог.пр., которое, в свою очередь, поступает на второй вход блока 7.4. Передачу информации о корректирующем сигнале рnвдкор и этапах полета самолета из ВСУТ в электронный регулятор 7 осуществляют в цифровом коде по стандартному мультиплексному каналу связи (например, по ГОСТ 18977 «Комплексы бортового оборудования самолетов и вертолетов»).

В блоке 7.4 происходит сопоставление параметра nвдпрог=f(Lруд, Твх, Рвх)+рnвдкор и параметра nвдпрог.пр.. Если сигнал nвдпрог не превышает параметр nвдпрог.пр., то в этом случае управляющее вoздeйcтвиe J в топливорегулирующую аппаратуру на увеличение или уменьшение частоты вращения nвд формируется без каких-либо ограничений. На фиг.2 такой точкой является точка X. В случае, если параметр nвдпрог превышает параметр nвдпрог.пр., то происходит ограничение параметра nвдпрог (величины А2). Ограничение частичное - точка Y или полное - точка Z.

Способ автоматического управления тягой газотурбинных двигателей, заключающийся в изменении частот вращения n газотурбинных двигателей по программе где L - угол поворота рычага управления двигателем, Т - температура воздуха на входе в газотурбинный двигатель (ГТД), Р - давление воздуха на входе в ГТД, путем формирования и передачи из бортовой вычислительной системы управления тягой в электронный регулятор каждого двигателя управляющего корректирующего сигнала частоты вращения отличающийся тем, что предварительно в электронном регуляторе каждого двигателя устанавливают предельные программные значения частот вращения для различных этапов полета самолета (взлет, набор высоты, крейсерский режим), затем дополнительно в вычислительной системе управления тягой обеспечивают формирование данных об этапе полета самолета (взлет, набор высоты, крейсерский режим) и их передачу в электронный регулятор каждого двигателя, а также формирование численных значений в зависимости от этапа полета, при этом на каждом этапе полета самолета величину управляющего корректирующего сигнала частоты вращения ограничивают из условия
Источник поступления информации: Роспатент

Showing 11-20 of 100 items.
20.04.2014
№216.012.b8e5

Лабиринтное уплотнение турбомашины

Изобретение относится к лабиринтным уплотнениям турбомашин газотурбинных двигателей авиационного и наземного применения. Лабиринтное уплотнение содержит установленный на статоре сотовый фланец и лабиринтом с демпфирующим кольцом в кольцевой канавке на краю обода. Край обода направлен к диску...
Тип: Изобретение
Номер охранного документа: 0002513061
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.b8e6

Упругодемпферная опора турбомашины

В упругодемпферной опоре турбомашины щелевая масляная полость разделена уплотнительными кольцами на глухую демпферную щелевую полость, расположенную с внешней стороны от подшипника, и жиклерную щелевую полость, расположенную с внешней стороны от масляного жиклера между диском турбомашины и...
Тип: Изобретение
Номер охранного документа: 0002513062
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.ba7a

Лабиринтное уплотнение турбины

Лабиринтное уплотнение турбины содержит примыкающий к диску турбины лабиринт и ответный ему фланец с сопловым аппаратом закрутки охлаждающего воздуха. Лабиринт установлен на осевом кольцевом выступе диска и выполнен охватывающим сопловой аппарат закрутки с образованием между лабиринтом и...
Тип: Изобретение
Номер охранного документа: 0002513466
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c056

Статор турбины высокого давления

Изобретение относится к статорам турбин высокого давления газотурбинных двигателей авиационного и наземного применения. Статор турбины включает установленные на внутреннем корпусе камеры сгорания опору соплового аппарата и передний хвостовик упругого фланца, а также диафрагму. Диафрагма...
Тип: Изобретение
Номер охранного документа: 0002514987
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.c811

Ротор турбомашины

Изобретение относится к роторам турбомашин газотурбинных двигателей авиационного и наземного применения. Ротор турбомашины включает диск турбины, установленный на валу задним фланцем. Диск турбины зафиксирован установленной на валу гайкой, выполненной с радиальным фланцем, размещенным с...
Тип: Изобретение
Номер охранного документа: 0002516983
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c9f0

Ротор турбины

Изобретение относится к роторам турбин газотурбинных двигателей авиационного и наземного применения. Ротор турбины включает диск турбины с установленным на его ободе при помощи байонетного соединения уплотнительным кольцом с образованием кольцевой полости, расположенной между полотном диска и...
Тип: Изобретение
Номер охранного документа: 0002517462
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.ced8

Лабиринтное уплотнение турбины

Изобретение относится к лабиринтным уплотнениям турбин газотурбинных двигателей авиационного и наземного применения. Лабиринтное уплотнение турбины состоит из размещенного на сопловой лопатке статорного фланца и установленного между дисками и турбиной лабиринта. На внешней поверхности лабиринта...
Тип: Изобретение
Номер охранного документа: 0002518723
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf03

Высокотемпературная турбина газотурбинного двигателя

Высокотемпературная турбина газотурбинного двигателя, в наружном корпусе которой установлены сопловая лопатка и ниже по потоку газа разрезное секторное кольцо, а также рабочая лопатка и уплотнительные гребешки на верхней полке. Полка образует с внутренней поверхностью разрезного кольца...
Тип: Изобретение
Номер охранного документа: 0002518766
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d27d

