×
20.02.2019
219.016.c289

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМА РАДИОАКТИВНОГО ГРУНТА

Вид РИД

Изобретение

№ охранного документа
0002459298
Дата охранного документа
20.08.2012
Аннотация: Изобретение относится к охране окружающей среды, в частности реабилитации радиоактивно загрязненных территорий. Способ определения объема радиоактивного грунта заключается в определении границ радиоактивно загрязненной территории, построении триангуляционных моделей верхней и нижней ограничивающих искомый объем поверхностей, построении трехмерной модели искомого объема и расчет объема. В качестве верхней ограничивающей поверхности используют триангуляционную модель рельефа поверхности радиоактивно загрязненной территории, составленной на основе геодезического исследования. В качестве нижней ограничивающей поверхности используют триангуляционную модель условной поверхности, определяемой глубиной загрязнения грунта, в качестве которой принимают мощность грунта над твердыми геологическими породами, определенную путем георадарного исследования или определяют путем дозиметрического контроля скважин, пробуренных на радиоактивно загрязненной территории. Изобретение позволяет повысить точность определения объема радиоактивного грунта, что в свою очередь приведет к снижению расхода обеззараживающих веществ, а также позволит выбирать оптимальные варианты выемки грунта. 3 ил.

Изобретение относится к охране окружающей среды, в частности реабилитации радиоактивных территорий.

Существуют различные способы обеззараживания территорий, загрязненных радиоактивными элементами. Например, внесением сорбентов или путем выемки грунта.

При работах по обеззараживанию территорий, загрязненных радиоактивными элементами, необходимо точно рассчитывать количество сорбентов. Внесение этих веществ производят из расчета на единицу объема зараженного грунта. Для определения точного количества этих веществ, а также адресной их доставки, необходимо знать распределение загрязнений в грунте и объем грунта. Выемка радиоактивного грунта сопряжена со значительными затратами, поэтому более точное определение его объема снижает экономическую составляющую работ.

Известен СПОСОБ ДЕТОКСИКАЦИИ ЗАГРЯЗНЕННОГО ГРУНТА (патент РФ №2296016, опубл. 27.03.2007). В способе с целью повышения точности определения массы сорбента, необходимого и достаточного для достижения требуемых норм концентрации загрязняющего вещества в грунте, при снижении расхода сорбента предлагают перед внесением сорбента (глауконита) в грунт проводить контрольные замеры по определению типа загрязняющих веществ и их концентраций. Для определения границ участка загрязненного грунта и глубины залегания загрязняющих веществ, концентрации которых превышают заданный уровень, проводится бурение скважин и отбор проб. Прозондированный таким образом участок загрязненного грунта может быть разделен на зоны по типу загрязнения и их концентрации. Для каждой зоны определяется объем грунта, подлежащего очистке (путем умножения глубины залегания загрязняющих веществ на площадь заражения).

Данный способ определения объема грунта является неточным и его нельзя использовать при работе с радиоактивным грунтом.

Известны также способы георадиолокационных обследований подповерхностных слоев, так называемое георадарное зондирование, которое в настоящее время широко используется при построении профилей дорог, железнодорожного полотна и пр. (см., например, патент РФ №2380472, опубл. 27.01.2010, №2393501 опубл. 27.06.2010).

Технический результат - повышение точности определения объема радиоактивного грунта, что в свою очередь приведет к снижению расхода обеззараживающих веществ, а также позволит выбирать оптимальные варианты выемки грунта.

Для этого предложен способ определения объема радиоактивного грунта, заключающийся в определении границ радиоактивно загрязненной территории, построении триангуляционных моделей верхней и нижней ограничивающих искомый объем поверхностей, построении трехмерной модели искомого объема и расчет объема, при этом в качестве верхней ограничивающей поверхности используют триангуляционную модель рельефа поверхности радиоактивно загрязненной территории, составленной на основе геодезического исследования, а в качестве нижней ограничивающей поверхности используют триангуляционную модель условной поверхности, определяемой глубиной загрязнения грунта.

При этом глубину загрязнения грунта определяют путем дозиметрического контроля скважин, пробуренных на радиоактивно загрязненной территории.

При этом за глубину загрязнения грунта принимают мощность грунта над твердыми геологическими породами, определенную путем георадарного исследования.

На фигуре 1 представлена схема, по которой производится вычисление объема с использованием контрольных скважин, где:

1. Поверхность земли.

2. Радиоактивно загрязненная территория.

3. Скважины.

4. Нижняя граница загрязненного грунта.

5. Условная нижняя ограничивающая поверхность загрязненного грунта.

6. Загрязненный грунт.

