×
24.01.2019
219.016.b371

Результат интеллектуальной деятельности: Ионизационный датчик сигнализации наличия высотемпературной агрессивной среды

Вид РИД

Изобретение

Аннотация: Использование: для автоматической сигнализации наличия высокотемпературной агрессивной среды. Сущность изобретения заключается в том, что ионизационный датчик сигнализации наличия высокотемпературной агрессивной среды содержит средство закрепления на корпус объекта контроля, центральный изолированный металлический электрод с контактами для подключения к источнику переменного тока, электрод покрыт оксидной пленкой толщиной, обеспечивающей ток ионизации не менее 200 мкА. Технический результат: обеспечение возможности стабильности работы системы сигнализации. 5 з.п. ф-лы, 7 ил., 3 табл.

Изобретение относится к конструкции ионизационных датчиков для автоматической сигнализации наличия высотемпературной агрессивной среды, в частности, пламени и может быть применено в турбореактивных двигателях с форсажной камерой для сигнализации розжига форсажной камеры.

Наиболее близким по технической сущности и достигаемому результату является ионизационный датчик сигнализации наличия высотемпературной агрессивной среды, содержащий средство закрепления на корпус объекта контроля, центральный изолированный металлический электрод с контактами для подключения к источнику переменного тока,

/SU Авторское свидетельство №371599 МПК G08b 17/06 Опубл. 1973 г./

Недостатком использования известного датчика для сигнализации наличия пламени (горения или затухания среды) в форсажной камере турбореактивного двигателя с высокой температурой сгорания топлива является, образование оксидной пленки на поверхности датчика вследствии его окисления в окислительной атмосфере форсажной камеры. Достоверность сигнала снижается, повышается вероятность нарушения изоляции и обгорания электрода. Поэтому гарантированная продолжительность работы известного датчика не отвечает возросшим требованиям.

Задачей изобретения является повышение надежности и долговечности работы датчика.

Ожидаемый технический результат - повышение достоверности сигнала и продолжительности гарантированной работы.

Ожидаемый технический результат достигается тем, что известный ионизационный датчик сигнализации наличия высотемпературной агрессивной среды, содержащий средство закрепления на корпус объекта контроля, центральный изолированный металлический электрод с контактами для подключения к источнику переменного тока, по предложению, электрод покрыт оксидной пленкой толщиной, обеспечивающей ток ионизации не менее 200 мкА. Центральный изолированный электрод может быть выполнен из жаропрочного сплава, содержащего хром, никель, титан, алюминий, вольфрам, а оксидная пленка - из жаростойкой смеси оксидов циркония и итрия. Электрод может быть снабжен центральным каналом для подачи хладагента и, по меньшей мере, одним выпускным отверстием, выполненным на конце электрода, соединенным с центральным каналом и ориентированным по направлению перемещения агрессивной среды. Электрод может быть снабжен защитным кожухом охватывающим центральный изолированный электрод и образующим отводящий канал, соединенный с центральным каналом, при этом защитный кожух покрыт оксидной пленкой по наружной поверхности.

В процессе работы датчика на поверхности электрода при воздействии высокой температуры и окислительной атмосферы, образуется окисленный слой. Толщина слоя 0,001…0,030 мм. Омическое сопротивление между поверхностью электрода датчика и поверхностью слоя значительно возрастает. Максимальное значение омического сопротивления измерительного участка цепи достигает 200 МОм. По результатам рентгеноспектрального микроанализа, материал окисленного слоя, это продукты высокотемпературного окисления основного материала из которого изготовлен электрод датчика.

Результаты рентгеноспектрального анализа приведены в Таблице 1. По результатам рентгеноспектрального микроанализа, установлено, что материал окисленного слоя являются диэлектриком, а следовательно, участок электрической цепи для сигнализации наличия пламени от электрода до противоположного контакта, является участком обладающим смешанной (электронной и ионной) проводимостью.

