×
30.12.2019
218.016.ad87

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ СТАНЦИЕЙ ДЛЯ АВТОМАТИЧЕСКОЙ ЗАПРАВОЧНОЙ СТАНЦИИ СПГ

Вид РИД

Изобретение

№ охранного документа
0002676499
Дата охранного документа
29.12.2018
Аннотация: Изобретение относится к способу управления автоматической заправочной станцией сжиженного природного газа. Способ осуществляют посредством следующих этапов. Этап а1: идентификация личности пользователя устройством идентификации и запуск процесса заправки. Этап а2: проверка, выше ли уровень жидкости в баке для хранения жидкости на станции нижнего предельного уровня, и если да, то выдача пользователю сообщения о том, что заправка возможна, и выполнение Этапа а3; в противном случае выдача пользователю сообщения на дисплее о том, что уровень жидкости низкий, и выход из процесса заправки. Этап а3: проверка, ниже ли температура погружного насоса, чем заданное значение, и если да, то выполнение Этапа а4 и повторение Этапа а3. Этап а4: проверка, сработала ли кнопка заправки, и если да, то включение трубопроводного клапана заправки и управление погружным насосом для выполнения заправки; при этом проверяется, исправен ли погружной насос, и если он неисправен, отключение трубопроводного клапана заправки и управление погружным насосом для прекращения заправки, в противном случае выполнение Этапа а5. Этап а5: проверка, запущено ли состояние прекращения заправки, и если да, то отключение трубопроводного клапана заправки и управление погружным насосом для прекращения заправки. Изобретение может обеспечить экономию расходов на труд рабочих. 3 з.п. ф-лы, 6 ил.

Область техники

Настоящее изобретение относится к области СПГ и, в частности, к системе и способу управления автоматической станцией СПГ (заправочной станцией самообслуживания).

Уровень техники

Аббревиатура СПГ означает сжиженный природный газ. Природный газ после очистки и подготовки (удаление примесей, таких как CO2, сульфиды, углеводороды и вода), охлаждают до -162°C при атмосферном давлении, этим переводя его из газообразного состояния в жидкое состояние для получения сжиженного природного газа. Объем сжиженного природного газа составляет 1/625 от объема природного газа такой же массы в газообразном состоянии, и его масса составляет приблизительно 45% от массы воды такого же объема.

В качестве чистого источника энергии СПГ находит широкое применение в разных областях, и в случае автомобилей и других транспортных средств их необходимо заправлять СПГ. В настоящее время в стране действуют много заправочных станций СПГ для заправки автомобилей, использующих СПГ в качестве источника энергии, но все они требуют существенного участия рабочего персонала для заправки автомобилей на станциях. Фактически, основной объем работ на заправочных станциях включает заправку, разгрузку, регулировку давления и регулировку температуры. Такие работы выполняют по стандартным процедурам, и абсолютно все они могут выполняться в автоматическом режиме. Однако в настоящее время в нашей стране нет технологии автоматического управления заправочными станциями СПГ, и эксплуатация заправочных станцией все еще основана на ручном труде.

Раскрытие изобретения

Техническая задача, решаемая настоящим изобретением в связи с вышеуказанными проблемами, заключается в том, чтобы предложить система и способ управления станцией для автоматической заправочной станции СПГ, чтобы за счет этого получить экономию на стоимости рабочей силы.

Система управления станцией для автоматической заправочной станции СПГ, предложенная в настоящем изобретении, включает:

Сетевой коммутатор, дисплей, терминал ввода данных, камеры, модуль отправки коротких сообщений, устройство идентификации личности пользователя, память, компьютер и контроллер.

Все вышеупомянутые устройства, т.е., дисплей, терминал ввода данных, камеры, модуль отправки коротких сообщений, память, компьютер и контроллер связаны посредством сигналов с сетевым коммутатором.

Устройство идентификации личности пользователя связано посредством сигналов с контроллером.

Контроллер также связан посредством сигналов с измерителями и трубопроводными клапанами станции.

