×
11.01.2019
219.016.ae9c

Результат интеллектуальной деятельности: Способ тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию

Вид РИД

Изобретение

Аннотация: Изобретение относится к тестированию характеристик цеолитных материалов, в частности к оценке устойчивости к дезактивации в каталитических реакциях. Предварительно проводят нагрев цеолитного катализатора в реакторе в потоке газа-носителя, инертного в процессе олигомеризации, после чего осуществляют процесс каталитической олигомеризации под давлением в три стадии. На первой и третьей стадиях процесс ведут при 380-450°С, а на второй стадии при 450-600°С. Предложены параметры проведения упомянутых трех стадий. После проведения первой и третьей стадии определяют значения степени конверсии, и по разности между полученными значениями оценивают устойчивость тестируемого катализатора к дезактивации. Изобретение обеспечивает возможность проведения экспресс-тестирования, позволяющего за несколько часов оценить устойчивость к дезактивации тестируемого образца. 3 з.п. ф-лы, 1 табл., 9 пр.

Заявленное изобретение относится к тестированию характеристик цеолитных материалов, в частности к оценке их устойчивости к дезактивации в каталитических процессах.

Из уровня техники известны способы определения устойчивости катализаторов к дезактивации путем разработки подробной математической модели, описывающей работу катализатора. Далее экспериментально определяются параметры, необходимые для численного решения математических уравнений. После этого модель может быть использована для предсказания работы катализатора в тех или иных условиях.

Разработана математическая модель, описывающая работу катализатора гидроочистки с оценку его устойчивости к дезактивации путем проведения сложных математических расчетов (L.E. Kallinikos, G.D.B., N.G. Papayannakos, Study of the catalyst deactivation in an industrial gasoil HDS reactor using a mini-scale laboratory reactor. Fuel, 2008. 87: p. 2444-2449.).

Недостатком данного подхода является то, что для подтверждения правильности математической модели необходимо провести сравнение расчетных результатов с реальными показателями, достигнутыми в пилотных или промышленных реакторах. Кроме того, известный метод рекомендован только для катализаторов процесса гидроочистки.

Известны способы определения устойчивости катализаторов к дезактивации путем исследования свежего и дезактивированного образцов катализатора. Дезактивированный образец получают либо в реальных условиях промышленных испытаниях, либо подвергают специальной процедуре ускоренной дезактивации.

Например, известен способ тестирования скорости дезактивации катализаторов Фишера-Тропша и их предшественников. Согласно известному способу скорость дезактивации вычисляют с помощью линейно-регрессионного анализа конверсии СО в процентах от времени работы в течение от 24 часов до 160 часов (RU 2603136, 2016)..

Известный способ является продолжительным и трудоемким и предназначен для тестирования только катализаторов Фишера-Тропша.

Известна оценка устойчивости к дезактивации катализаторов риформинга, предусматривающая осуществление ускоренной дезактивации. Для ускорения процесса дезактивации предложено проводить процесс коксообразования за счет сочетания высокой нагрузки по сырью и повышенной температуры реакции риформинга. (Н.М. Островский, Кинетика дезактивации катализаторов: Математические модели и их применение, Наука, 2001).

Известный способ пригоден для тестирования катализаторов риформинга, но не дает корректных результатов для катализаторов, используемых в реакциях олигомеризации.

В уровне техники не обнаружена известность способов тестирования устойчивости к дезактивации катализаторов высокотемпературной олигомеризации олефинов.

Задачей настоящего изобретения является разработка надежного способа экспресс-тестирования устойчивости к дезактивации цеолитных катализаторов олигомеризации олефинов в бензиновую фракцию.

Поставленная задача решается предложенным способом тестирования устойчивости к дезактивации цеолитных катализаторов высокотемпературной олигомеризации олефинов в бензиновую фракцию, который заключается в предварительном нагреве катализатора в реакторе в потоке газа-носителя, инертного в процессе олигомеризации, и последующем осуществлении процесса каталитической олигомеризации под давлением в три этапа. Причем на первом этапе в реактор подают сжиженную бутан-бутиленовую фракцию в потоке газа-носителя в течение 85-95 минут при температуре 380-450°С с отбором проб на анализ, по результатам которого определяют степень конверсии (К0), на втором этапе поднимают температуру в реакторе до 450-600°С и производят подачу в реактор при установленной температуре сжиженной бутан-бутиленовой фракции под давлением в потоке газа-носителя в течение 175-185 минут, на третьем этапе вновь снижают температуру до 380-450°С и при установленной температуре подают сжиженную бутан-бутиленовую фракцию под давлением в потоке газа-носителя в течение 85-95 минут с отбором газовой и жидкой проб на анализ, по результатам которого определяют степень конверсии (К1), после чего вычисляют разность ΔК=К01, при этом чем ниже полученное значение ΔК, тем выше устойчивость катализатора к дезактивации.