Поэтому в процессе работы датчика в электрической цепи, от начала окисления до образования окисленного слоя определенной критической толщины, датчик работает удовлетворительно. Далее продукты окисления в окисленном слое, вступают во взаимодействие и образуют между собой шпинели и другие комплексные соединения, а диффузионные процессы окисления железа в слое обеспечивают дальнейшую передачу кислорода к электроду датчика. Постоянное изменение толпдины окисленного слоя, в результате частичного оплавления образованных в окисленном слое шпинелей или комплексных соединений, а также его повреждение (растрескивание) в результате аэродинамического воздействия продуктов сгорания на измерительный участок электрода приводит к нестабильности работы цепи и даже к обгоранию электрода.

В предложенном решении предлагается электрод покрыть защитной оксидной пленкой, для того чтобы исключить процессы высокотемпературного окисления электрода, частично предотвратить процессы тепловой коррозии и путем нормирования толщины слоя оксидной пленки обеспечить ток ионизации в участке сети не менее 200 мкА, что позволит сохранить параметры систем автоматики например: летательного аппарата без перенастройки.

В предложенном решении допускается выполнять центральный изолированный электрод в виде стержня из жаропрочного сплава, содержащего. Cr, Ni. Ti, W, Со, Mo, Nb, Al, В, Mn, а также снабжать его центральным каналом для подачи хладагента с, по меньшей мере, одним выпускным отверстием, выполненным на конце электрода, соединенным с центральным каналом и ориентированным по направлению перемещения агрессивной среды. Подача хладагента по оси электрода позволяет охлаждать наконечник электрода, а поскольку хладагент является изолятором, ориентирование отверстия по направлению перемещения агрессивной среды предотвращает возникновение электрического контакта с внутренней поверхностью электрода в обход защитной оксидной пленки.

Датчик может быть снабжен защитным кожухом, охватывающим центральный изолированный электрод. Кожух соединен с электродом и образует отводящий канал, соединенный с центральным каналом. Объем полостей подводящего и отводящего каналов выбирают с учетом теплового расширения подаваемого хладагента. В этом случае оксидной пленкой покрыт защитный кожух по наружной поверхности.

Датчик для ионизационной сигнализации наличия высотемпературной агрессивной среды приведен на чертежах.

На Фиг. 1 - схема датчика с неохлаждаемым электродом;

На Фиг. 2 - схема датчика с охлаждаемым электродом;

На Фиг. 3 - схема датчика с проточным охлаждением электрода;

На Фиг. 4 - схема соединения полости отводящего канала со штуцером;

На Фиг. 5 - схема участка электрической цепи;

На Фиг. 6 - график зависимости тока ионизации от толщины оксидного слоя.

На Фиг. 7 - график зависимости для определения нормированной величины тока ионизации от толщины оксидного слоя.

Датчик содержит электрод 1, средство закрепления 2 на корпусе объекта контроля, оксидную пленку 3, токоподвод 4, соединенный с электродом 1 и электрически изолированный диэлектрическими прокладками 5 и изоляторами 6. При выполнении датчика охлаждаемым, датчик содержит штуцер 7 подвода хладагента и центральный подводящий канал 8, соединенный с ним. На конце электрода выполнено выпускное отверстие 9 соединенное с каналом 8. В другом варианте выполнения охлаждения, датчик дополнительно содержит кожух 10, установленный вокруг центрального изолированного электрода 1 с образованием отводящего канала 11, полость которого соединена со щтуцером отвода хладагента 12.

Датчик работает в составе участка электрической цепи, когда сигнализация наличия пламени осуществляется с учетом экранирования рабочей части электрода диэлектрическим оксидным слоем. Участок электрической цепи содержит (Фиг. 5) электрод 1, средство закрепления 2 на корпусе объекта, оксидную пленку 3, соединенные с помощью токоподводов и проводов 4 с сигнализатором 16 и контактами 15 источника переменного тока.

