×
16.02.2019
219.016.baf5

Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области физики низкоразмерных структур, а именно к формированию наноразмерной тонкопленочной структуры, и может быть использовано в различных высокотехнологичных областях промышленности и науки для создания новых материалов. Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке включает конденсацию в вакууме металлических слоев и проведение синтеза интерметаллического соединения так, что слои меди и олова наносят на подогретую стеклянную подложку в последовательности Cu/Sn в интервале температур 50-400°С, а температуру подложки определяют из необходимого содержания интерметаллических фаз CuSn и СuSn в пленке. Технический результат заключается в получении тонких пленок бинарной системы Cu-Sn в виде островков интерметаллической фазы с регулируемым соотношением концентраций интерметаллических фаз CuSn и СuSn, обладающих характерными физико-механическими свойствами. 10 ил., 5 табл., 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к области физики низкоразмерных структур, а именно тонких металлических пленок, способу их получения, формированию наноразмерной тонкопленочной структуры и может быть использовано в различных высокотехнологичных областях промышленности и науки для создания новых материалов.

Известна воспламеняющаяся гетерогенная слоистая структура для осуществления экзотермической химической реакции в виде расширяющегося волнового фронта и способ получения наноструктурных многослойных пленок (патент США №5538795, 1996), включающий: выбор первого и второго экзотермического материала, попеременного составления их в единое целое, где каждый материал имеет толщину в диапазоне 0,002-1,0 мкм. Система обеспечивает экзотермическую реакцию, распространяющуюся со скоростью в диапазоне 0,2-100 метров в секунду в зависимости от пропорций слоев, синтезируется слой интерметаллического соединения, имеющий толщину в диапазоне 0,0003-0,018 мкм, расположенный между слоями первого и второго материалов и повторяющийся с периодом D в диапазоне 0,005-2,0 мкм.

Способ не позволяет получить однородный тонкопленочный продукт, в виде статистически распределенных островков интерметаллической фазы. Волновой процесс синтеза, базовые параметры которого определяются самим процессом, а именно производством энтальпии и потерями тепла, не позволяют управлять синтезом интерметаллической фазы.

Известен - «Способ синтеза сверхпроводящего интерметаллического соединения в пленках» - (Патент РФ №2285743, заявка №2005104854/02 от 22.02.2005 г., Бюл. 29 от 20.10.06).

Согласно способу, наносят с помощью ионно-плазменного совместного распыления исходных металлических мишеней из ниобия и олова, конденсации несверхпроводящей пленки твердого раствора исходных металлов и последующего воздействия потоком ионизирующего излучения заданной интенсивности для синтеза интерметаллического соединения, путем сканирования потока по поверхности пленки или относительно потока.

Данный способ не позволяет получить состав твердого раствора нужной стехиометрии (в анализируемом способе это интерметаллическое соединение Nb3Sn), в связи с тем, что в ходе облучения будет синтезироваться данное соединения и другие соединения системы Nb-Sn, кроме того останется одна из металлических компонент, что не позволяет сформировать сверхпроводящий монофазный слой на заданной глубине пленки.

Известен способ реализации самораспространяющегося высокотемпературного синтеза и твердофазных реакций в двухслойных тонких пленках Al/Ni, Al/Fe, Al/Со (Мягков В.Г. и др. Самораспространяющийся высокотемпературный синтез и твердофазные реакции в двухслойных тонких пленках // ЖТФ, 1998, т. 68, №10, с. 58-62), взятый за прототип. Волна синтеза реализуется при интенсивном нагреве до температуры инициирования реакции, которая на 300-350 градусов ниже, чем в макроскопических объемах порошковых экзотермических системах. Степень превращения исходных пленочных компонент составляет 0,6-0,8. Процесс синтеза носит неуправляемый характер, из-за самоподдерживающегося характера волнового процесса, который определяется внутренними параметрами системы. Для инициирования, а в ряде случаев и поддержания волны реакции, требуется интенсивный внешний источник энергии, компенсирующий потери энергии в результате теплоотвода.

