×
15.02.2019
219.016.ba94

Результат интеллектуальной деятельности: Способ автоматической обработки крупногабаритных тонкостенных изделий

Вид РИД

Изобретение

Аннотация: Изобретение относится к области обработки, а именно обрезки технологических припусков, краев, заусенцев, вскрытию технологических окон и др., крупногабаритных тонкостенных изделий из металлов, конструкционных материалов, пластмасс и др. Изобретение позволяет сократить время на выполнение операций базирования и фиксации деталей, а также на формирование скорректированных траекторий их обработки с использованием эталонных CAD-моделей. Технический результат изобретения заключается в автоматизации процессов формирования скорректированных траекторий движения режущих инструментов после базирования и фиксации обрабатываемых изделий. При этом задание траекторий движения режущего инструмента выполняется на основе комплексирования данных, получаемых от используемой системы технического зрения и эталонных CAD-моделей изделий. 1 ил.

Изобретение относится к области обработки (обрезки технологических припусков, краев, заусенцев, вскрытию технологических окон и др.) крупногабаритных тонкостенных изделий из металлов, конструкционных материалов, пластмасс и др.

Известно устройство слежения за траекторией в реальном масштабе времени при лазерной сварке с помощью робота, которое содержит программируемый логический контроллер, робот, устройство управления лазерной сваркой и сенсор, содержащий видеокамеру и устройство для обработки видеоданных. Сенсор расположен на устройстве лазерной сварки, он получает данные о положении и форме заготовки с помощью видеокамеры и корректирует траекторию движения устройства для лазерной сварки в реальном масштабе времени (см. CN 204413407 (U), МПК B23K26/21, 24.06.2015).

Недостатком этого устройства является то, что для качественной сварки видеосистема всегда должна точно определять изображение стыка свариваемых изделий. По CAD-моделям сваривать две детали нельзя, так как их точное базирование в рабочей области робота в рассматриваемом устройстве не предусмотрено.

Известен способ базирования крупногабаритных обводообразующих деталей, их механической обработки и сборки, включающий автоматическую настройку дискретных опор подвижных секций, ориентирование обводообразующей детали и фиксацию ее на опорах с помощью вакуумных прихватов, а также механическую обработку детали, использующий стойку с упорами и приводами, связанными с системой ЧПУ, перед автоматической настройкой дискретных опор на основе математической модели обводообразующей детали определяют координаты по оси OY в ортогональной системе координат XYZ осей подвижных секций и углы их поворота, а также координаты по оси OX стойки в соответствующих позициях и координаты упоров по оси OY в указанных позициях, автоматическую настройку дискретных опор подвижных секций осуществляют путем установки в указанные позиции и поворота подвижных секций, последовательной установки в соответствующие позиции и поворота стойки, выдвижения упоров стойки по оси OY на расчетные значения, а также централизованного подвода к ним в каждой позиции и фиксации опор подвижных секций, ориентирование обводообразующей детали производят по двум базовым отверстиям, для механической обработки детали используют робототехнический комплекс, включающий промышленный робот с многофункциональной головкой, в процессе механической обработки производят обработку детали по контуру и сверление сборочных отверстий многофункциональной головкой по программе при последовательном позиционировании промышленного робота в заданных позициях, после чего осуществляют операции по сборке панели с использованием упомянутых сборочных отверстий обводообразующей детали и сверление отверстий в полученной в результате сборки панели с использованием многофункциональной головки (см. RU 2165836 (С2), МПК B23P21/00, 27.04.2001).

Этот способ по своей технической сущности является наиболее близким к предлагаемому изобретению. Однако при фиксации тонкостенных крупногабаритных изделий описанным выше способом очень часто происходит смещение их положения и изменение ориентации в рабочей зоне многостепенного манипулятора. В результате реальное положение и ориентация изделия после фиксации не совпадет с ее математической моделью. Поэтому при точной обработке каждой такой детали потребуется дополнительно осуществлять коррекцию управляющей программы робота, на которую будет затрачено значительное время.

Задачей изобретения является устранение указанного выше недостатка и, в частности, сокращение времени на выполнение операций базирования и фиксации деталей, а также на формирование скорректированных траекторий их обработки с использованием эталонных CAD-моделей.