Электрическая цепь представлена как конденсатор с металлическим электродом под слоем оксида - диэлектрика между обкладками (участок 3 с преобладающей ионной проводимостью) и участок пламени 13 и 14 с электронной проводимостью. Слой 13 является ломинарным слоем движущихся продуктов сгорания в камере сгорания (форсажа). Поскольку слои 13 и 14 обладают практически одинаковой с токоподводами и проводами 4 электронной проводимостью, то слой 13 является второй обкладкой конденсатора, которая начинает работать при появлении продуктов сгорания между слоем 3 и контактом 2. Поэтому нестабильность работы цепи зависит от состояния окисленного слоя 3 и тока ионизации на участке сети. Конструктивные параметры, технологические условия работы датчика, а также параметры используемые при определении величины нормированного тока ионизации приведены в Таблице 2.

Предложенную величину нормированного тока ионизации на участке сети равную, не менее 200 мкА, устанавливали по методике.

Последовательно определяли:

Рабочую площадь S соприкосновения электрода с пламенем на режиме малого форсажа (МФ):

где Rэ - внешний радиус электрода, м;

L - длина рабочего участка электрода, м

Объем V рассматриваемой смеси оксидов:

где d - толщина окисленного слоя, м.

Массу М оксидов смеси в объеме участка окисленного слоя вычисляли из уравнения:

где k - доля массы i - вида оксида в слое;

ρi - плотность элемента образующего оксид;

М - масса оксидов окисленного слоя.

По результатам рентгеноспектрального анализа (см. Таблица 1) определяли долю массы i - вида оксида в слое. С учетом этих значений уравнение (3) имеет вид:

Используя уравнение для вычисления объемной доли каждого оксида в слое:

и уравнения для определения объема каждого i-го оксида:

при совместном решении уравнений 4, 5, 6 установили М - массу оксидов окисленного слоя.

В Таблице 3 представлены расчетные данные и сведения необходимые для расчета реактивного сопротивления слоя.

Окисленный слой, является сложным диэлектриком, представляющим собой смесь химически не взаимодействующих друг с другом компонентов с различными диэлектрическими проницаемостями, обобщенную диэлектрическую проницаемость ε* материала слоя в первом приближении определяли на основании уравнения Лихтенеккера:

Таким образом:

где εi - диэлектрическая проницаемость компонентов слоя;

yi - доля объема компонента в слое.

Определяли электрическую емкость С и реактивное сопротивление ХС участка цепи с диэлектрической прослойкой d=0,03 мм

где ε0=8,85*10-12 ф/м - электрическая постоянная - диэлектрическая проницаемость вакуума;

d - максимальная толщина слоя оксида - 0,00003, м

Реактивное сопротивление переменному электрическому току ХС составит:

где f - частота синусоидального питающего напряжения, Гц.

Удельную электрическую проводимость пламени в форсажной камере (ФК) (в предположении, что пламя в форсажной камере (ФК) - полностью ионизированная плазма с температурой ≈1500°C в некотором приближении определяли по формуле Л. Спицера:

где lnΔ=4…11 - кулоновский логарифм, принимали lnΔ=8 σ=111,1 См/м

Удельное электрическое сопротивление пламени, Rпу

Электрическое сопротивление участка пламени сечением S=0,0005652 м2 длиной l=0,061 м (расстояние от электрода до стабилизатора пламени), Rп составляет

Так как удельное электрическое сопротивление литой стали

Rпуст=1,3*10-7 ом*м (0,13 Ом*мм2/м), электрическое сопротивление трубчатого электрода при D=2Rэ=6 мм и dвнутр=2rвнутр=5 мм при температуре 20°C вычисляется по формуле:

где Lэ - полная длина электрода.

При средней температуре t=1200°C:

Приведенные преобразования показывают, что электрическое сопротивление электрода несоизмеримо меньше реактивного сопротивления слоя и электрического сопротивления пламени и его можно не учитывать в расчете.