Настоящее изобретение также предлагает способ управления станцией для автоматической заправочной станции СПГ, отличающийся тем, что при выполнении заправки СПГ его осуществляют посредством следующих этапов:

Этап a1: идентификация личности пользователя устройством идентификации личности пользователя и переход к процессу заправки, если идентификация выполнена успешно;

Этап а2: проверка, выше ли уровень жидкости в баке для хранения жидкости на станции чем самый низкий уровень, и если да, выдача пользователю сообщения о том, что заправка возможна, и выполнение этапа а3, в противном случае выдача пользователю сообщения на дисплее о том, что уровень жидкости низкий, и выход из процесса заправки;

Этап а3: проверка, ниже ли температура погружного насоса чем заданное значение, и если да, то выполнение этапа а4 и повторение Этапа а3;

Этап а4: проверка, сработала ли кнопка подачи топлива, и если да, то включение трубопроводного клапана подачи топлива и управление погружным насосом для выполнения заправки при одновременной проверке, исправен ли погружной насос, и если он неисправен, то отключение трубопроводного клапана подачи топлива и управление погружным насосом для того, чтобы прекратить заправку, в противном случае выполнение этапа а5; и

Этап а5: проверка, запущено ли состояние прекращения заправки, и если да, то отключение трубопроводного клапана подачи топлива и управление погружным насосом для того, чтобы прекратить заправку.

Также в процессе заправки Этап а4 включает проверку, сработала ли кнопка подачи топлива, и если да, то включение трубопроводного клапана подачи топлива и определение, относится ли способ управления насосом, выбранный пользователем, к управлению при постоянном давлении, и если да, то управление погружным насосом для выполнения заправки при заданном давлении жидкости на выходе, в противном случае управление погружным насосом для выполнения заправки при заданной частоте вращения.

Также в процессе заправки проверка, запущено ли состояние прекращения заправки на Этапе а5 выполняется посредством проверки, сработала ли кнопка прекращения заправки, или посредством проверки, достигло ли количество заправленного топлива значения, заданного пользователем.

При разгрузке из автоцистерны ее осуществляют посредством следующих этапов:

Этап b1: проверка, сработала ли кнопка разгрузки, и если да, идентификация личности пользователя устройством идентификации личности пользователя и переход к процессу разгрузки, если идентификация выполнена успешно;

Этап b2: выдача сообщения пользователю о необходимости выбрать режим разгрузки и прием режима разгрузки, выбранного пользователем;

Этап b3: включение впускного клапана разгрузки;

Этап b4: выравнивание давлений в баке для хранения жидкости автоцистерны и баке для хранения жидкости на станции;

Этап b5: создание давления в баке для хранения жидкости автоцистерны;

Этап b6: проверка, ниже ли температура погружного насоса чем заданное значение, и если да, то выполнение этапа b7, в противном случае повторение Этапа b6;

Этап b7: начало разгрузки и контроль уровня жидкости в баке для хранения жидкости на станции, и если уровень жидкости выше чем верхний предел (т.е., первый верхний предел) уровня жидкости, то выдача пользователю сообщения о том, что разгрузка завершена; и

Этап b8: проверка, нажал ли пользователь кнопку прекращения разгрузки, и если да, то прекращение разгрузки, в противном случае контроль, выше ли уровень жидкости в баке для хранения жидкости на станции чем более высокий предел (т.е., второй верхний предел) уровня жидкости, и если да, то прекращение разгрузки, в противном случае повторение Этапа b8.

При разгрузке способ разгрузки на Этапе b2 включает режим разгрузки с помощью насосной установки на раме, режим разгрузки самовытеснением или режим разгрузки с помощью насоса автоцистерны.

При выполнении автоматической регулировки давления в баке для хранения жидкости на станции ее осуществляют посредством следующих этапов:

Этап с1: проверка, превышает ли время ожидания системы заданный период времени, и если да, то проверяют, ниже ли давление в баке для хранения жидкости чем заданное минимальное значение, и если оно ниже, то система управления станцией для автоматической заправочной станции сжиженного природного газа автоматически подтверждает режим создания давления и включает клапан создания давления, чтобы создать давление; и

Этап с2: контроль, достигло ли давление в баке для хранения жидкости заданного значения, и истекло ли время создания давления, причем если давление в баке для хранения жидкости достигло заданного значения или если время создания давления истекло, создание давления прекращается путем отключения клапана создания давления; а если давление в баке для хранения жидкости не достигло заданного значения и время создания давления не истекло, Этап с2 повторяется.