Данный способ не позволяет осуществлять контролируемый синтез интерметаллических соединения нужной концентрации интерметаллических островков в связи с невозможностью управлять процессом синтеза и формированием структуры тонкопленочного агрегата в ходе автоволнового процесса.

Задача изобретения - получение интерметаллических тонких пленок бинарной системы Cu-Sn (медь-олово) в виде островков интерметаллической фазы с регулируемым соотношением концентраций интерметаллических фаз Cu6Sn5 и Cu3Sn.

Сущность изобретения;

Предлагаемый способ получения интерметаллических тонких пленок с контролируемым соотношением интерметаллических фаз Cu6Sn5 и Cu3Sn осуществляется путем нанесения на подогретую подложку в интервале температур 50-400°С в вакууме металлических слоев системы Cu-Sn в последовательности Cu/Sn, при этом первый слой - медь. В процессе конденсации второго слоя - олова на подогретую до температуры не ниже 50°С подложку происходит зарождение и рост множества островков интерметаллических фаз Cu6Sn5 и Cu3Sn, концентрация которых зависит от температуры подложки.

Регулирование соотношения концентраций островков интерметаллических фаз Cu6Sn5 и Cu3Sn осуществляется изменением температуры подложки в интервале температур 50-400°С. Получаемые тонкие пленки в виде множества островков, представляющих собой совокупность интерметаллических фаз Cu6Sn5 и Cu3Sn, в котором концентрация фазы Cu6Sn5 растет по мере повышения температуры подложки, обладают характерными физико-механическими свойствами. Среди таких свойств пленки можно выделить аномальную температурную зависимость прочности пленки, определяемой концентрацией фазы Cu3Sn и электрофизические свойства пленки, определяемые концентрацией фазы Cu6Sn5. Островки интерметаллической фазы на стадии зарождения представляют собой точечные объекты нанометрового масштаба, обладающие особыми свойствами электронной подсистемы низкоразмерного (нульмерного) объекта. Регулируя концентрацию островков интерметаллических фаз, получают тонкие пленки с заданными электрофизическими свойствами.

Осуществление изобретения

Способ получения ориентированных квазимонокристаллических интерметаллических тонких пленок осуществляется следующим образом:

1. выбор бинарной металлической системы, для синтезирования интерметаллических соединений, например, системы Cu-Sn;

2. нанесение на подложку из силикатного стекла в вакууме при остаточном давлении не хуже 10-5 торр металлических слоев в последовательности Cu/Sn (первый слой- слой меди) при температуре подложки не ниже 50°С;

3. получение нужной концентрации интерметаллических фаз Cu6Sn5 и Cu3Sn регуляцией температуры подложки, где температура подложки выбирается из температурного интервала 50-400°С.

Выполнение перечисленных операций позволяет синтезировать интерметаллическую пленку в ходе конденсации уже второго слоя олова, а также осуществить управление концентрацией интерметаллических фаз Cu6Sn5 и Cu3Sn в зависимости от температуры подложки.

Контролируемая температура подложки, начиная от 50°С и далее, например, 100°С, 200°С, 300°С, 400°С в ходе конденсации металлических слоев приводит к синтезу интерметаллических соединений Cu6Sn5 и Cu3Sn с контролируемым соотношением концентрации между интерметаллическими фазами. Реакция реализуется управляемо - в виде синтеза, путем множественного зарождения в объеме пленки реакционных островков.

Пример 1.

Выбор металлической системы для осуществления синтеза интерметаллических соединений и получения многослойной тонкопленочной структуры, обусловлен возможностью протекания химических, в том числе и экзотермических реакций, конечным продуктом которых являются интерметаллические соединения. Рассмотрим диаграммы состояния двойных металлических систем Cu-Sn (фиг. 1).

Из анализа диаграммы состояния медь - олово (фиг. 1) следует, что в системе со стороны олова возможен эвтектический распад с образованием двухфазной структуры из чистого олова и интерметаллического соединения Cu6Sn5 при температуре 227°С. Со стороны меди в системе возможно образование твердого раствора олова в меди и интерметаллического соединения Cu3Sn (Cu-25 ат. %Sn) при температуре 640°С.