На фигуре 2 показаны участки грунта, загрязненного Cs-137 на территории объекта.

На фигуре 3 показана модель высот, полученная в результате вычитания модели нижней грани из модели верхней грани.

Способ осуществляется следующим образом.

Вначале проводят радиационное обследования поверхности земли 1 с целью определения границ радиоактивно загрязненной территории 2. Затем проводят геодезического обследования территории 2 с целью определения рельефа территории. Строят с помощью компьютерной программы триангуляционную модель верхней ограничивающей объем грунта поверхности.

Нижнюю границу радиоактивного грунта можно определить путем бурения контрольных скважин 3 для определения глубины заражения с помощью дозиметрического контроля. При помощи дозиметрических исследований определяется глубина загрязнения грунта для каждой из скважин, после чего на основании полученных данных строится трехмерная модель загрязненной территории для оценки загрязненности на поверхности и в вертикальном профиле грунтов. Схема расположения скважин на территории обуславливается особенностями местности и в общем случае представляет собой сетку, в узлах которой располагаются скважины, Глубина бурения скважин соответствует максимально возможной глубине проникновения радионуклидов в почву и определяется характером почв данной местности.

Если зараженный грунт находится в зоне нахождения твердых пород, например скальных, когда глубина проникновения радионуклидов не превышает мощности грунта (т.е. слоя почвы до твердой породы), то нижнюю границу радиоактивного грунта можно определить с помощью георадарного обследования территории.

По результатам указанных выше измерений строят триангуляционную модель нижней ограничивающей объем грунта поверхности 5.

Далее с помощью компьютера строят трехмерную модель искомого объема и рассчитывают его объем. Способ расчета основан на трехмерном объемном моделировании требуемой территории в метрической системе координат с последующим вычислением величины объема. Формирование области, объем которой рассчитывается, осуществляется с помощью ограничивающих верхней и нижней поверхностей.

Для проведения пространственных вычислений верхняя и нижняя триангуляционные поверхности преобразуются в матричную форму (цифровую высотную модель) с размером элементарной ячейки 15×15 см.

Затем из модели высот верхней грани (для каждой ее элементарной ячейки) вычитается модель высот нижней грани.

На последнем этапе суммируются все значения в полученной разностной матрице, что и является величиной объема зараженного грунта. Точность метода зависит от профиля грунта, правильного выбора мест для бурения скважин и количества скважин.

Объем загрязненного грунта рассчитывается как объем сложной фигуры, являющийся произведением площади загрязненной поверхности на глубину загрязнения.

В качестве примера приведем расчет объема грунта, проведенный на объекте (фигура 2). На двумерную картографическую основу наносятся замкнутые линии, которые обозначают границы участков загрязненных грунтов. Реабилитации подлежат участки, имеющие активность больше 10 Бк/кг.

В качестве верхней ограничивающей поверхности участков, подлежащих реабилитации, использована триангуляционная модель поверхности объекта, составленная на основе геодезического исследования. Точность описания поверхности ПВХ имеющейся триангуляционной моделью определяется точностью материалов геодезического обследования, что для данного объекта соответствует масштабу 1:500. В качестве нижней ограничивающей поверхности использована триангуляционная модель условной скальной поверхности, составленная по результатам геологического обследования методом интерполяции результатов бурения 39 скважин. Для проведения пространственных вычислений верхняя и нижняя триангуляционные поверхности были преобразованы в матричную форму (цифровую высотную модель) с размером элементарной ячейки 15×15 см.

Затем из модели высот верхней грани (для каждой ее элементарной ячейки) была вычтена модель высот нижней грани (фигура 3). Далее просуммированы все значения в полученной разностной матрице. Получено значение объема радиоактивного грунта на территории, которое составляет 18054 м3.

Таким образом, изобретение позволит с высокой степенью точности определить объем радиоактивных грунтов, что позволит значительно снизить затраты на реабилитацию зараженных почв.

Способ определения объема радиоактивного грунта, заключающийся в определении границ радиоактивно загрязненной территории, построении триангуляционных моделей верхней и нижней ограничивающих искомый объем поверхностей, построении трехмерной модели искомого объема и расчет объема, при этом в качестве верхней ограничивающей поверхности используют триангуляционную модель рельефа поверхности радиоактивно загрязненной территории, составленной на основе геодезического исследования, а в качестве нижней ограничивающей поверхности используют триангуляционную модель условной поверхности, определяемой глубиной загрязнения грунта, в качестве которой принимают мощность грунта над твердыми геологическими породами, определенную путем георадарного исследования, или определяют путем дозиметрического контроля скважин, пробуренных на радиоактивно загрязненной территории.
Источник поступления информации: Роспатент

