×
20.02.2019
219.016.c124

Результат интеллектуальной деятельности: ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002325453
Дата охранного документа
27.05.2008
Аннотация: Изобретение относится к жаропрочному сплаву на основе никеля и может быть использовано, в частности, для изготовления монокристаллических деталей или деталей с направленно кристаллизованной структурой, например лопатки газовых турбин. Сплав имеет следующий химический состав, вес.%: 7,7-8,3 Cr; 5,0-5,25 Со; 2,0-2,1 Мо; 7,8-8,3 W; 5,8-6,1 Та; 4,9-5,1 Al; 1,3-1,4 Ti; 0,11-0,15 Si; 0,11-0,15 Hf; 200-750, предпочтительно 200-300 ppm С; 50-400, предпочтительно 50-100 ppm В; остальное - никель и технологические примеси. Сплав характеризуется очень высокими литейными свойствами и большой устойчивостью против окисления. 2 з.п. ф-лы, 1 табл., 5 ил.

Область техники

Изобретение относится к области материаловедения. Оно касается жаропрочного сплава на основе никеля, предназначенного, в частности, для изготовления из него монокристаллических деталей (сплав SX) или деталей с направленно кристаллизованной структурой (сплав DS), как, например, лопатки для газовых турбин. Однако сплав согласно изобретению применим и для получения традиционно отливаемых деталей.

Уровень техники

Упомянутые жаропрочные сплавы на основе никеля известны. Монокристаллические детали из таких сплавов обладают при высоких температурах очень хорошей прочностью. В результате становится возможным, например, увеличить температуру в регулирующей ступени газовых турбин, что повышает эффективность последних.

Жаропрочные сплавы на основе никеля, предназначенные для монокристаллических деталей, такие, как известные из US 4643782, ЕР 0208645 и US 5270123, содержат в себе дополнительно упрочняющие твердый раствор легирующие элементы, например, Re, W, Мо, Со, Cr, а также образующие γ'-фазы элементы, например Al, Та и Ti Содержание тугоплавких легирующих элементов (W, Мо, Re) в основной матрице (аустенитной γ-фазе) непрерывно возрастает с ростом температуры нагружения сплава. Так, например, обычные жаропрочные сплавы на основе никеля содержат в себе для получения монокристаллов 6-8% W, до 6% Re и до 2% Мо (данные в вес.%). Раскрытые в приведенных выше публикациях сплавы характеризуются высоким пределом ползучести, хорошей низко- и высокоциклевой усталостью, а также высокой устойчивостью против окисления.

Указанные известные сплавы разработаны для авиационных турбин и поэтому оптимизированы в расчете на кратко- и среднесрочное применение, т.е. продолжительность нагружения рассчитана на около 20000 часов. В противоположность этому детали для промышленных газовых турбин должны рассчитываться на продолжительность нагружения до 75000 часов.

После нагружения в течение 300 часов, например, известный из US 4643782 сплав CMSX-4 при экспериментальном применении в газовой турбине при температуре свыше 1000°С характеризовался очень сильным укрупнением фазы γ', которое сопровождалось недостатком в виде повышения скорости ползучести сплава.

Таким образом существует необходимость в повышении устойчивости известных сплавов против окисления при очень высоких температурах.

Еще одной проблемой, связанной с известными, например, из US 5435861, жаропрочными сплавами на основе никеля, является то, что литейные свойства при изготовлении крупных деталей, например лопаток газовых турбин длиной более 80 мм, оставляют желать лучшего. Отливка безупречной, относительно крупной монокристаллической, направленно затвердевшей детали из жаропрочного сплава на основе никеля представляется чрезвычайно трудной, так как большая часть таких деталей содержит дефекты, например малоугловые границы зерен, "матовые пятна" (дефектные участки, обусловленные цепью равнонаправленных зерен с высоким содержанием эвтектики), равноосные рассеянные границы, микропористость и пр. Такие дефекты снижают прочность деталей при высоких температурах, вследствие чего не достигается требуемая долговечность или рабочая температура турбины. Однако из-за того, что безупречно отлитая монокристаллическая деталь является чрезвычайно дорогостоящей, в промышленности отмечена тенденция, при которой дефекты допускаются в количестве, не снижающем долговечность или рабочую температуру.