Пример 2.

Рассмотрим бинарные металлические пленки Cu/Sn, полученные в вакууме при остаточном давлении 10-5 торр последовательной конденсацией из паровой фазы на стеклянные подложки при температуре 25°С пленок меди и олова, толщиной каждого слоя 30-60 нм. После получения пленки подвергаются отжигу путем нагрева с умеренной скоростью 1 град/с до 600°С в вакууме с остаточным давление 10-5 торр. Проведен рентгеноструктурный и рентгенофазовый анализ структурно-фазового состояния бинарных пленок, фиг. 2, табл. 1.

На фиг. 2 приведены рентгенограммы для исходной бинарной пленки Cu/Sn. В исходном состоянии двухслойный конденсат уже содержит какое-то количество интерметаллической фазы Cu6Sn5, о чем свидетельствуют рефлексы интерметаллида наряду с рефлексами олова. То есть уже на стадии конденсации второго слоя олова начинается синтезироваться интерметаллическое соединение Cu6Sn5. Структурное состояние фаз можно характеризовать как нанокристаллическое, что подтверждается значительным уширением рентгеновских рефлексов как олова, так и интерметаллической фазы.

После отжига рентгенограмма (фиг. 3) содержит рефлексы только интерметаллической фазы, что свидетельствует о прохождения синтеза интерметаллического соединения Cu6Sn5. Наличие остаточных (непрореагировавших) металлических компонент не обнаружено.

Уширение дифракционных линий, которые идентифицированы как (101), (110) и (102) гексагональной решетки, также аномально большое. Это свидетельствует о том, что структурное состояние тонкопленочного конденсата после проведения отжига характеризуется, как наноструктурное. Как показано в табл. 1, размер областей когерентного рассеяния составлял около 5,6 нм. Размер области когерентного рассеяния характеризует размер некоторого кристаллического кластера, обладающего дальним порядком, таким образом, дальний порядок в расположении атомов фазы охватывает область со средним размером 5,6 нм. Размер области когерентного рассеяния рентгеновского излучения после проведения отжига увеличился почти в 4 раза и составил около 20 нм. Расчет размера областей когерентного рассеяния D производился по стандартному методу аппроксимации, используя уравнение:

Здесь λ - длина волны рентгеновского излучения в нм, β - физическое уширение рентгеновской линии в радианах, Θ - угловое положение рентгеновского рефлекса.

Из приведенных данных следует, что единственной фазовой составляющей тонкопленочного конденсата является интерметаллическое соединение Cu6Sn5, находящиеся в наноструктурном состоянии. То есть тонкопленочный конденсат после проведения отжига монофазный.

Пример 3

После получения пленки (как в примере 2) проведен анализ микроструктуры пленок с помощью сканирующей зондовой микроскопии. Как показано на фиг. 4 структура поверхности пленки после отжига представляет собой сильно фрагментированную островковую структуру, рядом представлен единичный островок. Высота островков рельефа достигает 40 нм, площадь основания в среднем 100×100 нм2.

Таким образом, синтез интерметаллического соединения Cu6Sn5 осуществлялся в виде реакционных островков. Каждый островок представляет собой строго индивидуальный структурный элемент, перенос вещества в котором при его формировании зависел лишь от температуры всего ансамбля.

Пример 4.

В связи с тем, что синтез интерметаллического соединения Cu6Sn5 осуществляется уже в ходе конденсации второго слоя (пример 2), как в примере 2 провели конденсацию слоев меди и олова на стеклянные подложки, но при разных температурах, начиная от комнатной и через каждые 50°С. То есть конденсация пленки осуществляли при комнатной температуре, при 50°С, при 100°С, при 150°С и т.д.

Структура поверхности, полученная с помощью сканирующего зондового микроскопа, приведена на фиг. 5 и 6. Можно отметить, сопоставляя островки на рисунках, что конденсация бинарной пленки при температуре подложек 50 и 150°С и сопровождалось формированием более выраженной островковой структурой, что свидетельствует о протекании синтеза интерметаллических соединений при 50 и тем более при 150°С.