При автоматической регулировке температуры в баке для хранения жидкости на станции ее осуществляют посредством следующих этапов:

Этап d1: проверка, превышает ли время ожидания системы заданный период времени, и если да, то проверяется, ниже ли температура в баке для хранения жидкости заданного минимального значения, и если да, то система управления станцией для автоматической заправочной станции сжиженного природного газа автоматически подтверждает режим нагрева и включает клапан нагрева и погружной насос, чтобы выполнить нагрев;

Этап d2: контроль, исправен ли погружной насос, причем если насос исправен, то выполняется Этап d3, в противном случае нагрев прекращается путем отключения клапана нагрева и погружного насоса; и

Этап d3: контроль, достигла ли заданного значения температура в баке для хранения жидкости и истекло ли время нагрева, причем если температура в баке для хранения жидкости достигла заданного значения, или если истекло время нагрева, нагрев прекращается путем отключения клапана нагрева и погружного насоса; а если температура в баке для хранения жидкости не достигла заданного значения и время нагрева не истекло, Этап d3 повторяется.

Для принятия решения о неисправности контроллер собирает параметры, загружаемые соответствующими измерителями на станции, и сравнивает эти параметры с их соответствующими заданными значениями, и если параметры, загруженные измерителями, отличаются от нормальных заданных значений, контроллер выдает соответствующее тревожное сообщение.

В вышеизложенном процессе режим вывода тревожных сообщений делится на два типа, один из которых используется для вывода сообщений о обычных тревожных событиях и включает этапы включения аварийной световой сигнализации в режиме мерцания и выполнение соответствующих защитных мер, а другой используется для вывода сообщений о значительных тревожных событиях и включает этапы отправки контроллером сообщения о значительном тревожном событии на модуль коротких сообщений через сетевой коммутатор, отправки модулем коротких сообщений сообщения о значительном тревожном событии на сотовый телефон управленческого персонала и одновременного отключения электропитания с остановкой погружного насоса и отключением всех трубопроводных клапанов.

Резюмируя вышесказанное, если используются описанные выше технические решения, настоящее изобретение имеет следующие преимущества:

Настоящее изобретение реализует автоматическую эксплуатацию заправочной станции. Когда водитель приезжает на станцию для заправки, сначала идентифицируется личность водителя и после идентификации заправка может быть осуществлена в режиме самообслуживания, причем ее процесс автоматически обеспечивает заправку и безопасность.

При необходимости разгрузки она может быть осуществлена пользователем, имеющим соответствующий допуск, после прохождения проверки. Если получено разрешение на разгрузку, может быть включен пневматический клапан управления разгрузкой, и система автоматически детектирует температуру расходомера разгрузки, температуру насоса и т.д. После завершения приготовлений, таких как предварительное охлаждение, индикаторная лампа подсказывает водителю, что разгрузка может быть начата. Система управления станцией контролирует весь процесс разгрузки и подает водителю тревожный сигнал при обнаружении любого отклонения от нормы. Когда уровень жидкости в баке для хранения достигнет заданного значения (95% по верхнему пределу в баке для хранения), водителю будет выдано сообщение о прекращении разгрузки, и когда будет достигнут повышенный верхний предел в баке для хранения, клапаны разгрузки и т.д. будут принудительно закрыты, чтобы автоматически выйти из процесса разгрузки, чем обеспечивается нормальное выполнение и безопасность процесса разгрузки.

Настоящее изобретение также реализует в режиме реального времени контроль давления и температуры в баке для хранения СПГ и автоматически реализует создание давления и нагрев, когда давление и температура ниже заданных значений.

