×
20.02.2019
219.016.bf95

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ КАВЕРНЫ НА ОПТИЧЕСКОЙ ПОВЕРХНОСТИ ВНЕШНЕГО СТЕКЛА ИЛЛЮМИНАТОРА ПИЛОТИРУЕМОГО КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002359254
Дата охранного документа
20.06.2009
Аннотация: Способ определения глубины каверны на оптической поверхности внешнего стекла иллюминатора пилотируемого космического аппарата включает стереосъемку каверны, измерение расстояния от центра каждого снимка стереопары до одной и той же точки изображения каверны. А также измерение расстояния между оптическими осями объектива для первого и второго снимка, измерение расстояния от главной плоскости объектива до поверхности внутреннего стекла иллюминатора и измерение давления воздушной среды в гермоотсеке и в межстекольном пространстве. При этом глубину каверны определяют по формуле: Технический результат - достоверное определение глубины каверны (дефекта) внешнего стекла иллюминатора в условиях полета с заданной точностью. 2 ил.

В процессе полета космический аппарат (КА) подвергается воздействию окружающей среды: ионизирующих излучений, частиц, а также метеоритов. Большую опасность представляют даже микрометеориты, соударяющиеся со стеклами иллюминаторов КА, вследствие огромной (~8 км/с) скорости соударения, что приводит к образованию каверен на внешнем стекле иллюминатора. В качестве примера на фиг.1 приведено фото каверны на внешнем стекле иллюминатора МКС. Образовавшиеся каверны снижают прочность иллюминатора, а в критических случаях могут привести к потере его герметичности, т.е. к аварийной ситуации.

До настоящего времени непосредственно измерить величину каверны не представлялось возможным на КА в условиях полета и такие измерения не проводились. По одиночному фото невозможно достоверно определить глубину каверны.

Прототипа данного способа не обнаружено.

Задачей изобретения является достоверное определение глубины каверны (дефекта) внешнего стекла иллюминатора в условиях полета с заданной точностью.

Задача решается с помощью описываемого ниже способа.

В предлагаемом способе определения глубины каверны на оптической поверхности иллюминатора КА производят следующие действия (см. фиг.2): измеряют расстояние от центра каждого снимка стереопары до одной и той же точки изображения каверны (x1 и х2), измеряют расстояние между оптическими осями объективов 1 и 2 для первого и второго снимков стереопары, измеряют расстояние от главной плоскости 4 объективов 1 и 2 до поверхности внутреннего стекла 5 иллюминатора, измеряют давление воздушной среды в гермоотсеке (ГО) и в межстекольном пространстве иллюминатора, а глубину каверны определяют по следующей формуле:

где

Δ - глубина каверны,

х1- расстояние от изображения измеряемой точки повреждения (каверны) на первом снимке относительно центра снимка,

х2 - расстояние от изображения измеряемой точки повреждения (каверны) на втором снимке относительно центра снимка,

В - расстояние между оптическими осями объектива для первого и второго снимка,

h0 - расстояние от главной плоскости объектива до поверхности внутреннего стекла иллюминатора,

PГО - давление в гермоотсеке,

РВ12 - давление в межстекольном пространстве,

f - фокусное расстояние объектива,

hСТ1 - толщина первого стекла иллюминатора,

hСТ2 - толщина второго стекла иллюминатора,

hВ12 - толщина межстекольного пространства иллюминатора,

nКВ - показатель преломления кварцевого стекла,

k - коэффициент пропорциональности в зависимости между показателем преломления и давлением воздушной среды:

где nB - показатель преломления воздушной среды в ГО или в межстекольном пространстве,

Р - давление воздушной среды в ГО или в межстекольном пространстве. Зависимость между показателем преломления и давлением показана в книге К.У.Ален Астрофизические величины. Издательство иностранной литературы, 1960, §53. Атмосферная рефракция и путь луча в воздухе.

Величины х1, x2, В, h0, PГО, РВ12 - измеряемые. В, h0, f - известные величины, hСТ1,

hСТ2, hВ12 - конструктивные параметры иллюминатора.

Фотоснимок каверны, приведенный на фиг.1, был сделан на российском сегменте международной космической станции (PC MKC) при фотосъемке иллюминатора №7 в 2002 г. На снимке на внешнем стекле иллюминатора на фоне оправы иллюминатора можно различить кратер со сколами. Диаметр кратера ~ 1,5 мм. Поскольку был сделан одиночный снимок, глубина кратера не была определена.

На фиг.2 приведена схема стереосъемки каверны на внешнем стекле 6 иллюминатора. Показано два положения 1 и 2 объектива, при которых выполняется съемка двух кадров и ход двух лучей, участвующих в построении изображения точки вершины каверны 7 в фокальной плоскости объектива на обоих снимках (точки на расстояниях х1 и х2 от оси объектива на одном и на другом снимке соответственно). На границе перехода из одной среды в другую (из стекла в воздушную среду и из воздушной среды в стекло) луч изменяет направление в соответствии с законом преломления:

где i1 - угол между направлением луча в первой среде и нормалью к границе раздела двух сред,

i2 - угол направлением луча во второй среде и нормалью к границе раздела двух сред,

n1 - показатель преломления первой среды,

n2 - показатель преломления второй среды.