В соответствии с законом Ома для участка цепи, содержащего реактивную составляющую:

Величина тока в цепи: электрод-корпус форсажной камеры (ФК), при наличии пламени в зоне размещения рабочей части электрода, Iдпи:

где Um=120 В - питающее напряжение.

Сводная формула для определения зависимости тока от толщины оксидного слоя контактной площади электрода имеет вид:

Используя данное выражение (17), определили зависимость тока ионизации в оксидном слое от толщины слоя, на всем интервале значений Rэ - внешних радиусов электрода и L - длин рабочего участка электрода. График зависимости приведен на Фиг. 6.

Анализ зависимостей показал, что величина тока ионизации, передаваемого через оксидный слой, зависит от площади рабочего участка электрода и резко снижается с ростом толщины оксидного слоя, при этом на рабочих участках электрода с минимальной (5 мм) длиной участка при толщине оксидного слоя 0,15-0,25 мм наблюдается значимое приближение к порогу срабатывания сигнализации о наличии/отсутствии зажигания при режиме малого форсажа (МФ=45…60 мкА).

Зависимости тока ионизации от толщины оксидного слоя показывают, что в пределах рассматриваемых параметров Rэ - внешних радиусов электрода и L - длин рабочего участка электрода, (см. Таблица 2) все значения находятся в интервале зависимостей 1, (где Rэ=6 мм, L=50 мм) и 4 (где Rэ=3 мм, L=5 мм). Следовательно, для установления нормированного значения тока ионизации и предельной величины диэлектрического слоя достаточно рассмотреть зависимость 4 (Rэ=3 мм, L=5 мм). График зависимости приведен на Фиг. 7. Из графика зависимости следует, что для достижения тока ионизации 200 мкА, обеспечивающего хорошее электрическое соединение датчика толщина диэлектрического окисленного слоя не должна превышать 0, 130 мм (130 мкм).

В рамках предложения в качестве диэлектрической пленки может использоваться любая керамическая пленка препятствующая поступлению кислорода к электроду. Использование жаростойкой пленки для защиты электрода от оксидирования (при напылении на электрод) оксида циркония ZnO2 легированного оксидом итрия Y2O3 толщиной менее 120 мкм, расчетная величина тока на длине L=5 мм от края наконечника составит 261-196 мкА. При увеличении частоты питающего напряжения амплитуда тока ионизации увеличивается.

При разработке датчиков для конкретных условий следует учитывать зависимости диэлектрической проницаемости от температуры. Диэлектрическая проницаемость почти всех твердых оксидных диэлектриков с ростом температуры среды увеличивается, что в нашем случае увеличит ток ионизации и будет способствовать обеспечению хорошего электрического соединения и повышению надежности работы датчика.

Для сохранения конструктивных свойств датчика и снижения вероятности обгорания электрода в предложении предусмотрена возможность охлаждения электрода датчика воздухом, отбираемым например: от компрессора или на выходе из вентилятора авиадвигателя. При этом в случае проточного охлаждения (конструкция датчика Фиг. 3) при механическом повреждении кожуха в процессе работы его можно снять с датчика и продолжить его работу с датчиком до завершения периода эксплуатации двигателя.

Датчик работает следующим образом.

При отсутствии в форсажной камере пламени электрический контакт между, изолированным от корпуса форсажной камеры, электродом 1 датчика и корпусом форсажной камеры отсутствует, электрическая цепь сигнализатора наличия пламени разомкнута. Электрод 1 и корпус форсажной камеры 2 находятся под напряжением переменного тока. При зажигании и горении топливовоздушной смеси между электродом 1, покрытым тонкой керамической пленкой 3 и корпусом форсажной камеры 2 при подведении к ним посредством кабелей 4 напряжения переменного тока, за счет проводящих свойств пламени и диэлектрических свойств керамической пленки 3 появляется электрический контакт, вследствие чего электрическая цепь сигнализатора наличия пламени замыкается на нагрузку (лампочка, резистор и т.п.), что позволяет оценить эффективность горения.