Технический результат изобретения заключается в автоматизации процессов формирования скорректированных траекторий движения режущих инструментов после базирования и фиксации обрабатываемых изделий. При этом задание траекторий движения режущего инструмента выполняется на основе комплексирования данных, получаемых от используемой системы технического зрения и эталонных CAD-моделей изделий.

Поставленная задача решается тем, что способ автоматической обработки тонкостенных крупногабаритных изделий, включающий автоматическую настройку опор устройства фиксации на основе эталонной полигональной CAD-модели изделия, заданной в первой системе координат и содержащей траекторию обработки, которая представляет собой интерполяционную кривую, проходящую через базовые точки, загрузку этой модели в управляющую манипулятором ЭВМ, содержащую систему управления, с системой технического зрения, работающую в первой системе координат, ориентирование обрабатываемого изделия и фиксацию его с помощью вакуумных присосок опор в рабочей зоне манипулятора, задание посредством системы управления манипулятором режима движения рабочего инструмента, установленного на манипуляторе, с обеспечением заданной обработки изделия отличается тем, что посредством системы технического зрения получают трехмерную модель зафиксированного изделия в виде облака точек во второй системе координат, в которой работает система технического зрения, и пересчитывают координаты каждой точки полученного облака из второй системы координат в первую систему координат, в каждом полигоне эталонной полигональной CAD-модели после загрузки в управляющую ЭВМ находят его геометрический центр, который делит этот треугольник на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и так до тех пор пока общее количество точек на эталонной полигональной CAD-модели не станет сопоставимо с количеством точек в облаке, полученном от системы технического зрения, затем координаты вершин всех исходных и полученных треугольников сохраняют, формируя уплотненное облако точек, затем выполняют совмещение исходного и уплотненного облаков точек с помощью стандартного итеративного метода ICP (Iterative Closest Points) поиска ближайших точек, по итогам совмещения получают функцию с оптимальным параметром функции трансформации, применяют ее к координатам базовых точек траектории обработки и получают координаты базовых точек траектории обработки на зафиксированном крупногабаритном тонкостенном изделии, выполняют интерполяцию траектории по базовым точкам.

Сопоставительный анализ признаков заявляемого способа с признаками аналога и прототипа свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения предназначены для решения следующих функциональных задач.

Признак «…посредством системы технического зрения получают трехмерную модель зафиксированного изделия в виде облака точек во второй системе координат, в которой работает система технического зрения, и пересчитывают координаты каждой точки полученного облака из второй системы координат в первую систему координат …» обеспечивает автоматическое получение трехмерной модели обрабатываемого изделия и пересчет координат каждой точки из этого облака из системы координат, связанной с системой технического зрения, в систему координат, связанную с манипулятором. Если система технического зрения (оптический или лазерный сканеры, стереокамера и др.) не может захватить в один кадр все изделие сразу, то требуется линейное перемещение этой системы относительно этого изделия.

Признак «…в каждом полигоне эталонной полигональной CAD-модели после загрузки в управляющую ЭВМ находят его геометрический центр, который делит этот треугольник на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и так до тех пор пока общее количество точек на эталонной полигональной CAD-модели не станет сопоставимо с количеством точек в облаке, полученном от системы технического зрения, затем координаты вершин всех исходных и полученных треугольников сохраняют, формируя уплотненное облако точек…» обеспечивает автоматическую подготовку эталонной CAD-модели изделия к последующей обработке.

Признак «…выполняют совмещение исходного и уплотненного облаков точек с помощью стандартного итеративного метода ICP (Iterative Closest Points) поиска ближайших точек, по итогам совмещения получают функцию с оптимальным параметром функции трансформации, применяют ее к координатам базовых точек траектории обработки и получают координаты базовых точек траектории обработки на зафиксированном крупногабаритном тонкостенном изделии, выполняют интерполяцию траектории по базовым точкам…» обеспечивает автоматическое формирование точной траектории движения рабочего инструмента манипулятора после закрепления изделия с возможным изменением его положения и ориентации.

На фиг. схематически показан способ автоматической обработки крупногабаритных тонкостенных изделий, где введены следующие обозначения: 1 – обрабатываемое изделие; 2 – опоры; 3 – устройство фиксации; 4 – первая система координат, в которой работает манипулятор; 5 – управляющая ЭВМ; 6 – многостепенной манипулятор; 7 – система управления манипулятора 6; 8 – вакуумные присоски; 9 – рабочий инструмент (лазер, устройство для гидроабразивного реза и др.); 10 – система технического зрения; 11 – вторая система координат, в которой работает система технического зрения 10.