Турбина низкого давления

Турбина низкого давления, в которой с внутренней стороны корпуса установлено секторное разрезное кольцо с уплотняющей сотовой вставкой, расположенной со стороны верхней полки рабочей лопатки турбины. Разрезное кольцо выполнено из листового материала одинаковой толщины. Передний и задний по...
Тип: Изобретение
Номер охранного документа: 0002519656
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d292

Статор турбомашины

Статор турбомашины включает фланцевое соединение корпусов, состоящих из радиальных кольцевых ребер и присоединенных к ним обечаек. В стыке фланцевого соединения со стороны проточной части установлено дополнительное, состоящее из секторов, разрезное кольцо. Разрезное кольцо зафиксировано...
Тип: Изобретение
Номер охранного документа: 0002519677
Дата охранного документа: 20.06.2014
Showing 11-20 of 37 items.
13.09.2018
№218.016.8775

Способ управления противообледенительной системой воздухозаборника газотурбинного двигателя самолета

Изобретение относится к противообледенительным системам летательных аппаратов. Способ управления противообледенительной системой воздухозаборника газотурбинного двигателя самолета заключается в регистрации обледенения самолета с помощью блока (1), передаче данных об обледенении из системы...
Тип: Изобретение
Номер охранного документа: 0002666886
Дата охранного документа: 12.09.2018
25.10.2018
№218.016.9550

Способ защиты газотурбинного двигателя от многократных помпажей компрессора

Изобретение относится к области обеспечения безопасности полета самолета с газотурбинным двигателем (ГТД) путем прекращения многократных помпажей компрессора, характеризуемых сильными низкочастотными колебаниями параметров потока в проточной части и вибрациями элементов двигателя. В данном...
Тип: Изобретение
Номер охранного документа: 0002670469
Дата охранного документа: 23.10.2018
05.12.2018
№218.016.a382

Устройство для определения пространственного распределения скорости потока газа

Изобретение относится к измерительной технике и может быть использовано для исследования структуры и параметров потока газа, преимущественно для оперативного определения профиля скорости потока газа. Сущность изобретения заключается в том, что устройство для определения пространственного...
Тип: Изобретение
Номер охранного документа: 0002673990
Дата охранного документа: 03.12.2018
14.12.2018
№218.016.a6ce

Способ создания необходимого давления и расхода топлива в топливной системе газотурбинного двигателя

Изобретение относится к способу создания необходимого давления и расхода топлива в топливной системе авиационного газотурбинного двигателя. Способ создания давления и расхода топлива в топливной системе газотурбинного двигателя, содержащей топливный насос с электрическим приводом, топливный...
Тип: Изобретение
Номер охранного документа: 0002674806
Дата охранного документа: 13.12.2018
20.02.2019
№219.016.bea5

Система управления тягой газотурбинного двигателя самолета

Изобретение относится к системам управления силовыми газотурбинными установками. Система управления тягой газотурбинного двигателя самолета включает в себя вычислительный модуль (1) управления тягой, электронный регулятор (2), топливный насос-регулятор (4), тросовый механизм (7), а также...
Тип: Изобретение
Номер охранного документа: 0002393977
Дата охранного документа: 10.07.2010
20.02.2019
№219.016.bf00

Способ защиты газотурбинного двигателя от перегрева

Изобретение относится к области управления газотурбинными двигателями, в частности к способам защиты турбин авиационных газотурбинных двигателей (ГТД) от перегрева. Техническая задача заключается в повышении надежности за счет достоверной оценки теплового состояния выходящих газов за турбиной и...
Тип: Изобретение
Номер охранного документа: 0002315885
Дата охранного документа: 27.01.2008
20.02.2019
№219.016.bf4e

Газотурбинный насосный агрегат

Изобретение относится к наземным газотурбинным агрегатам для механического привода, а именно к установкам с насосным агрегатом. Газотурбинный насосный агрегат состоит из установленных в контейнере газотурбинного двигателя и соединенного с ним переходным валом редуктора, на выходе из которого...
Тип: Изобретение
Номер охранного документа: 0002386834
Дата охранного документа: 20.04.2010
20.02.2019
№219.016.c30f

Способ эксплуатации газотурбинной установки

Изобретение относится к области эксплуатации газотурбинных установок, в частности оценке технического состояния газотурбинного двигателя и осуществлению контроля степени загрязнения газовоздушного тракта двигателя. Технический результат - повышение достоверности определения необходимости...
Тип: Изобретение
Номер охранного документа: 0002406990
Дата охранного документа: 20.12.2010
11.03.2019
№219.016.d8ad

Способ защиты газотурбинной установки от раскрутки силовой турбины

Изобретение относится к системам управления газотурбинных установок, а именно к системам защиты газотурбинных установок для механического привода и привода электрогенератора от опасных забросов частоты вращения (раскрутки) свободной силовой турбины. Техническая задача, решаемая изобретением,...
Тип: Изобретение
Номер охранного документа: 0002316665
Дата охранного документа: 10.02.2008
11.03.2019
№219.016.d8b0

Газотурбинный двигатель

Газотурбинный двигатель содержит компрессор высокого давления, выход которого соединен с внутренней полостью первой рабочей лопатки турбины высокого давления. Соединение осуществляют по двум воздушным магистралям, первая из которых включает воздушную полость камеры сгорания, на входе...
Тип: Изобретение
Номер охранного документа: 0002316662
Дата охранного документа: 10.02.2008
+ добавить свой РИД