Поскольку показатель преломления стекла иллюминатора больше показателя преломления воздушной среды: nкв>nвГО и nкв>nв12, углы наклона лучей в воздушной среде больше углов наклона лучей в стекле, что показано на фиг.2, в частности i10>i11.

В результате проведения стереосъемки измерения расстояний между оптическими осями объектива при выполнении первого и второго кадра стереопары, измерения расстояния от оптической поверхности внутреннего стекла илллюминатора и главной плоскостью объектива, измерения давления в ГО и межстекольном пространстве и, наконец, вычисления по приведенной выше формуле получается искомая величина Δ, на основании которой специалисты по прочности дают заключение о надежности иллюминатора.

Способ определения глубины каверны на оптической поверхности внешнего стекла иллюминатора пилотируемого космического аппарата, включающий: стереосъемку каверны, измерение расстояния от центра каждого снимка стереопары до одной и той же точки изображения каверны, измерение расстояния между оптическими осями объектива для первого и второго снимка, измерение расстояния от главной плоскости объектива до поверхности внутреннего стекла иллюминатора, измерение давления воздушной среды в гермоотсеке и в межстекольном пространстве, при этом глубину каверны определяют по формуле: где Δ - глубина каверны,x - расстояние от изображения измеряемой точки повреждения (каверны) на первом снимке относительно центра снимка,х - расстояние от изображения измеряемой точки повреждения (каверны) на втором снимке относительно центра снимка,В - расстояние между оптическими осями объектива для первого и второго снимка,h - расстояние от главной плоскости объектива до поверхности внутреннего стекла иллюминатора,Р - давление в гермоотсеке,P - давление в межстекольном пространстве,f - фокусное расстояние объектива,h - толщина первого стекла иллюминатора,h - толщина второго стекла иллюминатора,h - толщина межстекольного пространства иллюминатора,n - показатель преломления кварцевого стекла,k - коэффициент пропорциональности в зависимости между показателем преломления и давлением воздушной среды: ,где n - показатель преломления воздушной среды в ГО или в межстекольном пространстве,Р - давление воздушной среды в ГО или в межстекольном пространстве.
Источник поступления информации: Роспатент

Showing 1-2 of 2 items.
20.07.2015
№216.013.63ea

Хвостовой отсек летательного аппарата с кольцевым расположением сопел ракетного двигателя на его донной защите (варианты)

Изобретение относится к авиакосмической технике и может быть использовано в хвостовых отсеках летательных аппаратов (ЛА). Хвостовой отсек ЛА с кольцевым расположением сопел ракетного двигателя на донной защите с теплостойким отражателем возвратного течения струй ракетного двигателя в виде тела...
Тип: Изобретение
Номер охранного документа: 0002557125
Дата охранного документа: 20.07.2015
20.05.2016
№216.015.4086

Стыковочное устройство для космических аппаратов

Изобретение относится к космической технике и предназначено для обеспечения автоматической стыковки космических аппаратов. Стыковочное устройство для космических аппаратов содержит стыковочный агрегат со шпангоутом, закрепленным на корпусе космического аппарата, и крышку люка, на внешней...
Тип: Изобретение
Номер охранного документа: 0002584042
Дата охранного документа: 20.05.2016
Showing 1-6 of 6 items.
27.10.2015
№216.013.87d8

Способ определения величины атмосферной рефракции в условиях космического полета

Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу. Отклонение связано с атмосферной рефракцией. Для этого с...
Тип: Изобретение
Номер охранного документа: 0002566379
Дата охранного документа: 27.10.2015
25.08.2017
№217.015.b50c

Устройство защиты и контроля состояния оптических поверхностей объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения и предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей объектива оптических приборов без демонтажа защитной крышки...
Тип: Изобретение
Номер охранного документа: 0002614352
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b57f

Устройство защиты и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения, предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора без...
Тип: Изобретение
Номер охранного документа: 0002614335
Дата охранного документа: 24.03.2017
10.05.2018
№218.016.47cc

Устройство для автономного определения навигационных параметров и параметров ориентации пилотируемого космического корабля

Устройство для автономного определения навигационных параметров и параметров ориентации пилотируемого космического корабля содержит оптический блок сопряжения, выполненный в виде призменного блока, позволяющий одновременно наблюдать два непересекающихся участка звездного неба, одного с...
Тип: Изобретение
Номер охранного документа: 0002650730
Дата охранного документа: 17.04.2018
28.07.2018
№218.016.7610

Устройство контроля ориентации космических аппаратов при сближении

Изобретение относится к оптико-электронным приборам, используемым в системах управления движением космического аппарата (КА), гл. обр., к мишени стыковки пассивного КА. Мишень с высоким коэфф. поглощения её поверхности находится снаружи вблизи порта стыковки. Ось OA мишени (смотрит на нас)...
Тип: Изобретение
Номер охранного документа: 0002662620
Дата охранного документа: 26.07.2018
17.07.2019
№219.017.b52e

Устройство контроля взаимного положения сближающихся космических аппаратов

Изобретение относится к области оптико-электронного приборостроения и предназначено для применения в системах управления движением космического аппарата. Заявленное устройство контроля взаимного положения сближающихся космических аппаратов содержит мишень, установленную на пассивном космическом...
Тип: Изобретение
Номер охранного документа: 0002694458
Дата охранного документа: 15.07.2019
+ добавить свой РИД