Предпочтительно, процесс олигомеризации проводят под давлением 0,3-2,0 МПа, при расходе бутан-бутиленовой фракции 5-50 мл/ч, расходе метана 5-50 мл/мин.

Предпочтительно, тестированию подвергают катализатор с размером частиц 0,25-0,5 мм.

Предпочтительно, в качестве газа-носителя используют метан.

Техническим результатом изобретения является обеспечение возможности проведения надежного экспресс-тестирования катализаторов олигомеризации, позволяющего за несколько часов эксперимента осуществить сравнительную оценку устойчивости к дезактивации различных цеолитных катализаторов олигомеризации.

Следует заметить, что в настоящее время на практике для выбора катализатора олигомеризации, обладающего лучшей устойчивостью к дезактивации в данном процессе, осуществляют олигомеризацию олефинов в бензиновую фракцию в реальных условиях олигомеризации до заданной степени дезактивации катализатора, что занимает не менее нескольких недель тестирования.

Надежность предлагаемого способа проверена на большинстве используемых цеолитных катализаторах олигомеризации. Для испытанных катализаторов экспериментально определены параметры проведения ускоренного процесса олигомеризации, в котором на поверхности катализатора образуются коксовые отложения, свойства которых аналогичны свойствам коксовых отложений, образующихся в реальных условиях проведения процесса. Нами было обнаружено, что для различных типов цеолитов, используемых в качестве катализаторов олигомеризации, заявленные параметры (температура и время) поэтапной дезактивации, при которых реализуются процессы образования легкого кокса, представленного полиалифатическими углеводородами, и тяжелого кокса, представленного поликондесироваными ароматическими соединениями, находятся при близких значениях параметров. Проведение предварительных экспериментов на ряде цеолитов позволило нам выбрать параметры предложенного способа тестирования, являющиеся существенными для возможности реализации назначения изобретения с достижением заявленного результата.

Ниже представлены примеры определения устойчивости к дезактивации цеолитных катализаторов олигомеризации, содержащие цеолиты различных структурных типов и связующее (оксид алюминия), заявленным способом тестирования.

Длительность одного экспресс-анализа не превышает 8 часов.

Пример 1.

1.1 Загрузка катализатора

В реактор загружают 0,6 см3 катализатора олигомеризации, содержащего в качестве активного компонента цеолит структуры MFI и в качестве связующего оксид алюминия. Для испытаний используют фракцию 0,25-0,5 мм. Затем реактор герметизируют, опрессовывают азотом при давлении 2 МПа.

1.2 Предобработка

Устанавливают расход метана 100 мл/мин и продувают реактор в течение 10 минут. Затем повышают давление в реакторе до 1,5 МПа за счет потока метана, после чего снижают расход метана до 10 мл/мин. Устанавливают нагрев реактора до 380°С со скоростью 15°/мин и нагрев испарителя до 200°С, устанавливают температуру в сепараторе на уровне 15°С.После достижения температуры в реакторе 380°С выдерживают катализатор в токе метана в течение 15 минут.

1.3 Определение начальной активности катализатора

Устанавливают расход сжиженного ББФ 10 мл/ч. (и продолжают подавать 10 мл/мин метана, который выступает в качестве внутреннего стандарта). Корректируют температуру в слое катализатора, если из-за его разогрева температура в слое изменится более чем на 1°С по сравнению с целевым значением 380°С. Через 90 минут после начала подачи ББФ отбирают пробу олигомеризата и анализируют с помощью хроматографического анализа олигомеризат и газовые продукты. По результатам анализа определяют начальную степень конверсии (К0).

После отбора газовой и жидкой проб и начала их анализа отключают подачу ББФ и увеличивают расход метана до 100 мл/мин. Увеличивают температуру в реакторе до 550°С, после чего снижают расход метана до 10 мл/мин.