Наиболее частым дефектом служат границы зерен, которые являются особо вредными для высокотемпературных свойств монокристаллических изделий. Если малоугловые границы зерен в небольших деталях оказывают сравнительно небольшое воздействие на свойства, то для литейных свойств и окисляемости крупных деталей из сплавов SX или DS при высоких температурах они имеют большое значение.

Границы зерен представляют собой области крупного местного дефекта кристаллического строения решетки, так как в этих областях граничат между собой соседние зерна и вызывают этим определенную дезориентацию между кристаллическими решетками. Чем больше такая дезориентация, тем крупнее дефект кристаллического строения, т.е. тем больше количество дислокации по границам зерен, которые необходимы для соответствия обоих зерен между собой. Такой дефект кристаллического строения находится в прямой связи со свойствами материала при высоких температурах. Он ослабляет материал в том случае, когда температура возрастает свыше эквикогезионной температуры (=0,5 х точку плавления по Кельвину).

Указанный эффект известен из GB 2234521 А. Так, например, в обычном монокристаллическом сплаве на основе никеля временное сопротивление при температуре испытания 871°С экстремально уменьшалось в том случае, когда дезориентация зерен превысила 6°. Это было отмечено и для монокристаллических деталей с направленно затвердевшей структурой, в результате чего в целом было сформулировано мнение, что не следует допускать дезориентации свыше 6°.

Из упомянутого документа GB 2234521 А также известно, что благодаря обогащению жаропрочных сплавов на основе никеля бором или углеродом при направленном затвердевании образуются структуры, характеризующиеся равноосной или призматической структурой зерен. Углерод и бор упрочняют границы зерен, так как С и В вызывают выделение карбидов и боридов по границам зерен, которые являются стойкими при высоких температурах. Кроме того, присутствие таких элементов снижает диффузионный процесс на границах зерен и вдоль их, который является основной причиной ослабления по границам зерен. Поэтому можно увеличивать дезориентацию до 10-12° и тем не менее достигать высоких свойств материала при высоких температурах. Такие малоугловые границы зерен негативно воздействуют особенно на свойства крупных монокристаллических деталей из жаропрочных сплавов на основе никеля.

Раскрытие сущности изобретения

Целью изобретения является устранение перечисленных недостатков. В изобретении поставлена задача создания жаропрочного сплава на основе никеля, обладающего улучшенными литейными свойствами и более высокой устойчивостью против окисления по сравнению с известными жаропрочными сплавами на основе никеля. Кроме того, этот сплав должен быть пригоден, в частности, для изготовления, например, крупных монокристаллических деталей для газовых турбин длиной более 80 мм.

Согласно изобретению указанная задача решается за счет того, что жаропрочный сплав на основе никеля согласно изобретению имеет следующий химический состав (данные указаны в вес.%):

7,7-8,3 Cr

5,0-,25 Со

2,0-2,1 Мо

7,8-8,3 W

5,8-6,1 Та

4,9-5,1 Al

1,3-1,4 Ti

0,11-0,15 Si

0,11-0,15 Hf

200-750 ppm C

50-400 ppm B

остальное - никель и технологические примеси.

Преимущества изобретения состоят в том, что сплав обладает очень высокими литейными свойствами и по сравнению с настоящим уровнем техники характеризуется улучшенной устойчивостью против окисления при высоких температурах. Особое преимущество достигается при следующем составе сплава:

7,7-8,3 Cr

5,0-5,25 Со

2,0-2,1 Мо

7,8-8,3 W

5,8-6,1 Та

4,9-5,1 Al

1,3-1,4 Ti

0,11-0,15 Si

0,11-0,15 Hf

200-300 ppm C

50-100 ppm B

остальное - никель и технологические примеси.

Данный сплав исключительно пригоден для изготовления крупных монокристаллических деталей например лопаток газовых турбин.

Краткое описание чертежей

На чертежах представлен пример осуществления изобретения в виде квазиизотермических диаграмм окисления. При этом изображено на:

фиг.1 зависимость изменения удельной массы контрольного сплава VL1 от температуры и времени,

фиг.2 зависимость изменения удельной массы контрольного сплава VL2 от температуры и времени,

фиг.3 зависимость изменения удельной массы контрольного сплава VL3 от температуры и времени,

фиг.4 зависимость изменения удельной массы контрольного сплава VL4 от температуры и времени,

фиг.5 зависимость изменения удельной массы сплава L1 согласно изобретению от температуры и времени.