Настоящее изобретение также предусматривает, что когда система управления станцией для автоматической заправочной станции СПГ находится в рабочем состоянии, данные от разных приборов и измерителей станции контролируются в реальном времени, и по результатам вычислений, таких как сравнение значений, полученных в реальном времени, с значениями, заданными в системе, если значения, полученные в реальном времени, отличаются от нормальных значений, программируемый контроллер выдает соответствующее тревожное сообщение, определяет ранг тревожной информации и выбирает подходящую стратегию успешного решения при тревожных сообщениях разных рангов, чем обеспечивается безопасность автоматической заправочной станции и повышается эффективность работы в разных тревожных ситуациях.

Краткое описание чертежей

Настоящее изобретение будет проиллюстрировано на примерах со ссылками на чертежи.

Фиг. 1 - блок-схема системы управления станцией для автоматической заправочной станции СПГ настоящего изобретения.

Фиг. 2 - технологическая схема управления автоматической подачей топлива в способе управления станцией настоящего изобретения.

Фиг. 3 - технологическая схема управления автоматической разгрузкой в способе управления станцией настоящего изобретения.

Фиг. 4 - технологическая схема управления автоматической регулировкой давления и автоматической регулировкой температуры в способе управления станцией настоящего изобретения.

Фиг. 5 - примеры информации о тревожных событиях и стратегий их успешного решения в способе управления станцией настоящего изобретения.

Фиг. 6 - схема ПИД-управления заправки при постоянном давлении в способе управления станцией настоящего изобретения.

Подробное описание вариантов осуществления

Все признаки или этапы во всех способах или процессах, раскрытых в настоящем описании, могут быть объединены любым образом, за исключением взаимоисключающих признаков и/или этапов.

Любой признак, раскрытый в настоящем описании, если не указано иное, может быть заменен другим эквивалентным признаком сходного объекта. То есть, если конкретно не указано иное, каждый признак представляет собой просто один пример из серии эквивалентных или сходных признаков.

Как показано на Фиг. 1, система управления станцией для автоматической заправочной станции СПГ, предложенная в настоящем изобретении, включает:

сетевой коммутатор, дисплей, терминал ввода данных, камеры, модуль отправки коротких сообщений, устройство идентификации личности пользователя, память, компьютер и контроллер.

Вышеуказанные дисплей, терминал ввода данных, камеры, модуль отправки коротких сообщений, память, компьютер и контроллер связаны посредством сигналов с сетевым коммутатором.

Устройство идентификации личности пользователя связано посредством сигналов с контроллером.

Контроллер также связан посредством сигналов с измерителями и трубопроводными клапанами станции.

В одном конкретном примере дисплей и терминал ввода данных выполнены как сенсорный экран, контроллер выполнен как программируемый логический контроллер, и устройство идентификации личности пользователя выполнено как кардридер для RFID-меток.

Камеры распределены по зонам заправочной станции, которые необходимо контролировать, например, по важным зонам, таким как зона заправки, зона разгрузки и т.д., и видеоинформация, получаемая камерами, передается сетевым коммутатором в компьютер и память, расположенные в помещении контроля, чтобы рабочий персонал мог наблюдать за ситуацией на заправочной станции в помещении контроля.

Сенсорный экран используется для ввода команд пользователем и вывода информационных сообщений, тревожных сообщений и т.д. для пользователя. Команда пользователя передается на контроллер через сетевой коммутатор, и контроллер управляет измерителями и клапанами на местах для выполнения соответствующих действий. Контроллер также используется для приема информации о состоянии от измерителей на местах и вывода этой информации о состоянии на компьютер и/или сенсорный экран через сетевой коммутатор.

Контроллер также используется для вывода тревожных сообщений на сенсорный экран и/или модуль отправки коротких сообщений через сетевой коммутатор, и модуль отправки коротких сообщений используется для отправки тревожных сообщений в форме коротких сообщений на сотовые телефоны определенных сотрудников.