Showing 181-190 of 259 items.
23.02.2019
№219.016.c6f4

Способ выращивания эпитаксиальных пленок монооксида европия на графене (варианты)

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно пленок монооксида европия на графене, и может быть использовано для создания таких устройств спинтроники, как спиновый транзистор и инжектор спин-поляризованных носителей. Способ выращивания...
Тип: Изобретение
Номер охранного документа: 0002680544
Дата охранного документа: 22.02.2019
16.03.2019
№219.016.e1e8

Способ получения полимерных противоопухолевых частиц в проточном микрореакторе и лиофилизата на их основе

Настоящее изобретение относится к области фармацевтической технологии и медицине, конкретно к способу получения полимерных противоопухолевых частиц в проточном микрореакторе и лиофилизата на их основе. Способ заключается в пропускании через проточный микрореактор водной фазы, состоящей из...
Тип: Изобретение
Номер охранного документа: 0002681933
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.f4c9

Способ получения наноразмерного платиноникелевого катализатора

Изобретение относится к каталитической химии, а именно к способам получения катодных катализаторов на основе Pt, предназначенных для использования в электролизерах и топливных элементах с твердым полимерным электролитом (ТПЭ). Техническим результатом является снижение времени и...
Тип: Изобретение
Номер охранного документа: 0002421850
Дата охранного документа: 20.06.2011
29.03.2019
№219.016.f4d5

Способ нанесения платиновых слоев на подложку

Изобретение относится к электронной технике и может быть использовано в процессах формирования пленочных элементов микроэлектронных устройств. Сущность изобретения: в способе нанесения платиновых слоев на подложку, включающем предварительное формирование на поверхности из оксида и/или нитрида...
Тип: Изобретение
Номер охранного документа: 0002426193
Дата охранного документа: 10.08.2011
29.03.2019
№219.016.f520

Способ преобразования энергии

Способ преобразования тепловой энергии в механическую, в котором в замкнутом цикле с помощью тепловой энергии проводят нагрев и испарение рабочего тела, которое подают затем на расширение в турбину. После турбины рабочее тело сорбируют в сорбенте, конденсируют и нагнетают на повторный нагрев и...
Тип: Изобретение
Номер охранного документа: 0002425230
Дата охранного документа: 27.07.2011
29.03.2019
№219.016.f6d2

Устройство для доставки ультрахолодных нейтронов по гибким нейтроноводам

Изобретение относится к области ядерной физики, в частности к устройствам доставки низкоэнергетических нейтронов от источников нейтронов до объектов исследований или экспериментальных установок. Изобретение может быть использовано при транспортировке нейтронов низких энергий, включая...
Тип: Изобретение
Номер охранного документа: 0002433492
Дата охранного документа: 10.11.2011
29.03.2019
№219.016.f7ff

Устройство для подачи пара цезия в термоэммисионный преобразователь

Изобретение касается термоэмиссионного преобразования тепловой энергии в электрическую и относится к устройствам подачи пара цезия в межэлектродный зазор термоэмиссионного преобразователя (ТЭП). Технический результат - повышенная емкость по цезию достигается за счет того, что предложено...
Тип: Изобретение
Номер охранного документа: 0002464668
Дата охранного документа: 20.10.2012
04.04.2019
№219.016.fca0

Способ получения сверхтонких пленок кремния на сапфире

Изобретение относится к микроэлектронике. Сущность изобретения: в способе получения сверхтонких пленок кремния на сапфире в объектах, содержащих сапфировую подложку и исходный слой кремния, толщина которого значительно больше толщины получаемых тонких пленок кремния, производят аморфизацию...
Тип: Изобретение
Номер охранного документа: 0002427941
Дата охранного документа: 27.08.2011
01.05.2019
№219.017.47cd

Способ и устройство для оптимизации рециклинга рабочего газа в токамаке

Изобретение относится к способу оптимизации рециклинга рабочего газа в токамаке. Способ предусматривает поступление в плазму молекул и атомов рабочего газа с поверхностей стенок вакуумной камеры, подвижного и неподвижного лимитеров, и системы газонапуска с трубопроводом. Причем одновременно...
Тип: Изобретение
Номер охранного документа: 0002686478
Дата охранного документа: 29.04.2019
08.05.2019
№219.017.490f

Автономная энергетическая установка

Изобретение относится энергетике, а именно к автономным системам энергоснабжения объектов, удаленных от центрального энергоснабжения. Автономная энергетическая установка содержит аппаратный и топливный отсек, расположенные внутри корпуса, первичный источник энергии в виде источника...
Тип: Изобретение
Номер охранного документа: 0002686844
Дата охранного документа: 06.05.2019
+ добавить свой РИД