Пути осуществления изобретения

Ниже изобретение подробнее поясняется с помощью примера его осуществления и фиг.1-5.

Исследовали жаропрочные сплавы на основе никеля, химический состав которых приведен в таблице 1 (данные указаны в вес.%):

Таблица 1
Химический состав исследованных сплавов
VL1 (CMSX-11B)VL2 (CMSX-6)VL3 (CMSX-2)VL4 (René N5)L1
Niостальноеостальноеостальноеостальноеостальное
Cr12,49,77,97,127,7
Со5,75,04,67,45,1
Мо0,53,00,61,42,0
W5,1-8,04,97,8
Та5,182,06,06,55,84
Al3,594,815,586,075,0
Ti4,184,710,990,031,4
Hf0,040,05-0,170,12
С----0,02
В----0,005
Si----0,12
Nb0,1----
Re---2,84-

Сплав L1 представляет собой жаропрочный сплав на основе никеля для монокристаллических деталей, состав которого приведен в формуле настоящего изобретения. В противоположность ему сплавы VL1, VL2, VL3 и VL4 являются контрольными, которые известны из уровня техники под названиями CMSX-11B, CMSX-6, CMSX-2 и René N5. От сплава согласно изобретению последние отличаются прежде всего тем, что они не легированы элементами С, В и Si.

Углерод и бор упрочняют границы зерен, в частности и малоугловые, ориентированные в направлении <001> границы в жаропрочных сплавах на основе никеля SX и DS, из которых выполнены лопатки газовых турбин, так как эти элементы вызывают выделение карбидов и боридов по границам зерен, являющихся стойкими при высоких температурах. Кроме того, присутствие указанных элементов на границах зерен и вдоль их снижает процесс диффузии, являющийся основной причиной ослабления по границам зерен. В результате существенно улучшаются литейные свойства длинных монокристаллических деталей, например лопаток газовых турбин длиной от около 200 до 230 мм.

Внесение добавки Si в количестве от 0,11 до 0,15 вес.%, прежде всего в комбинации с Hf примерно в том же количестве, приводит к существенному повышению устойчивости против окисления при высоких температурах по сравнению с известными ранее жаропрочными сплавами на основе никеля. Это показано на фиг.1-5, на которых соответственно для контрольных сплавов VL1-VL4 (фиг.1-4) и сплава L1 согласно изобретению (фиг.5) приведены диаграммы изотермического окисления. Для названных сплавов показано изменение удельной массы Δm/А (данные в мг/см2) при температурах 800°С, 950°С, 1050°С и 1100°С и продолжительности от 0 до 1000 часов. Если сравнить между собой характеристики кривых, то, в частности, при высоких температурах (1000°С) и продолжительном времени естественного старения отмечается превосходство сплава согласно изобретению.

Если выбираются жаропрочные сплавы на основе никеля с более высоким содержанием С и В (не более 750 ррм С и не более 400 ррм В) согласно п.1 формулы изобретения, то детали из них могут также отливаться традиционным способом.

Cr7,7-8,3Со5,0-5,25Мо2,0-2,1W7,8-8,3Та5,8-6,1Al4,9-5,1Ti1,3-1,4Si0,11-0,15Hf0,11-0,15С200-750ppmВ50-400ppmNiитехнологическиепримесиостальноеc0c1211none364Cr7,7-8,3Со5,0-5,25Мо2,0-2,1W7,8-8,3Та5,8-6,1Al4,9-5,1Ti1,3-1,4Si0,11-0,15Hf0,11-0,15С200-300ppmВ50-100ppmNiитехнологическиепримесиостальноеc0c1211none566Cr7,7Со5,1Мо2,0W7,8Та5,8Al5,0Ti1,4Si0,12Hf0,12С200ppmВ50ppmNiитехнологическиепримесиостальноеc0c1211none7681.Жаропрочныйсплавнаосновеникеля,отличающийсятем,чтоонимеетследующийхимическийсостав,вес.%:12.Жаропрочныйсплавнаосновеникеляпоп.1,отличающийсятем,чтоонпредназначен,вчастности,дляизготовлениямонокристаллическихдеталейиимеетследующийхимическийсостав,вес.%:23.Жаропрочныйсплавнаосновеникеляпоп.2,отличающийсятем,чтоонимеетследующийхимическийсостав,вес.%:3
Источник поступления информации: Роспатент