На основании вышеизложенного, настоящее изобретение также предлагает способ управления станцией для автоматической заправочной станции СПГ, и, как показано на Фиг. 2, при выполнении заправки способ осуществляют посредством следующих этапов:

Этап а1: идентификация личности пользователя устройством идентификации личности пользователя и переход к процессу заправки, если идентификация выполнена успешно;

Этап а2: проверка, выше ли уровень жидкости в баке для хранения жидкости на станции чем самый низкий уровень, и если да, то выдача пользователю сообщения о том, что заправка возможна, и выполнение этапа а3, в противном случае выдача пользователю сообщения на дисплее о том, что уровень жидкости низкий, и выход из процесса заправки;

Этап а3: проверка, ниже ли температура погружного насоса чем заданное значение, и если да, то выполнение этапа а4 и повторение Этапа а3;

Этап а4: проверка, сработала ли кнопка подачи топлива, и если да, то включение трубопроводного клапана заправки и управление погружным насосом для выполнения заправки при одновременной проверке, исправен ли погружной насос, и если он неисправен, то отключение трубопроводного клапана подачи топлива и управление погружным насосом для того, чтобы прекратить заправку, в противном случае выполнение этапа а5; и

Этап а5: проверка, запущено ли состояние прекращения заправки, и если да, то отключение трубопроводного клапана подачи топлива и управление погружным насосом для того, чтобы прекратить заправку.

В вышеизложенном, Этап а4 включает проверку, сработала ли кнопка подачи топлива, и если да, то включение трубопроводного клапана подачи топлива и определение, относится ли способ управления насосом, выбранный пользователем, к управлению при постоянном давлении, и если да, то управление погружным насосом для выполнения заправки при заданном давлении жидкости на выходе, в противном случае управление погружным насосом для выполнения заправки при заданной частоте вращения.

Проверка, запущено ли состояние прекращения заправки на Этапе а5, выполняется посредством проверки, сработала ли кнопка прекращения заправки, или посредством проверки, достигло ли количество заправленного топлива значения, заданного пользователем.

Считается, что способ управления подачей топлива при постоянном давлении имеет следующие проблемы: из-за физических свойств СПГ погружной насос уязвим для таких явлений как кавитация, откачка и прерывистая подача, и по этим причинам известный ПИД-алгоритм управления при постоянном давлении будет вызывать такие проблемы как большие колебания давления, перерегулирование, вибрация и т.д., поэтому процесс подачи топлива будет нестабильным.

Таким образом, настоящее изобретение также предлагает усовершенствованную схему ПИД-управления при постоянном давлении для погружного насоса, которая показана на Фиг. 6: получение фактического значения давления на выходе погружного насоса; использование этого фактического значения давления на выходе насоса и заданного значения давления на выходе насоса в качестве двух входных переменных контура ПИД-управления, и выходной переменной контура ПИД-управления в качестве переменной управления частотой вращения погружного насоса.

Принимается решение, превышает ли фактическое значение давления на выходе насоса заданное значение давления на выходе насоса, и если оно меньше, то в качестве коэффициента усиления контура ПИД-управления используется а×Р, а если оно больше, то в качестве коэффициента усиления контура ПИД-управления используется b×Р, где 0<а<b, и Р обозначает стандартный коэффициент усиления контура ПИД-управления.

В одном предпочтительном примере а=1, и b=2. Такая практика включает использование разных коэффициентов усиления на стадии колебаний ПИД-управления. Если фактическое значение давления на выходе насоса меньше чем заданное значение, относительно небольшой коэффициент усиления используется для медленного увеличения фактического значения давления на выходе насоса, и если фактическое значение давления на выходе насоса превышает заданное значение, относительно большой коэффициент усиления используется для быстрого уменьшения фактического значения давления на выходе насоса, формируя эффект ускоренного недорегулирования, чтобы снизить вероятность перерегулирования.

Также используется следующий этап: определение, меньше ли абсолютное значение разницы между фактическим значением давления на выходе насоса и заданным значением давления на выходе насоса заданного порога, например, заданный порог составляет 1% от заданного значения, и если он меньше, то значение разницы для контура ПИД-управления устанавливается как 0. Идея такого расчета состоит в том, чтобы, когда разница между фактическим значением давления на выходе насоса и заданным значением меньше определенного значения, можно было считать, что фактическое значение достигло заданного значения, и выход на трубе с ПИД-управлением постоянный, так что давление на выходе насоса быстро достигает стабильного состояния.