Пример 5.

Проведем рентгенофазовый анализ интерметаллических пленок, полученных как в примере 4 при разных температурах подожки из интервала температур 50-400°С. Бинарная пленка Cu/Sn при температуре подложки 50°С.

Согласно приведенным на фиг. 7 данным рентгенограмма пленки, полученной конденсацией слоев меди и олова на подложку при 50°С, имеет два рефлекса, которые могут соответствовать интерметаллическому соединению Cu6Sn5. Действительно, рефлексы эталонной рентгенограммы соединения Cu6Sn5 совпадают с рефлексами бинарной пленки Cu/Sn.

Бинарная пленка Cu/Sn при температуре подложки 150°С.

На фиг. 8 представлена рентгенограмма бинарной пленки Cu/Sn, полученной последовательной конденсацией слоев меди и олова на подложках из силикатного стекла при температуре 150°С. Как следует из приведенных данных на рентгенограмме появился рефлексы около 38 град, и около 44 град. Рефлекс около 38 град, не наблюдаются в пленке, сконденсированной при 50°С.

Расшифровка рентгенограммы свидетельствует о синтезе двух интерметаллических соединений, одно из которых идентифицировано как Cu3Sn (Cu10Sn3) другое - как Cu6Sn5. Количество фазы Cu3Sn составляет 29,74 масс. %, а количество фазы Cu6Sn5 - 70,26 масс. %. Кристаллографические параметры фаз приведены в табл. 2 и 3

Бинарная пленка Cu/Sn при температуре подложки 300°С.

На фиг. 9 приведена рентгенограмма бинарной пленки Cu/Sn, полученной последовательной конденсацией слоев меди и олова на подложках из силикатного стекла при температуре 300°С. Как следует из приведенных данных на рентгенограмме наблюдаются те же самые рефлексы, что и наблюдаемые на фиг. 8. Содержание фазы Cu6Sn5 - 52,6 масс. %, а содержание фазы Cu3Sn - 47, 4 масс. %.

Расчеты кристаллографических параметров решеток Cu6Sn5 и Cu3Sn, приведенных в табл. 4 и 5, сопоставление с эталонными данными подтверждают вывод о двухфазности бинарной пленки.

Бинарная пленка Cu/Sn при температуре подложки 400°С.

На фиг. 10 приведена рентгенограмма бинарной пленки Cu/Sn, полученной последовательной конденсацией слоев меди и олова на подложках из силикатного стекла при температуре 400°С. Как следует из приведенных данных на рентгенограмме наблюдаются рефлексы, позволяющие идентифицировать фазы как Cu6Sn5 в количестве 67,73 масс. %, Cu3Sn в количестве 11,49 масс. % и Sn в количестве 20,79 масс. %. Следует отметить, что интенсивность рефлекса вблизи 37,8 град, уменьшилась до нуля. Таким образом, преимущественной фазой в пленке, синтезируемой при 400°С, является интерметаллическое соединение Cu6Sn5. Очевидно, олово является остаточной фазой, непрореагировавшей в ходе синтеза.

Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке, включающий конденсацию в вакууме металлических слоев и проведение синтеза интерметаллического соединения, отличающийся тем, что слои меди и олова наносят на подогретую стеклянную подложку в последовательности Cu/Sn в интервале температур 50-400°С, а температуру подложки определяют из необходимого содержания интерметаллических фаз CuSn и CuSn в пленке.
Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке
Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке
Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке
Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке
Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке
Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке
Источник поступления информации: Роспатент

Showing 1-10 of 78 items.
13.01.2017
№217.015.74c5

Безопасный экстракционно-флуориметрический способ определения селена в воде

Изобретение относится к аналитической химии и касается способа определения селена в воде. Сущность способа заключается в том, что к анализируемому раствору добавляют 0,4 мл раствора 3%-ного щелочного борогидрида натрия восстановителя, закрывают пробкой, встряхивают и оставляют на 5 мин для...
Тип: Изобретение
Номер охранного документа: 0002597769
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.bad9