Заявленный способ реализуется следующим образом.

С помощью системы 10 технического зрения сканируют закрепленное обрабатываемое изделие 1 и его координаты, полученные во второй системе 11 координат, запоминают в управляющей ЭВМ 5 в виде облака точек M. Если система 10 технического зрения не может сканировать крупногабаритное обрабатываемое изделие 1 одним кадром, то обеспечивают перемещение системы 10 технического зрения относительно изделия и делают несколько кадров, которые затем сшивают в управляющей ЭВМ 5, формируя единое облако М. После этого координаты каждой точки облака М, заданные во второй системе 11 координат, в управляющей ЭВМ 5 пересчитывают в первую систему 4 координат многостепенного манипулятора 6.

Затем с помощью управляющей ЭВМ 5 из базы данных выбирают полигональную CAD-модель обрабатываемого изделия 1, содержащую траекторию обработки, которая представляет собой интерполяционную кривую, проходящую через базовые точки. Эта полигональная модель представляет собой совокупность сегментов (поверхностей), описываемых набором треугольников, и содержит координаты всех вершин этих треугольников. Если оставить только координаты этих вершин, то полученное таким образом облако точек будет «разреженным». Его точки будут сосредоточены на изгибах модели и будут отсутствовать на более плоских участках. Это приведет к тому, что при последующем совмещении облака точек будут совмещаться с большими погрешностями.

Для уменьшения этих погрешностей требуется уплотнить облако точек, соответствующее CAD-модели. Для этого в каждом треугольнике, входящем в исходную полигональную CAD-модель, в зависимости от его площади генерируют дополнительные точки. Чем больше площадь треугольника, тем больше дополнительных точек генерируют. Для генерации дополнительных точек в каждом полигоне (треугольнике) CAD–модели выполняют следующие действия: находят его геометрический центр, который делит этот треугольник на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и т.д. Затем координаты вершин всех (исходных и полученных) треугольников сохраняют, формируя, таким образом, уплотненное облако точек D. Количество точек в нем должно быть сопоставимо с количеством точек в облаке М, полученном от системы 10 технического зрения.

Затем трехмерную модель закрепленного обрабатываемого изделия 1, полученную в виде облака точек М в первой системе 4 координат, сопоставляют с облаком точек D и, соответственно, с траекторией обработки. При этом для сопоставления (совмещения) двух указанных облаков точек используют типовую процедуру компьютерной графики. Для этого используют локализацию заданного объекта в трехмерной сцене, применяя метод ICP (Iterative Closest Points) совмещения двух трехмерных моделей, представленных в виде облаков точек. Входными данными для работы этого метода являются два облака точек. Первое (передвигаемое) - уплотненное облако точек D, полученное из эталонной CAD-модели, а второе - облако M, полученное при сканировании.

Математически задачу совмещения двух облаков точек с помощью метода ICP формулируют в виде:

, (1)

, (2)

где E – ошибка совмещения облаков точек;

- квадрат расстояния между точками в k-ой паре ближайших точек из облаков D и M;

и – точки из облаков D и M, соответственно;

Nd, Nm - количество точек в облаках D и M, соответственно, которое может быть различным;

T(a, D) – функция трансформации облака точек D в облако точек M;

a – параметр функции трансформации;

a* – оптимальный параметр функции трансформации, который минимизирует функционал (1).

Для определенности передвигаемым облаком является облако D и Nm ≤ Nd.

Как видно из (1) и (2), задача совмещения двух облаков точек формулируется как задача минимизации среднеквадратичного расстояния между точками в парах ближайших точек этих облаков. При этом в параметр a функции T(a, D) входят элементы матрицы поворота и вектора смещения. Последовательность выполнения ICP на каждой итерации состоит из следующих шагов.

Для каждой точки , ищется ближайшая точка . Облака точек M и D при их построении часто содержат различное количество точек. При этом одной точке одного облака может соответствовать несколько ближайших к ней точек другого облака. В этом случае для одной точки одного облака формируется столько пар точек сколько ближайших к ней точек расположено в другом облаке, то есть Nd ≤ Nk.