Во время подачи топлива из-за низкого уровня жидкости и недостаточного напора подача жидкости погружным насосом не может соответствовать потоку на выходе насоса, и давление на выходе насоса будет снижаться до уровня меньше чем заданное значение давления на выходе насоса, но не достигнет значения, при котором происходит остановка насоса. В этой ситуации известное ПИД-управления автоматически увеличивает значение на выходе, и устанавливает насос для ускоренной откачки СПГ, но в реальности давление не может возрастать, поскольку жидкость не подается, и в конечном итоге этот порочный круг делает частоту вращения насоса очень высокой, причем в такой ситуации, если остановленный поток жидкости внезапно восстанавливается, давление на выходе насоса немедленно становится сверхвысоким и может превысить значение, при котором включается тревожный сигнал, и в серьезных случаях предохранительный клапан резко срабатывает. Для того, чтобы избежать такого явления, данное ПИД-управление потоком при постоянном давлении дополнительно включает следующие этапы:

получение значения давления на входе погружного насоса; вычитание значения давления на входе из предельного значения давления на выходе насоса, чтобы получить текущее допустимое значения усиления давления насоса с последующим преобразованием допустимого значения усиления давления в переменную максимально допустимой частоты вращения насоса по кривой напора погружного насоса. Кривая напора представляет собой кривую, показывающую отношение между давлением на выходе насоса и частотой вращения каждого погружного насоса. После изготовления погружного насоса для него определяют уникальную кривую напора. Кривая напора может быть получена изготовителем погружного насоса, и более точная кривая отношения частоты вращения к напору может быть получена в ходе испытаний после настройки технологической системы. Посредством этой кривой можно получить переменную управления максимально допустимой частотой вращения через допустимое повышение давления.

Переменную управления частотой вращения погружного насоса на выходе контура ПИД-управления сравнивают с переменной управления максимально допустимой частотой вращения для текущего насоса, и если она меньше, то переменную управления частотой вращения на выходе контура ПИД-управления используют в качестве конечной переменной управления частотой вращения погружного насоса; если же она больше, то переменную управления максимально допустимой частотой вращения текущего насоса используют в качестве конечной переменной управления частотой вращения погружного насоса; и эту конечную переменную управления частотой вращения погружного насоса используют для управления частотой вращения погружного насоса.

Как показано на Фиг. 3, при разгрузке из автоцистерны ее осуществляют посредством следующих этапов:

Этап М: проверка, сработала ли кнопка разгрузки, и если да, то идентификация личности пользователя устройством идентификации личности пользователя и начало процесса разгрузки, если идентификация выполнена успешно;

Этап b2: выдача сообщения пользователю о необходимости выбрать режим разгрузки и прием режима разгрузки, выбранного пользователем;

Этап b3: включение впускного клапана разгрузки;

Этап b4: выравнивание давлений в баке для хранения жидкости автоцистерны и баке для хранения жидкости на станции;

Этап b5: создание давления в баке для хранения жидкости автоцистерны;

Этап b6: проверка, ниже ли температура погружного насоса чем заданное значение, и если да, то выполнение этапа b7, в противном случае повторение Этапа b6;

Этап b7: начало разгрузки и контроль уровня жидкости в баке для хранения жидкости на станции, и если уровень жидкости выше чем верхний предел уровня жидкости, то выдача пользователю сообщения о том, что разгрузка завершена; и

Этап b8: проверка, нажал ли пользователь кнопку прекращения разгрузки, и если да, то прекращение разгрузки, в противном случае контроль, выше ли уровень жидкости в баке для хранения жидкости на станции чем более высокий предел уровня жидкости, и если да, то прекращение разгрузки, в противном случае повторение Этапа b7.

При разгрузке способ разгрузки на Этапе b2 включает режим разгрузки с помощью насосной установки на раме, режим разгрузки самовытеснением или режим разгрузки с помощью насоса автоцистерны.