Наличие керамической пленки на корпусе электрода обеспечивает защиту материала электрода от окисления и тем самым длительную, надежную и стабильную работу системы сигнализации наличия форсажного режима.

Применение предложения позволяет:

- существенно увеличить ресурс датчика за счет исключения контакта материала электрода с агрессивной средой продуктов сгорания углеводородного топлива посредством жаростойкой керамической пленки;

- обеспечить стабильность работы системы сигнализации форсажа за счет неизменности толщины керамического покрытия электрода датчика, нейтрального к воздействию агрессивной рабочей среды;

- повысить безопасность взлетного режима объекта на форсаже за счет достоверности информации летному составу по режиму работы двигателя (двигателей) объекта;

- снизить затраты на поиск и устранение неисправностей, связанных с нестабильностью работы системы сигнализации форсажа;

- сэкономить топливо за счет снижения количества запусков и форсажей для проверки системы сигнализации форсажа в процессе поиска и устранения неисправностей;

- обеспечить экономию топлива за счет надежной сигнализации розжига форсажного режима и исключения повторных подач топлива в форсажную камеру автоматикой двигателя;

- расширить сортамент применения жаропрочных сплавов для изготовления тела электрода, в том числе из материалов не стойких к коррозии.


Ионизационный датчик сигнализации наличия высотемпературной агрессивной среды
Ионизационный датчик сигнализации наличия высотемпературной агрессивной среды
Ионизационный датчик сигнализации наличия высотемпературной агрессивной среды
Ионизационный датчик сигнализации наличия высотемпературной агрессивной среды
Ионизационный датчик сигнализации наличия высотемпературной агрессивной среды
Ионизационный датчик сигнализации наличия высотемпературной агрессивной среды
Ионизационный датчик сигнализации наличия высотемпературной агрессивной среды
Ионизационный датчик сигнализации наличия высотемпературной агрессивной среды
Источник поступления информации: Роспатент

Showing 81-90 of 110 items.
17.10.2019
№219.017.d677

Способ генерации излучения газодинамического лазера интегрированного в единую конструкцию газотурбинного двигателя и газотурбинный двигатель для его осуществления

Изобретение относится к лазерной технике и может быть использовано при создании технологических лазерных систем, интегрированных в конструкцию газотурбинного двигателя. Способ генерации излучения газодинамического лазера интегрированного в единую конструкцию газотурбинного двигателя включает...
Тип: Изобретение
Номер охранного документа: 0002702921
Дата охранного документа: 14.10.2019
01.11.2019
№219.017.dbf6

Способ испытаний авиационного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, к авиационным двигателям типа газотурбинных, а именно к способам испытаний при их создании, экспериментальной доводке характеристик опытного и промышленного экземпляров и эксплуатации. В известном способе испытаний авиационного...
Тип: Изобретение
Номер охранного документа: 0002704583
Дата охранного документа: 29.10.2019
10.11.2019
№219.017.e008

Маслосистема авиационного газотурбинного двигателя с форсажной камерой

Изобретение относится к области машиностроения и касается устройства маслосистемы авиационного газотурбинного двигателя (далее ГТД) с форсажной камерой, устанавливаемого на сверхзвуковые маневренные самолеты. Технический результат изобретения - повышение надежности работы ГТД путем упрощения...
Тип: Изобретение
Номер охранного документа: 0002705501
Дата охранного документа: 07.11.2019
13.11.2019
№219.017.e11c

Система управления расходом топлива в газотурбинный двигатель

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления авиационными ГТД для регулирования расхода топлива в КС. Техническим результатом настоящего изобретения является повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002705694
Дата охранного документа: 11.11.2019
21.11.2019
№219.017.e425

Система охлаждения затурбинных элементов трехконтурного турбореактивного двигателя