Showing 31-40 of 218 items.
10.11.2014
№216.013.0427

Опора теплообменных труб и крепежный узел для трубчатого теплообменника

Изобретение относится к области теплотехники и может быть использовано в трубных опорах теплообменников, используемых для обмена сред тепловой энергией без их смешивания. Предметом изобретения, в частности, является опора для пучка теплообменных труб, образующая сетку в секущей плоскости;...
Тип: Изобретение
Номер охранного документа: 0002532461
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.042c

Насос с бетонной спиральной камерой

Изобретение относится к центробежному насосу (1), который может перекачивать жидкость с большими объемными расходами свыше 20 м/с. Насос содержит рабочее колесо (3), установленное с возможностью вращения вокруг оси и направления жидкости к бетонной спиральной камере (4), расположенной вокруг...
Тип: Изобретение
Номер охранного документа: 0002532466
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0893

Контур питания паром турбины

Изобретение относится к энергетике. Контур питания паром турбины, включающий в себя n основных паровых линий и n' линий подвода пара к турбине, причем количество n' линий подвода пара к турбине точно превышает количество n основных паровых линий, причём он содержит n прямых линий подвода пара к...
Тип: Изобретение
Номер охранного документа: 0002533596
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0b1d

Уплотнительное устройство для насоса

Изобретение относится к уплотнительной технике. Устройство (1) для уплотнения насоса электростанции содержит корпус насоса, включающий в себя первый и второй трубопроводы для прохождения текучей среды, вал, включающий в себя, рядом с корпусом насоса, первый канал для текучей среды, механическое...
Тип: Изобретение
Номер охранного документа: 0002534253
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0f8c

Регулируемый мельничный сепаратор

Изобретение относится к регулируемым сепараторам, позволяющим регулировать размеры частиц измельчаемого материала на мельнице для твердого топлива и может быть использована для отделения более крупных частиц от более мелких частиц, захваченных восходящими воздушными потоками. Сепараторная...
Тип: Изобретение
Номер охранного документа: 0002535397
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0fb9

Способ эксплуатации комбинированной электростанции

Изобретение относится к энергетике. В способе эксплуатации комбинированной электростанции, включающей в себя газовую турбину и паровую турбину, соответственно посредством подключенного электрогенератора вырабатывают переменное напряжение соответствующей частоты и отдают его сети переменного...
Тип: Изобретение
Номер охранного документа: 0002535442
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.10b1

Новые твердые материалы и способ удаления со из потока газа

Изобретение касается способа и системы для удаления диоксида углерода из технологического газа, образующегося во время сгорания топлива, способа получения сорбента. Способ и система для удаления диоксида углерода из технологического газа, образующегося во время сгорания топлива, где упомянутая...
Тип: Изобретение
Номер охранного документа: 0002535696
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.139b

Направляющая лопатка турбины

Статор турбины, в частности газовой турбины, содержит несколько направляющих лопаток. По меньшей мере каждая из двух смежных в направлении вдоль окружности направляющих лопаток имеет аэродинамический профиль, бандажную полку, расположенную у внутреннего торца аэродинамического профиля, а также...
Тип: Изобретение
Номер охранного документа: 0002536443
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1d83

Способ переналадки паровой турбины

Изобретение заключается в способе переналадки паровой турбины (1), пар для которой создается парогенератором. Способ позволяет настраивать турбину (1) для перехода от первого максимума тепловой мощности парогенератора ко второму максимуму тепловой мощности парогенератора. Турбина (1) включает в...
Тип: Изобретение
Номер охранного документа: 0002538983
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1f1b

Осевая газовая турбина

Осевая газовая турбина содержит ротор и статор. Статор представляет собой корпус, охватывающий ротор снаружи с образованием между ними тракта течения горячего газа, через который протекает горячий газ, полученный в камере сгорания. Ротор содержит вал с осевыми пазами, в частности, елочного типа...
Тип: Изобретение
Номер охранного документа: 0002539404
Дата охранного документа: 20.01.2015
+ добавить свой РИД