×
15.02.2019
219.016.bac8

Результат интеллектуальной деятельности: Способ получения порошка гафната диспрозия для поглощающих элементов ядерного реактора

Вид РИД

Изобретение

Аннотация: Изобретение относится к ядерной технике, в частности к поглощающим нейтроны материалам (гафнат диспрозия - DyНfО), и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка гафната диспрозия путем механической активации смеси компонентов - диоксида гафния - HfO и оксида диспрозия - DyО, взятых в эквимолярном соотношении 63,9 мас.% оксида диспрозия и 36,1 мас.% оксида гафния, в планетарной шаровой мельнице в атмосфере аргона, получением порошка композита путем механической активации смеси оксидов диспрозия и гафния, взятых в эквимолярном соотношении, в шаровой планетарной мельнице в атмосфере аргона при скорости вращения планетарного диска 900 об./мин, скорости вращения барабанов - 1500 об./мин, при отношении массы шаров к массе шихты 45:1 в атмосфере аргона при Р=4 атм в течение 40-60 мин, причем полученный порошок гафната диспрозия представляет собой однофазную керамическую композицию состава DyHfOсо структурой флюорита и размером частиц 15-80 нм. Изобретение позволяет изготавливать химически активные нанодисперсные порошки гафната диспрозия стабильного состава с повышенной плотностью после виброуплотнения, сниженными температурой и временем синтеза.

Изобретение относится к атомной технике, в частности к поглощающим нейтроны материалам (гафнат диспрозия - (Dy2O3⋅HfО2) и может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов.

Известен способ получения нанокристаллических порошков и керамических материалов на основе смешанных оксидов редкоземельных элементов и металлов, в том числе оксидов диспрозия и гафния с повышением плотности керамических таблеток, полученных на их основе, до 7,5 г/см2 и выше (Патент РФ №2467983, 2012), путем растворения солей, в частности, Dу(NО)3)3⋅5Н2O и НfОСl2⋅8Н2O, добавлением полученного раствора к раствору аммиака, фильтрации и промывки полученного осадка, сушки с последующим прокаливанием до получения смешанного оксида, его размол, прессование и отжиг полученных компактов. Стадию прокаливания смешанного гидроксида проводят в температурном интервале 800-1200°С, а размол порошков смешанных оксидов осуществляют путем механоактивации в планетарной мельнице в течение 18-36 мин.

Главным недостатком описанного способа является длительность процесса термообработки промытого осадка смешанного гидроксида диспрозия и гафния с получением первоначального нанокристаллического порошка гафната диспрозия с высокой степенью агрегации (размер агрегатов до 10-15 мкм), что вызывает необходимость дополнительного измельчения порошка.

Известен способ получения поликристаллического нейтронопоглощающего материала на основе гафната диспрозия (Патент США №4992225, кл. F27B 9/04, 1991), по которому оксид диспрозия (65-85 мас. %) смешивают с диоксидом гафния и далее полученную смесь в виде компактированного образца спекают в интервале температур 1500-2000°С.

В связи с использованием процесса твердофазного синтеза недостатком данного способа является многофазность полученного материала из-за возможности наличия в нем остатков непрореагировавших исходных веществ (в основном оксида диспрозия) и дополнительного размола спекшегося материала.

Известен способ получения нейтронопоглощающего материала методом высокочастотного индукционного плавления смеси оксидов диспрозия, титана, ниобия и циркония в холодном тигле (Патент РФ №2124240, кл. G21C 7/24, 1998).

Недостатком данного способа является высокая температура синтеза (свыше 2300°С), что приводит к увеличению эксплуатационных расходов из-за использования специального комплекса аппаратуры (установки «Кристалл-401»), неоднородности получаемого порошка по химическому и фазовому составу из-за наличия гарнисажного слоя, а также ограниченные эксплуатационные возможности получаемого гафната диспрозия, а именно его использование только в виде порошка. Это объясняется тем, что невозможно получить прочные и плотные изделия (таблетки) из материала, который был синтезирован в расплаве при температуре, значительно превышающей температуру спекания таблеток, из-за очень высокой твердости порошка.

Наиболее близким к предлагаемому изобретению и принятому в качестве прототипа является способ получения нейтронопоглощающего материала на основе титаната диспрозия (Dy2O3⋅TiO2) (Патент РФ №25900877 С1, МПК: G21C 7/24, 2016), согласно которому путем механической активации смеси кристаллических оксидов титана и диспрозия, взятых в эквимолярных соотношениях, в шаровой планетарной мельнице «Активатор2S» получают ренгеноаморфный порошок титаната диспрозия, отличающийся наличием большого количества агломератов со средним размером 500-1000 нм и неоднородностью гранулометрического состава.