1.4 Ускоренная дезактивация катализатора в жестких условиях Устанавливают расход сжиженного ББФ 10 мл/ч. Выдерживают катализатор в условиях ускоренной дезактивации в течение 180 мин.

Затем отключают подачу ББФ и увеличивают расход метана до 100 мл/мин. Снижают температуру в реакторе до 380°С, после чего снижают расход метана до 10 мл/мин.

1.5 Определение активности катализатора после ускоренной дезактивации Устанавливают расход сжиженного ББФ 10 мл/ч. Корректируют температуру в слое катализатора, если из-за его разогрева температура в слое изменится более чем на 1°С по сравнению с целевым значением 380°. Через 90 минут после начала подачи ББФ отбирают пробу олигомеризата и анализируют с помощью хроматографического анализа олигомеризат и газовые продукты. По результатам анализа определяют степень конверсии дезактивированного катализатора (K1).

Показатели процесса представлены в таблице 1.

Пример 2.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве активной фазы катализатора используют цеолит структуры MOR.

Показатели процесса представлены в таблице 1.

Пример 3.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве активной фазы катализатора используют цеолит структуры ВЕА.

Показатели процесса представлены в таблице 1.

Пример 4.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве активной фазы катализатора используют цеолит структуры FAU. Показатели процесса представлены в таблице 1.

Пример 5.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что в качестве инертного газа используют гелий.

Показатели процесса представлены в таблице 1.

Пример 6.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что определение активности катализатора до и после ускоренной дезактивации проводят при температуре 450°С, а ускоренную дезактивацию - при 600°С.

Показатели процесса представлены в таблице 1.

Пример 7.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что стадию ускоренной дезактивации проводят при 450°С. Показатели процесса представлены в таблице 1.

Пример 8.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что процесс проводили при давлении 0,3 МПа, расходе бутан-бутиленовой фракции 5 мл/ч, расходе метана 50 мл/мин.

Показатели процесса представлены в таблице 1.

Пример 9.

Тестирование катализатора ведут как в примере 1, отличие состоит в том, что процесс проводили при давлении 2,0 МПа, расходе бутан-бутиленовой фракции 50 мл/ч, расходе метана 5 мл/мин.

Показатели процесса представлены в таблице 1.

Приведенные примеры 1-9 подтверждают, что заявленный способ тестирования позволяет быстро и точно провести сравнение стабильности работы различных цеолитных катализаторов в процессе олигомеризации олефинов. Результаты проведенного тестирования позволяют выбрать наиболее эффективный катализатор для данного процесса, который обладает приемлемой степенью конверсии и наибольшей устойчивостью к дезактивации.

Источник поступления информации: Роспатент

Showing 1-2 of 2 items.
04.04.2018
№218.016.3052

Способ получения бензиновых фракций углеводородов из олефинов

Изобретение относится к способу получения бензиновых фракций углеводородов путем контактирования олефинсодержащих фракций с цеолитсодержащим катализатором. При этом используют катализатор типа ZSM-5 с дезактивированной внешней поверхностью, полученный обработкой Н-формы цеолита ZSM-5...
Тип: Изобретение
Номер охранного документа: 0002644781
Дата охранного документа: 14.02.2018
14.02.2019
№219.016.b9f9

Установка твердокислотного алкилирования

Изобретение относится к установке твердокислотного алкилирования, содержащей блок подготовки сырья, включающий депропанизатор, блок алкилирования, включающий реактор со слоями катализатора, каждый из которых снабжен линией подвода сырья, а также линию отвода продуктовой смеси в блок разделения...
Тип: Изобретение
Номер охранного документа: 0002679624
Дата охранного документа: 12.02.2019
Showing 41-50 of 66 items.
24.05.2019
№219.017.60ae

Способ идентификации источника выброса вредных веществ в атмосферу

Настоящий способ решает задачу оперативного выявления источника несанкционированного выброса в атмосферу при аварии или криминальной врезке после обнаружения факта несанкционированного выброса. Технический результат, достигаемый при осуществлении способа, заключается в упрощении и сокращении...
Тип: Изобретение
Номер охранного документа: 0002466433
Дата охранного документа: 10.11.2012
29.05.2019
№219.017.62a1