СПГ отличается от воды. В своей физической форме вода находится в сверхохлажденном состоянии, тогда как СПГ в баке для хранения находится в насыщенном состоянии, поэтому погружной насос для СПГ пори эксплуатации предъявляет относительно высокие требования к чистому положительному напору, и фактическая работа станции обычно реализуется посредством подъема уровня жидкости в баке для хранения и повышения давления в баке для хранения. Система управления станцией будет в реальном времени контролировать температуру и давление СПГ в баке для хранения и автоматически распознавать текущее состояние по таблице кривых насыщения СПГ. Если будет установлено, что состояние жидкости находится в области насыщения, и давление в баке для хранения недостаточное, система автоматически переведет клапан возврата жидкости в верхнее положение входа жидкости, в противном случае - в нижнее положение входа жидкости. Давление в баке для хранения регулируется посредством отпарного газа, создаваемого в трубопроводах. Если это давление чрезмерно низкое, система также включает клапан создания давления и повышает давление в баке для хранения посредством испарителя, чтобы достигнуть цели повышения чистого положительного напора и обеспечить нормальную работу насоса.

Как показано на Фиг. 4, при выполнении автоматической регулировки давления в баке для хранения жидкости на станции его осуществляют посредством следующих этапов:

Этап c1: проверка, превышает ли время ожидания системы заданный период времени, и если да, то проверяют, ниже ли давление в баке для хранения жидкости чем заданное минимальное значение, и если оно ниже, то система управления станцией для автоматической заправочной станции СПГ автоматически подтверждает режим создания давления и включает клапан создания давления, чтобы повысить давление; и

Этап с2: контроль, достигло ли давление в баке для хранения жидкости заданного значения, и истекло ли время создания давления, причем если давление в баке для хранения жидкости достигло заданного значения или если время создания давления истекло, создание давления прекращается путем отключения клапана создания давления; а если давление в баке для хранения жидкости не достигло заданного значения и время создания давления не истекло, Этап с2 повторяется; а если давление в баке для хранения жидкости не достигло заданного значения и время создания давления не истекло, Этап с2 повторяется.

При автоматической регулировке температуры в баке для хранения жидкости на станции ее осуществляют посредством следующих этапов:

Этап d1: проверка, превышает ли время ожидания системы заданный период времени, и если да, то проверяется, ниже ли температура в баке для хранения жидкости заданного минимального значения, и если да, то система управления станцией для автоматической заправочной станции сжиженного природного газа автоматически подтверждает режим нагрева и включает клапан нагрева и погружной насос, чтобы выполнить нагрев;

Этап d2: контроль, исправен ли погружной насос, причем если насос исправен, то выполняется Этап d3, в противном случае нагрев прекращается путем отключения клапана нагрева и погружного насоса; и

Этап d3: контроль, достигла ли заданного значения температура в баке для хранения жидкости и истекло ли время нагрева, причем если температура в баке для хранения жидкости достигла заданного значения, или если истекло время нагрева, нагрев прекращается путем отключения клапана нагрева и погружного насоса; а если температура в баке для хранения жидкости не достигла заданного значения и время нагрева не истекло, Этап d3 повторяется.

Для принятия решения об исправности контроллер собирает параметры, загружаемые соответствующими измерителями на станции, и сравнивает эти параметры с их соответствующими заданными значениями, и если параметры, загруженные измерителями, отличаются от нормальных заданных значений, контроллер выдает соответствующее тревожное сообщение.

В вышеизложенном режим вывода тревожных сообщений делится на два типа, один из которых используется для вывода сообщений о обычных тревожных событиях и включает этапы включения аварийной световой сигнализации в режиме мерцания и принятие соответствующих защитных мер; а другой используется для вывода сообщений о значительных тревожных событиях и включает этапы отправки контроллером сообщения о значительном тревожном событии на модуль коротких сообщений через сетевой коммутатор, отправки модулем коротких сообщений сообщения о значительном тревожном событии на сотовый телефон управленческого персонала и одновременного отключения электропитания с остановкой погружного насоса и отключением всех трубопроводных клапанов.

На Фиг. 5 показаны примеры информации о тревожных событиях на заправочной станции и стратегий их успешного решения.

Настоящее изобретение не ограничено описанными выше вариантами осуществления. Настоящее изобретение может быть распространено на любые новые признаки или любое новое сочетание из раскрытия в настоящем описании и этапы любого нового способа или любые новые сочетания из раскрытия в настоящем описании.