Технический результат предложенного изобретения заключается в обеспечении достижения высокоэффективного и энергосберегающего технологического процесса изготовления химически активных нанодисперсных порошков гафната диспрозия стабильного состава, позволяющего повысить его плотность после виброуплотнения, снижения температуры и времени синтеза.

Возможным путем повышения рабочего ресурса поглотителя из гафната диспрозия является:

- замена существующего метода высокотемпературного синтеза порошка гафната диспрозия на методы механохимии с обоснованием выбора типа и характеристик оборудования для механообработки, с целью получения высокодисперсного (наноструктурного) порошка гафната диспрозия стабильного состава, соответствующего структуре Dy2HfO5, позволяющего повысить его плотность после виброуплотнения.

Это, в свою очередь, позволит снизить скорость выгорания поглощающих компонентов по сечению ПЭЛ и замедлить снижение поглощающих свойств под действием нейтронного облучения.

Dy2O3⋅HfO2 по сравнению с Dy2O3⋅TiO2 имеет неограниченную радиационную стойкость и лучшие теплофизические характеристики за счет исходной флюоритоподобной кристаллической структуры. Отсутствие фазовых переходов и однофазная структура типа твердого раствора обеспечивает также высокую технологичность при синтезе и изготовлении таблеток гафната диспрозия. Наличие в составе гафната диспрозия двух поглощающих компонентов - Dy и Hf обеспечивает его более высокую физическую эффективность по сравнению с Dy2O3⋅ТiO2, т.е. возможность варьирования физической эффективности изменением состава с сохранением остальных эксплуатационных свойств материала, а именно: высокую эффективность поглощения нейтронов, низкую скорость выгорания поглощающих изотопов, высокую стойкость к радиационным повреждениям, стабильность объема как при рабочих температурах эксплуатации, так и при перегревах, коррозионную стойкость.

Указанные технические результаты достигаются следующим образом.

Способ изготовления порошков гафната диспрозия для поглощающих элементов ядерного реактора, отличающийся тем, что порошок композита получают путем механической активации смеси оксидов диспрозия и гафния, взятых в эквимолярном соотношении 63,9 мас. % оксида диспрозия и 36,1 мас. % оксида гафния, в шаровой планетарной мельнице при скорости вращения планетарного диска 900 об/мин., скорости вращения барабанов 1500 об/мин., при отношении массы шаров к массе шихты - 45:1 в атмосфере аргона при Р=4 атм. в течение 40-60 мин., причем полученный порошок гафната диспрозия представляет собой однофазную керамическую композицию состава Dy2HfO5 со структурой флюорита и размером частиц 15-80 нм.

Механохимический синтез реализуется в процессе механического воздействия на исходные соединения, которое, активируя реагенты и понижая энергетический барьер химического взаимодействия, стимулирует химическую реакцию между исходными веществами. Технология получения сплавов в виде порошков методом механохимического синтеза широко используется в настоящее время для изготовления порошков интерметаллидов, твердых растворов, а также аморфных порошков, т.е. для приготовления материалов сложного химического состава, характеризующихся особыми физико-механическими свойствами из-за высокой степени дисперсности структуры, возникшей вследствие деформации. Именно деформация приводит к усложнению состава и образованию наноструктуры объемного характера. Таким образом, продукт механохимического синтеза имеет заданный состав и специфическое структурное состояние. Кроме того, механохимический синтез относится к наименее энергоемким и простым в исполнении способам, которые можно отнести к быстропротекающим твердофазным реакциям.

Ниже приведены примеры конкретного получения гафната диспрозия механохимическим способом:

Пример 1. Шихту из оксидов диспрозия и гафния, взятых в эквимолярном соотношении (63,9 масс. %,. Dy2O3, 36,1 масс. % НfО2), подвергали обработке в шаровой планетарной мельнице «Активатор2S» при скорости вращения планетарного диска - 500 об/мин, скорости вращения барабанов - 1200 об/мин., при отношении массы шаров к массе шихты - 45:1 в атмосфере аргона при Р=3 атм.

Диаметр шаров составлял 6 мм. Время обработки составляло 15 мин.

Пример 2. Шихту из оксидов диспрозия и гафния, взятых в эквимолярном соотношении (63,9 масс. %,. Dу2О3, 36,1 масс. % НfО2), подвергали обработке в шаровой планетарной мельнице «Активатор2S» при скорости вращения планетарного диска - 900 об/мин, скорости вращения барабанов - 1500 об/мин., при отношении массы шаров к массе шихты - 45:1 в атмосфере аргона при Р=4 атм. Диаметр шаров составлял 6 мм. Время обработки составляло 40 мин. Развивающаяся температура 900-1200°С в результате механоактивации смеси оксидов способствует образованию порошка гафната диспрозия.