Затем выполняется новый расчет параметра a функции T(a, D) с помощью известных способов численной оптимизации. После этого преобразование T(a, D) с новым параметром a применяется к облаку точек D. На следующем шаге с помощью выражения (1) рассчитывается ошибка E совмещения указанных облаков точек и сравнивается с предельным значением. Если полученное значение E для совмещаемых облаков точек М и D становится меньше предельного значения, то расчеты прекращаются. В противном случае указанные выше шаги расчетов продолжаются.

По итогам совмещения двух облаков получают функцию T(a*, D) трансформации облака точек D в облако точек M. Затем ее применяют к координатам базовых точек траектории обработки, заданной на исходной CAD-модели, и получают координаты базовых точек траектории обработки на зафиксированном в устройстве фиксации 3 обрабатываемого изделия 1, положение и ориентация которого отличается от исходной CAD-модели.

После интерполяции траектории по базовым точкам управляющая ЭВМ 5 включает режущий рабочий инструмент 9 и система управления 7 манипулятора 6 задает необходимый режим движения этого рабочего инструмента 9, обеспечивая обработку зафиксированного обрабатываемого изделия 1 с требуемой точностью по полученной траектории.

Реализация предложенного способа обработки крупногабаритных тонкостенных изделий из любых материалов не вызывает принципиальных затруднений, поскольку при его реализации используют только типовые системы и устройства.

Способ автоматической обработки тонкостенных крупногабаритных изделий, включающий автоматическую настройку опор устройства фиксации изделия на основе эталонной полигональной CAD-модели изделия, заданной в первой системе координат и содержащей траекторию обработки, которая представляет собой интерполяционную кривую, проходящую через базовые точки, загрузку этой модели в управляющую ЭВМ, содержащую систему управления манипулятором, с системой технического зрения, работающую в первой системе координат, ориентирование обрабатываемого изделия и фиксацию его с помощью вакуумных присосок упомянутых опор в рабочей зоне манипулятора, задание посредством системы управления манипулятором режима движения рабочего инструмента, установленного на манипуляторе, с обеспечением заданной обработки изделия, отличающийся тем, что посредством системы технического зрения получают трехмерную модель зафиксированного изделия в виде облака точек во второй системе координат, в которой работает система технического зрения, и пересчитывают координаты каждой точки полученного облака из второй системы координат в первую систему координат, в каждом полигоне эталонной полигональной CAD-модели после загрузки в управляющую ЭВМ находят его геометрический центр, который делит полигон в виде треугольника на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и так до тех пор пока общее количество точек на эталонной полигональной CAD-модели не станет сопоставимо с количеством точек в облаке, полученном от системы технического зрения, координаты вершин всех исходных и полученных треугольников сохраняют с формированием уплотненного облака точек, выполняют совмещение исходного и уплотненного облаков точек с помощью стандартного итеративного метода поиска ближайших точек ICP, по итогам совмещения получают функцию с оптимальным параметром функции трансформации, применяют ее к координатам базовых точек траектории обработки, получают координаты базовых точек траектории обработки на зафиксированном крупногабаритном тонкостенном изделии и выполняют интерполяцию траектории по базовым точкам.
Способ автоматической обработки крупногабаритных тонкостенных изделий
Источник поступления информации: Роспатент

Showing 141-150 of 171 items.
02.10.2019
№219.017.cf92

Способ хирургического лечения меланомы кожи

Изобретение относится к области медицины, а именно к онкологии, и может быть использовано для лечения больных меланомой кожи II-III стадии. Способ хирургического лечения меланомы кожи включает широкое иссечение первичной опухоли (ПО) и прилегающего к ней участка на удалении от ее края....
Тип: Изобретение
Номер охранного документа: 0002700680
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.cfaf

Сейсмоплатформа

Изобретение относится к области строительства, в частности к устройствам для проведения модельных испытаний строительных конструкций и их оснований, воспринимающих динамические нагрузки, и может быть использовано для оценки деформаций сооружений, их фундаментов и грунтовых оснований при...
Тип: Изобретение
Номер охранного документа: 0002700833
Дата охранного документа: 23.09.2019
12.10.2019
№219.017.d499