Люминесцирующие металлсодержащие полимеризуемые композиции и способ их получения

Изобретение относится к химии и технологии материалов, преобразующих электромагнитное излучение, и используется для получения люминесцирующих и избирательно поглощающих электромагнитное излучение металлсодержащих полимерных композиций для светотехники, опто- и микроэлектроники. Основой...
Тип: Изобретение
Номер охранного документа: 0002615701
Дата охранного документа: 06.04.2017
26.08.2017
№217.015.eda4

Индикатор для обнаружения повышенной концентрации аммиака в воздухе рабочей зоны

Изобретение относится к устройствам для выявления утечек аммиака и может быть использовано в областях химической и холодильной промышленностей, в сфере производства удобрений и аммиака, а также для контроля воздушной среды в производственных помещениях. Индикатор представляет собой основу...
Тип: Изобретение
Номер охранного документа: 0002628883
Дата охранного документа: 22.08.2017
29.12.2017
№217.015.f6d1

Способ пластической деформации металлов и сплавов

Изобретение относится к области пластической обработки металлов, таких как алюминий и его сплавы, и может быть использовано в различных областях промышленности и науки для глубокого формования металлических материалов. Способ пластической деформации алюминия и его сплавов включает механическое...
Тип: Изобретение
Номер охранного документа: 0002639278
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f79d

Способ получения линимента на березовых почках

Изобретение относится к фармацевтической промышленности, в частности к способу получения линимента на березовых почках. Способ получения линимента на березовых почках, включающий подготовку свиного жира, закладку березовых почек и свиного жира в емкость и воздействие на смесь жира и почек...
Тип: Изобретение
Номер охранного документа: 0002639571
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.f90b

Дефектоскоп для сварных швов

Изобретение относится к методам неразрушающего контроля и позволяет обнаруживать дефекты малых размеров и глубокого залегания в сварных швах, соединяющих, преимущественно, неферромагнитные материалы. Дефектоскоп для сварных швов включает в себя аппаратную и программную части. Дефектоскоп...
Тип: Изобретение
Номер охранного документа: 0002639592
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fb66

Способ концентрирования микроэлементов

Изобретение относится к аналитической химии и может быть использовано в практике аналитических, агрохимических, медицинских лабораторий. Осуществляют концентрирование микроэлементов для последующего аналитического определения путем соосаждения с диантипирилметаном, образующим в системе вода -...
Тип: Изобретение
Номер охранного документа: 0002640337
Дата охранного документа: 27.12.2017
13.02.2018
№218.016.24a1

Мембранный экстрактор

Изобретение относится к экстракторам системы жидкость-жидкость для применения в биотехнологической, фармацевтической, химической, пищевой промышленности, и, в частности, может быть использовано для ускорения выделения целевых продуктов метаболизма микроорганизмов, например антибиотиков из...
Тип: Изобретение
Номер охранного документа: 0002642641
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.3134

Способ определения иодид-ионов катодной вольтамперометрией

Изобретение относится к области аналитической химии. Способ определения йодид-ионов катодной вольтамперометрией проводят на серебряном электроде в фоновом растворе 0,1 М ацетата натрия, выдерживая потенциал электролиза в диапазоне потенциалов (-0,15±0,05) В при скорости развертки 20 мВ/с - 50...
Тип: Изобретение
Номер охранного документа: 0002645003
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.442b

Биоразлагаемый поливной шланг для капельного орошения

Изобретение относится к области устройств для капельного орошения. Поливной сочащийся шланг для капельного орошения выполнен из биоразлагаемого бумажного крафт-шпагата. Крафт-шпагат пропитан жидким растительным маслом. Шланг выполнен методом плетения. Плетение шланга обеспечивает микропористую...
Тип: Изобретение
Номер охранного документа: 0002649857
Дата охранного документа: 05.04.2018
Showing 1-10 of 22 items.
10.06.2015
№216.013.547b