Пример 3. Шихту из оксидов диспрозия и гафния, взятых в эквимолярном соотношении (63,9 масс. %,. Dу2О3, 36,1 масс. % НfO2), подвергали обработке в шаровой планетарной мельнице «Активатор2S» при скорости вращения планетарного диска - 900 об/мин, скорости вращения барабанов - 1500 об/мин., при отношении массы шаров к массе шихты - 45:1 в атмосфере аргона при Р=4 атм. Диаметр шаров составлял 6 мм. Время обработки составляло 60 мин.

Изготовленный механохимическим способом (пример 2) нейтронопоглощающий материал представляет собой однофазную керамическую композицию состава нанокристаллического Dy2HfO5 со структурой флюорита флюорита с параметром решетки

а=(5,2311±0,0012) А и размером частиц наноразмерного диапазона (15-80 нм).

В результате полученный указанным способом порошок гафната диспрозия имеет следующие характеристики:

Состав: Dy2O3 - 63,9 масс. %, НfO2 - 36,1 масс. %;

Насыпная плотность, г/см3 - 1,87-1,89;

Размер частиц, нм - 25-80, агломератов, нм - 200-300;

Относительная плотность спрессованных заготовок при давлениях 1000 и 1100 МПа, % - 93-94;

Теплопроводность в интервале температур 75-400°С механосинтезированных порошков гафната диспрозия составляет, Вт/(м⋅K) - 1,62-1,83;

Теплоемкость в интервале температур 75-400°С, Дж г-1K-1 - 0,32-0,458.

Высокая плотность и высокое содержание диспрозия в сочетании со структурой типа флюорита, а также значения теплопроводности и теплоемкости гарантируют более высокую радиационную и коррозионную стойкости гафната диспрозия по сравнению с титанатом диспрозия.

Способ изготовления порошков гафната диспрозия для поглощающих элементов ядерного реактора, отличающийся тем, что порошок композита получают путем механической активации смеси оксидов диспрозия и гафния, взятых в эквимолярном соотношении 63,9 мас.% оксида диспрозия и 36,1 мас.% оксида гафния, в шаровой планетарной мельнице при скорости вращения планетарного диска 900 об./мин, скорости вращения барабанов 1500 об./мин, при отношении массы шаров к массе шихты - 45:1 в атмосфере аргона при Р=4 атм в течение 40-60 мин, причем полученный порошок гафната диспрозия представляет собой однофазную керамическую композицию состава DyHfO со структурой флюорита и размером частиц 15-80 нм.
Источник поступления информации: Роспатент

Showing 281-290 of 322 items.
01.12.2019
№219.017.e8e8

Способ интенсификации дегазации угольного пласта

Изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов с целью повышения безопасности работ в угольных шахтах, а также для добычи метана из угольных пластов с последующим использованием его в промышленности. Для реализации способа бурят...
Тип: Изобретение
Номер охранного документа: 0002707825
Дата охранного документа: 29.11.2019
01.12.2019
№219.017.e90e

Тест-система для визуального полуколичественного иммунохроматографического анализа

Изобретение относится к устройствам для иммунохроматографического анализа и может быть использовано в биотехнологии и медицинской диагностике для полуколичественного визуального определения биологически активных веществ. Раскрыта тест-система для визуального полуколичественного...
Тип: Изобретение
Номер охранного документа: 0002707526
Дата охранного документа: 27.11.2019
12.12.2019
№219.017.ec05

Гибридная металлополимерная конструкция медицинского назначения

Изобретение относится к медицине. Гибридная металлополимерная конструкция для замещения костных дефектов трубчатых костей содержит сплошной внешний слой из сверхвысокомолекулярного полиэтилена и пористый слой из сверхвысокомолекулярного полиэтилена с размером пор 50-1000 мкм. Конструкция...
Тип: Изобретение
Номер охранного документа: 0002708528
Дата охранного документа: 09.12.2019
12.12.2019
№219.017.ec3f

Способ получения трехмерных изделий сложной формы со структурой нативной трабекулярной кости на основе высоковязкого полимера

Изобретение относится к способу получения трехмерных изделий сложной формы. Техническим результатом является наибольшее соответствие полученного изделия структуре нативной трабекулярной кости. Технический результат достигается способом получения трехмерных изделий сложной формы, который...
Тип: Изобретение
Номер охранного документа: 0002708589
Дата охранного документа: 09.12.2019
19.12.2019
№219.017.ef4f

Способ обработки технически чистого титана большой пластической деформацией

Изобретение относится к области получения наноструктурного технически чистого титана с повышенными механическими и коррозионными свойствами и способу его обработки и может быть использовано в различных областях техники, в том числе в химической промышленности. Способ обработки технически...
Тип: Изобретение
Номер охранного документа: 0002709416
Дата охранного документа: 17.12.2019
27.12.2019
№219.017.f2a1

Способ безуглеродного селективного извлечения цинка и свинца из пыли электросталеплавильного производства и устройство для его реализации