Система охлаждения затурбинных элементов трехконтурного турбореактивного двигателя содержит компрессор низкого давления, канал второго контура, вход в который сообщен с выходом из компрессора низкого давления, а выход - с затурбинной полостью. Система охлаждения затурбинных элементов снабжена...
Тип: Изобретение
Номер охранного документа: 0002706524
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e459

Способ испытаний газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний газотурбинных двигателей (ГТД). При осуществлении предложенного способа ГТД выводят на максимальный режим работы. Для двигателя с нерегулируемым реактивным соплом до начала испытаний для не менее чем трех...
Тип: Изобретение
Номер охранного документа: 0002706513
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e45c

Способ очистки газотурбинного двигателя

Изобретение относится к области эксплуатации газотурбинных двигателей в промышленности в качестве привода газоперекачивающих агрегатов, в частности, к способам, связанным с необходимостью очистки проточных частей и внутренних каналов газотурбинных двигателей от загрязнений и топливных осаждений...
Тип: Изобретение
Номер охранного документа: 0002706516
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e45e

Способ контроля технического состояния газотурбинного двигателя во время его эксплуатации

Изобретение относится к области эксплуатации газотурбинных двигателей (ГТД), а именно к контролю их технического состояния во время эксплуатации для принятия решения по их обслуживанию и дальнейшей эксплуатации. Способ контроля технического состояния ГТД во время его эксплуатации включает...
Тип: Изобретение
Номер охранного документа: 0002706523
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e47c

Имитатор топливного коллектора

Изобретение относится к установкам стендов полунатурного моделирования с замкнутой топливной системой для испытаний систем автоматического управления, в частности газотурбинного двигателя (ГТД), и может быть использовано для моделирования процессов заполнения или опорожнения топливных...
Тип: Изобретение
Номер охранного документа: 0002706522
Дата охранного документа: 19.11.2019
24.11.2019
№219.017.e626

Стенд для комплексных испытаний двигательных и самолетных агрегатов газотурбинного двигателя

Изобретение относится к машиностроению, в том числе к газотурбиностроению, а именно к испытательной технике, в частности к стендам полунатурного моделирования испытаний агрегатов и систем, и может быть использовано при ресурсных испытаниях с имитацией эксплуатационных режимов нагружения...
Тип: Изобретение
Номер охранного документа: 0002706829
Дата охранного документа: 21.11.2019
Showing 11-13 of 13 items.
12.12.2018
№218.016.a592

Стенд для проверки на герметичность мест заделки измерительных линий датчиков температуры

Изобретение относится к области исследования устройств на герметичность и может быть использовано для проверки на герметичность мест заделки измерительных линий датчиков температуры. Сущность: стенд содержит ванну (1) с жидкостью (2), площадку (3), установленную с возможностью перемещения...
Тип: Изобретение
Номер охранного документа: 0002674412
Дата охранного документа: 07.12.2018
13.11.2019
№219.017.e102

Сигнализатор температуры и магнитных продуктов износа в системе смазки

Изобретение относится к авиационной технике, а именно к устройствам контроля и сигнализации газотурбинных двигателей. Сигнализатор температуры и магнитных продуктов износа в системе смазки содержит корпус с установленным в нем с зазором постоянным магнитом и электрическую цепь с источником...
Тип: Изобретение
Номер охранного документа: 0002705699
Дата охранного документа: 11.11.2019
24.06.2020
№220.018.2a3d

Способ упрочнения элементов турбомашины металломатричным композитом и установка для его осуществления

Изобретение относится к способам получения металлических композиционных материалов на основе интерметаллида титана, армированных высокомодульными волокнами, применяемых в авиационной технике, в частности, для упрочнения элементов газотурбинных двигателей, а также относится к установкам для...
Тип: Изобретение
Номер охранного документа: 0002724226
Дата охранного документа: 22.06.2020
+ добавить свой РИД