Способ получения 1,3-бутадиена

Предложен способ получения бутадиена-1,3, включающий взаимодействие формальдегидсодержащего сырья с пропиленом в присутствии твердофазного катализатора в условиях газофазной конденсации при атмосферном давлении. В качестве катализатора используют гетерополикислоту, выбранную из ряда:...
Тип: Изобретение
Номер охранного документа: 0002688158
Дата охранного документа: 20.05.2019
19.07.2019
№219.017.b636

Способ каталитического окисления н-гексана

Предложен способ окисления н-гексана кислородом воздуха в оксопроизводные гексана и органические кислоты фракции С1-С4 в присутствии твердофазного катализатора. В качестве катализатора используют один из металлозамещенных алюмофосфатов МnАРО-5, СоАРО-5, МnАРО-18, СоАРО-18 или в качестве...
Тип: Изобретение
Номер охранного документа: 0002694829
Дата охранного документа: 17.07.2019
24.08.2019
№219.017.c352

Катализатор защитного слоя для переработки тяжелого нефтяного сырья

Настоящее изобретение относится к катализатору защитного слоя для переработки тяжелого нефтяного сырья. Катализатор представляет собой смесь γ- и δ-модификаций оксида алюминия, которая содержит макропоры, образующие пространственную структуру. Доля макропор с размером в диапазоне от 50 нм до 15...
Тип: Изобретение
Номер охранного документа: 0002698191
Дата охранного документа: 23.08.2019
27.08.2019
№219.017.c3ff

Бифункциональный катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления

Настоящее изобретение относится к бифункциональному катализатору защитного слоя процесса переработки тяжелого нефтяного сырья, а также к способу его получения. Катализатор содержит активный компонент и носитель. Носитель содержит оксид алюминия, а активный компонент представляет собой...
Тип: Изобретение
Номер охранного документа: 0002698265
Дата охранного документа: 26.08.2019
07.09.2019
№219.017.c88a

Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления

Изобретение относится к катализаторам, используемым в процессах гидропереработки тяжелого нефтяного сырья и остатков. Катализатор защитного слоя для переработки тяжелого нефтяного сырья, содержащий активный компонент и носитель, в качестве носителя содержит оксид алюминия, а в качестве...
Тип: Изобретение
Номер охранного документа: 0002699354
Дата охранного документа: 05.09.2019
26.10.2019
№219.017.dae1

Способ переработки тяжелого нефтяного сырья на защитном слое бифункционального катализатора

Изобретение раскрывает способ переработки тяжелого нефтяного сырья на защитном слое катализатора, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600°С, скорости подачи сырья через катализатор 0,2-2 г-сырья/г-катализатора/ч, в присутствии...
Тип: Изобретение
Номер охранного документа: 0002704123
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.db0a

Способ переработки тяжелого нефтяного сырья на катализаторе защитного слоя

Изобретение описывает способ переработки тяжелого нефтяного сырья на защитном слое катализатора, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600°С, скорости подачи сырья через катализатор 0,2-2г-сырья/г-катализатора/ч, в присутствии...
Тип: Изобретение
Номер охранного документа: 0002704122
Дата охранного документа: 24.10.2019
21.12.2019
№219.017.f003

Катализатор совместного крекинга нефтяных фракций

Предложен катализатор совместного крекинга нефтяных фракций, включающий цеолит ZSM-5, ультрастабильный цеолит НРЗЭY и матрицу, состоящую из аморфного алюмосиликата, оксида алюминия и бентонитовой глины, где цеолит ZSM-5 имеет отношение Si/Al от 30 до 80, содержит от 2,0 до 4,0 мас. % фосфора,...
Тип: Изобретение
Номер охранного документа: 0002709522
Дата охранного документа: 18.12.2019
21.12.2019
№219.017.f06d

Катализатор крекинга нефтяных фракций

Изобретение относится к области нефтеперерабатывающей промышленности, а именно к катализаторам для получения легких олефинов. Предлагаемый катализатор крекинга нефтяных фракций включает модифицированный фосфором цеолит ZSM-5 и матрицу и отличается тем, что цеолит ZSM-5 имеет отношение Si/Al от...
Тип: Изобретение
Номер охранного документа: 0002709521
Дата охранного документа: 18.12.2019
+ добавить свой РИД