Изобретение относится к технологии и устройству для селективного получения цинка и свинца (или их оксидов) из пыли металлургического производства и отходов производства цинка аналогичного состава. Непрерывное безуглеродное селективное извлечение цинка и свинца из пыли электросталеплавильного...
Тип: Изобретение
Номер охранного документа: 0002710250
Дата охранного документа: 25.12.2019
13.01.2020
№220.017.f4b4

Способ выплавки среднеуглеродистого ферромарганца

Изобретение относится к черной металлургии и может быть использовано при выплавке среднеуглеродистого ферромарганца. В способе осуществляют расплавление марганцевого концентрата и дефосфорацию марганецсодержащего оксидного расплава путем продувки расплава газообразным монооксидом углерода, при...
Тип: Изобретение
Номер охранного документа: 0002710706
Дата охранного документа: 09.01.2020
17.01.2020
№220.017.f6a9

Импульсный стабилизатор напряжения с защитой от перегрузок по току

Предлагаемое изобретение относится к электротехнике и может быть использовано при создании блоков питания радиоаппаратуры и регулируемых микроэлектроприводов постоянного тока. Техническим результатом данного изобретения является повышение надежности функционирования и КПД за счет исключения...
Тип: Изобретение
Номер охранного документа: 0002711138
Дата охранного документа: 15.01.2020
27.01.2020
№220.017.fad5

Способ выплавки передельного малофосфористого марганцевого шлака с получением товарного низкофосфористого углеродистого ферромарганца

Изобретение относится к черной металлургии и может быть использовано при выплавке передельного малофосфористого марганцевого шлака с получением товарного низкофосфористого углеродистого ферромарганца. В способе осуществляют расплавление марганцевого концентрата в электропечи и последующую...
Тип: Изобретение
Номер охранного документа: 0002711994
Дата охранного документа: 23.01.2020
29.01.2020
№220.017.fb21

Способ лечения онкологических заболеваний с помощью инъекций лекарственного препарата

Изобретение относится к области медицины и может быть использовано при лечении онкологических заболеваний. Способ включает введение водосодержащей суспензии липосом одинакового диаметра с инкапсулированным противоопухолевым лекарственным препаратом. Перед введением суспензии липосом одинакового...
Тип: Изобретение
Номер охранного документа: 0002712212
Дата охранного документа: 27.01.2020
Showing 11-15 of 15 items.
01.06.2019
№219.017.722a

Способ получения порошковой смеси, готовой для прессования металлургических деталей

Изобретение относится к порошковой металлургии, в частности к получению порошковой смеси на основе железа, предназначенной для прессования металлургических деталей. Предварительно смешивают углеродсодержащую добавку и смазку на основе стератов меди, никеля, железа или марганца в соотношении...
Тип: Изобретение
Номер охранного документа: 0002690127
Дата охранного документа: 30.05.2019
20.06.2019
№219.017.8d37

Способ получения комплексно-легированной порошковой смеси, готовой для формования

Изобретение относится к порошковой металлургии, в частности к комплексно-легированной порошковой смеси, готовой для формования изделий. Распыленный порошок железа в течение 20-40 мин предварительно смешивают с распыленным порошком бронзы с размером частиц 30-100 мкм в количестве 0,1-2 мас.%. В...
Тип: Изобретение
Номер охранного документа: 0002692002
Дата охранного документа: 19.06.2019
02.10.2019
№219.017.cc39

Способ получения легированной порошковой смеси для изготовления порошковых конструкционных деталей ответственного назначения

Изобретение относится к порошковой металлургии, в частности к порошковой смеси на основе диффузионно-легированного порошка и ферросплавов. Может использоваться для изготовления порошковых конструкционных деталей ответственного назначения. Порошки ферросплавов измельчают до размера частиц не...
Тип: Изобретение
Номер охранного документа: 0002701232
Дата охранного документа: 25.09.2019
15.11.2019
№219.017.e235

Нанокомпозитные материалы на основе металлических псевдосплавов для контактов переключателей мощных электрических сетей с повышенными физико-механическими свойствами

Изобретение относится к области электротехники и нанотехнологии, в частности к разработке нанокомпозиционных электроконтактных, жаропрочных, электроэрозионностойких, электротехнических, наноструктурированных материалов на основе меди (Си), которые могут быть использованы в производстве силовых...
Тип: Изобретение
Номер охранного документа: 0002706013
Дата охранного документа: 13.11.2019
23.04.2023
№223.018.51e8

Способ получения композиционного электроконтактного материала cu-sic

Изобретение относится к порошковой металлургии, в частности к получению электротехнического композиционного материала на основе меди, содержащего частицы карбида кремния. Может использоваться в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и...
Тип: Изобретение
Номер охранного документа: 0002739493
Дата охранного документа: 24.12.2020
+ добавить свой РИД