Способ получения монофазной интерметаллической тонкой пленки

Изобретение относится к области физики низкоразмерных структур, а именно к способу получения монофазной интерметаллической тонкой пленки с наноразмерной структурой на стеклянной подложке, и может быть использовано в различных высокотехнологичных областях промышленности и науки для создания...
Тип: Изобретение
Номер охранного документа: 0002553148
Дата охранного документа: 10.06.2015
20.10.2015
№216.013.86de

Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке

Изобретение относится к области физики низкоразмерных структур, а именно к способу получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке, и может быть использовано в различных высокотехнологичных областях промышленности и науки для создания новых материалов....
Тип: Изобретение
Номер охранного документа: 0002566129
Дата охранного документа: 20.10.2015
13.01.2017
№217.015.74cd

Способ получения кристаллографически ориентированных квазимонокристаллических интерметаллических тонких пленок

Изобретение относится к области физики низкоразмерных структур, а именно способу получения квазимонокристаллической интерметаллической тонкой пленки с наноразмерной структурой, и может быть использовано в различных высокотехнологичных областях промышленности и науки для создания наноструктурных...
Тип: Изобретение
Номер охранного документа: 0002597835
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.76c0

Способ получения монофазной интерметаллической тонкой пленки

Изобретение относится к области физики наноразмерных структур, а именно способу получения тонких металлических пленок, в частности, системы Ni-Al. На стеклянную подложку в вакууме при остаточном давлении не ниже 10 Торр наносят не менее шести металлических слоев толщиной 30-60 нм в...
Тип: Изобретение
Номер охранного документа: 0002598723
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.8219

Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке

Изобретение относится к области физики наноразмерных структур, а именно способу получения тонких металлических пленок, которые могут быть использованы в качестве тест объектов оптических приборов. Способ получения тонкой нанокристаллической пленки системы Ni-Al на стеклянной подложке включает...
Тип: Изобретение
Номер охранного документа: 0002601365
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.b507

Способ получения тонкой наноалмазной пленки на стеклянной подложке

Изобретение относится к технологиям получения износостойких, прочностных тонких алмазных пленок методом вакуумной лазерной абляции и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и создания наноструктурных материалов....
Тип: Изобретение
Номер охранного документа: 0002614330
Дата охранного документа: 24.03.2017
29.12.2017
№217.015.f6d1

Способ пластической деформации металлов и сплавов

Изобретение относится к области пластической обработки металлов, таких как алюминий и его сплавы, и может быть использовано в различных областях промышленности и науки для глубокого формования металлических материалов. Способ пластической деформации алюминия и его сплавов включает механическое...
Тип: Изобретение
Номер охранного документа: 0002639278
Дата охранного документа: 20.12.2017
29.05.2018
№218.016.533e

Способ пластической деформации сплавов из алюминия

Изобретение относится к области пластической обработки металлов и может быть использовано в различных областях промышленности и науки для пластической деформации алюминия и сплавов из алюминия. Способ пластической деформации алюминиево-магниевых сплавов включает механическое нагружение сплава...
Тип: Изобретение
Номер охранного документа: 0002653741
Дата охранного документа: 14.05.2018
24.07.2018
№218.016.73be

Способ пластической деформации алюминия и его сплавов

Изобретение относится к области пластической обработки металлов и может быть использовано в различных областях промышленности и науки для пластической деформации алюминия и сплавов из алюминия. Способ пластической деформации алюминия и его сплавов включает механическое нагружение деформируемого...
Тип: Изобретение
Номер охранного документа: 0002661980
Дата охранного документа: 23.07.2018
03.10.2018
№218.016.8cf9

Способ получения алмазоподобных тонких пленок

Изобретение относится к технологии производства тонких алмазных пленок и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и активных слоев тонкопленочных наноструктур. Алмазоподобную пленку получают конденсацией углерода на...
Тип: Изобретение
Номер охранного документа: 0002668246
Дата охранного документа: 27.09.2018
+ добавить свой РИД