Способ получения антоцианового красителя из ягодного сырья

Изобретение относится к пищевой промышленности и может быть использовано для получения красного пищевого красителя из ягодного антоциансодержащего сырья, в частности ягод черной смородины.Cпособ получения антоцианового красителя из ягодного сырья включает измельчение ягод, их смешивание с...
Тип: Изобретение
Номер охранного документа: 0002702598
Дата охранного документа: 08.10.2019
15.10.2019
№219.017.d57f

Способ дистанционного контроля технического состояния электроэнергетических объектов

Изобретение относится к дистанционным способам шумовой и квазишумовой диагностики дефектности электроэнергетических (ЭЭ) объектов и предназначено для построения промышленных информационно-измерительных комплексов контроля технического состояния таких объектов. Технический результат заключается...
Тип: Изобретение
Номер охранного документа: 0002702815
Дата охранного документа: 11.10.2019
15.10.2019
№219.017.d5da

Способ приготовления крема

Изобретение относится к кондитерской отрасли и может быть использовано для приготовления отделочного полуфабриката для тортов и пирожных. Предложенный способ включает пластификацию масла сливочного, его сбивание и смешивание с сахарной пудрой, сгущенным молоком, ванильной пудрой, вином...
Тип: Изобретение
Номер охранного документа: 0002702769
Дата охранного документа: 11.10.2019
15.10.2019
№219.017.d5e1

Способ создания скирмионов и их массивов в магнитной среде с помощью зонда сканирующего микроскопа

Изобретение относится к области электроники и наноэлектроники, а именно к способу создания скирмионов и их массивов в магнитных нано- и микроструктурах, а также пленках с взаимодействием Дзялошинского-Мория и перпендикулярной магнитной анизотропией с помощью воздействия магнитным зондом...
Тип: Изобретение
Номер охранного документа: 0002702810
Дата охранного документа: 11.10.2019
17.10.2019
№219.017.d61f

Состав для производства хлебобулочных изделий

Изобретение относится к пищевой промышленности.   Состав для производства хлебобулочных изделий содержит муку пшеничную хлебопекарную, дрожжи, соль поваренную пищевую, сахар и жидкость для замеса теста на основе гребешка. Жидкость для замеса теста в количестве 43% от массы муки содержит...
Тип: Изобретение
Номер охранного документа: 0002703199
Дата охранного документа: 15.10.2019
17.10.2019
№219.017.d650

Состав для приготовления крема

Изобретение относится к кондитерской отрасли и может быть использовано для приготовления отделочного полуфабриката для тортов и пирожных. Предложенный состав для приготовления крема включает масло сливочное, сахарную пудру, молоко сгущенное, пудру ванильную, вино десертное и красящий...
Тип: Изобретение
Номер охранного документа: 0002703153
Дата охранного документа: 15.10.2019
26.10.2019
№219.017.db4f

Способ получения кормового микробиологического белка

Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения кормового микробиологического белка, включающий предварительное получение культуры дрожжей Saccharomyces cerevisiae, которую добавляют к субстрату в форме шрота и воде, культивирование биомассы...
Тип: Изобретение
Номер охранного документа: 0002704281
Дата охранного документа: 25.10.2019
13.11.2019
№219.017.e09d

Реактор для контроля гидратообразования

Изобретение относится к области автоматического контроля условий гидратообразования природного газа и может быть использовано для изучения условий гидратообразования на различных материалах в условиях залежей углеводородов и магистральных трубопроводов. Заявлен реактор для контроля...
Тип: Изобретение
Номер охранного документа: 0002705707
Дата охранного документа: 11.11.2019
Showing 61-62 of 62 items.
04.07.2020
№220.018.2ede

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано при создании электроприводов манипуляторов. Задачей изобретения является обеспечение полной инвариантности динамических свойств рассматриваемого электропривода к непрерывным и быстрым изменениям его динамических моментных...
Тип: Изобретение
Номер охранного документа: 0002725449
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2f62

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано при создании электроприводов манипуляторов. Задачей изобретения является обеспечение полной инвариантности динамических свойств рассматриваемого электропривода к непрерывным и быстрым изменениям его динамических моментных...
Тип: Изобретение
Номер охранного документа: 0002725447
Дата охранного документа: 02.07.2020
+ добавить свой РИД