СПОСОБ УПРАВЛЕНИЯ СТАНЦИЕЙ ДЛЯ АВТОМАТИЧЕСКОЙ ЗАПРАВОЧНОЙ СТАНЦИИ СПГ
СПОСОБ УПРАВЛЕНИЯ СТАНЦИЕЙ ДЛЯ АВТОМАТИЧЕСКОЙ ЗАПРАВОЧНОЙ СТАНЦИИ СПГ
СПОСОБ УПРАВЛЕНИЯ СТАНЦИЕЙ ДЛЯ АВТОМАТИЧЕСКОЙ ЗАПРАВОЧНОЙ СТАНЦИИ СПГ
СПОСОБ УПРАВЛЕНИЯ СТАНЦИЕЙ ДЛЯ АВТОМАТИЧЕСКОЙ ЗАПРАВОЧНОЙ СТАНЦИИ СПГ
СПОСОБ УПРАВЛЕНИЯ СТАНЦИЕЙ ДЛЯ АВТОМАТИЧЕСКОЙ ЗАПРАВОЧНОЙ СТАНЦИИ СПГ
СПОСОБ УПРАВЛЕНИЯ СТАНЦИЕЙ ДЛЯ АВТОМАТИЧЕСКОЙ ЗАПРАВОЧНОЙ СТАНЦИИ СПГ
СПОСОБ УПРАВЛЕНИЯ СТАНЦИЕЙ ДЛЯ АВТОМАТИЧЕСКОЙ ЗАПРАВОЧНОЙ СТАНЦИИ СПГ
Источник поступления информации: Роспатент

Showing 11-15 of 15 items.
12.07.2018
№218.016.6f9d

Способ мониторинга и измерения толщины стенки ванны алюминиевого электролизера

В изобретении раскрыт способ мониторинга и измерения толщины стенки ванны алюминиевого электролизера, который позволяет постоянно и непрерывно отслеживать температуру кожуха электролизера, выполняя при этом отбор проб и анализ электролита для получения температуры ликвидуса электролита. Путем...
Тип: Изобретение
Номер охранного документа: 0002661078
Дата охранного документа: 11.07.2018
19.09.2018
№218.016.8893

Новые способ и устройство для укрывания анода в алюминиевом электролизере

Изобретение относится к укрывающему анодному устройству для использования в алюминиевом электролизере, которое образовано из стенки полости, которая устойчива к коррозии и высокой температуре, и полости, причем теплоизоляционный материал может быть введен в или извлечен из полости, а на...
Тип: Изобретение
Номер охранного документа: 0002667144
Дата охранного документа: 17.09.2018
13.10.2018
№218.016.91dc

Способ и устройство для передачи синхронизирующего сигнала

Изобретение относится к области коммуникационных технологий. Техническим результатом является улучшение качества связи. Варианты осуществления настоящего изобретения раскрывают способ и устройство для передачи синхронизирующего сигнала. Способ настоящего изобретения включает в себя определение...
Тип: Изобретение
Номер охранного документа: 0002669524
Дата охранного документа: 11.10.2018
12.07.2019
№219.017.b30d

Способ передачи данных, терминал и базовая станция в laa-lte-системе

Изобретение относится к беспроводной связи в LAA-LTE-системе. Способ приема данных включает: определение, посредством абонентского устройства, управляющей информации первой соты; определение, посредством абонентского устройства, первого субкадра на основе управляющей информации и определение,...
Тип: Изобретение
Номер охранного документа: 0002694238
Дата охранного документа: 10.07.2019
23.04.2023
№223.018.519a

Слитый белок человеческого фактора свертывания iх (fix), способ его получения и применения

Изобретение относится к области биотехнологии, конкретно к получению слитого белка гипергликозилированного рекомбинантного человеческого фактора свертывания IX (FIX), и может быть использовано в медицине в терапии геморрагической болезни. Слитый белок состоит из последовательно от N-конца к...
Тип: Изобретение
Номер охранного документа: 0002736339
Дата охранного документа: 16.11.2020
+ добавить свой РИД