×
29.12.2018
218.016.ac84

Результат интеллектуальной деятельности: Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления

Вид РИД

Изобретение

Аннотация: Изобретение относится к катализатору селективного гидрообессеривания высокосернистого олефинсодержащего углеводородного сырья и способу его получения. Катализатор содержит как минимум один из следующих гетерополианионов [SiWO], [SiWO], [SiWO], [PWO], [PWO], [PWO], [Ni(OH)WO], [Fe(OH)WO] и комплексонат Ni и Fe, содержащий не менее двух карбоксильных групп и 2-10 атомов углерода, нанесенных на пористый носитель с содержанием углерода 0-10 мас. %, при этом содержание в прокаленном при 550°С катализаторе W составляет 9-19 мас. %, Ni - 0,4-4 мас. % и Fe - 0,2-3 мас. %. Катализатор имеет удельную поверхность 150-350 м/г, объем пор 0,3-1,0 см/г, средний диаметр пор 4,0-10,0 нм. Способ приготовления катализатора включает пропитку пористого носителя с содержанием углерода 0-10 мас. % по влагоемкости с последующей сушкой, при этом носитель вакуумируют и однократно пропитывают водным раствором предшественников активных компонентов. Предлагаемый катализатор позволяет проводить селективную гидроочистку высокосернистого олефинсодержащего углеводородного сырья при мягких условиях и сохранении октанового числа. 2 н. и 4 з.п. ф-лы, 2 табл., 10 пр.

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки олефинсодержащего углеводородного сырья, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Одним из основных крупнотоннажных вторичных процессов в современной нефтепереработке является каталитический крекинг, целевым продуктов которого наряду с углеводородными газами является высокооктановый бензин, характеризующийся значительным количеством высокореакционных олефиновых углеводородов. Кроме того, отличительной особенностью бензинов каталитического крекинга (БКК) является высокое содержание сернистых соединений, ограничивающих его использование в качестве компонента товарных бензинов класса 5 с содержанием серы менее 10 ppm. Надо отметить, что более 90% от всего количества общей серы в товарном бензине приходится на БКК. Существует два способа снижения содержания серы в БКК: предварительная гидроочистка вакуумного газойля - сырья процесса каталитического крекинга - и гидроочистка БКК. Основным недостатком первого способа являются крайне жесткие требования по остаточному содержанию серы в гидроочищенном вакуумном газойле - не более 200 ppm, что приводит к значительному ужесточению технологических параметров процесса и увеличению как эксплуатационных и капитальных затрат.Гидроочистка БКК (второй способ) на традиционных Ni(Co)-Mo(W)/Al2O3 катализаторах гидроочистки бензиновых фракций протекает не селективно, наряду с реакциями гидродесульфуризации происходит глубокое гидрирование олефиновых углеводородов, характеризующихся относительное высокими значениями октановых чисел. Как результат, уменьшается октановое число гидроочищенного БКК до 6 п. и выше. Разработка современных катализаторов селективной гидродесульфуризации серосодержащих соединений олефинсодержащего углеводородного сырья является наиболее эффективным решением данной проблемы.

Для создания катализаторов селективной гидроочистки БКК используют методы подавления гидрирующей функции сульфидного активного компонента. Известно модифицирование носителей и/или катализаторов щелочными и щелочноземельными металлами, снижающими кислотность активной фазы и, как результат, гидрирующую активность по отношению к олефинам (US 5348928, B01J 21/04, B01J 23/78, В01 23/88, B01J 37/04, 20.09.1994; US 5340466, C10G 45/60, C10G 45/08, 23.08.1994; US 5846406, C10G 45/04, 08.12.1998; US 5358633, C10G 45/08, 25.10.1994, US 5770046, C10G 45/04, 23.06.1998, US 5525211, C10G 45/08, B01J 23/24, 11.06.1996; US 5851382, C10G 45/04, 22.12.1998).

Общим недостатком таких катализаторов является низкая концентрация доступных активных центров гидрообессеривания ввиду снижения дисперсности частиц активной фазы, что не позволяет глубоко протекать реакциям гидрообессеривания для получения компонента товарного бензина с ультранизким содержанием серы, особенно при гидропереработке высокосернистого БКК. Техническим решением настоящего изобретения является создание частиц триметаллической активной фазы NiFeWS необходимой дисперсности и полным заполнением ребер WS2 атомами Ni и Fe за счет использования W-содержащих гетерополисоединений, склонных к глубокому сульфидированию и образованию частиц WS2, комплексонатов Ni и Fe, обеспечивающих оптимальную скорость сульфидирования Ni и Fe с образованием смешанных NiFeWS центров, а также зауглероженного носителя, снижающего взаимодействие с W частицами и улучшающими скорость их сульфидирования и дисперсность частиц активной фазы NiFeWS. Способ приготовления катализаторов однократной пропиткой всех элементов позволяет обеспечить молекулярный контакт, необходимый для формирования активной фазы оптимального состава и морфологии для проведения селективной гидроочистки олефинсодержащего углеводородного сырья, а также упрощает технологию производства катализаторов.

Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является катализатор селективной гидроочистки углеводородного сырья, описанный в патенте US 5348928, B01J 21/04, B01J 23/78, В01 23/88, B01J 37/04, 20.09.1994. Катализатор включает гидрирующий компонент - металлы из группы VIB и VIII Периодической таблицы с содержанием 4-20% мас. и 0.5-10% мас. в пересчете на оксиды, соответственно. Носитель катализатора включает магний в количестве 0.5-50% мас. в пересчете на оксид, щелочной металл в количестве 0.02-10% мас.

Способ приготовления селективного катализатора гидроочистки БКК включает следующие операции: приготовление первого водного раствора, содержащего растворенные соединения металлов VIB и VIII групп; смешение первого раствора с неорганическим оксидом и образованием пасты, включающей металлы VIB и VIII групп; превращение пасты в композит, по меньшей мере, одной из форм, перечисленных из ряда: шарик, порошок, таблетки, экструдаты; приготовление второго водного раствора, включающего растворенные соединения магния и щелочного металла; смешение второго водного раствора с композитом и получением пропитанного композита; прокаливание полученного композита с получением катализатора селективной гидроочистки.

Недостатком данного способа приготовления катализатора является то, что используются предшественники металлов из группы VIB и VIII Периодической таблицы, не позволяющие сформировать активную фазу с высоким содержанием активных центров и заданного состава, а также многостадийность процесса приготовления. Недостатком такого катализатора также является высокое содержание серы в гидроочищенном БКК при типичных условиях проведения процесса и низкая селективность, проявляющаяся в потере октанового числа.

Техническим результатом настоящего изобретения является создание нового катализатора селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способа его приготовления. Технический результат достигается за счет катализатора селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья, состоящего из гетерополисоединения, содержащего как минимум один из следующих гетерополианионов [SiW12O40]4-, [SiW11O39]8-, [SiW9O34]10-, [PW12O4o]3-, [PW11O39]7-, [PW9O34]9-, [Ni(OH)6W6O18]4-, [Fe(OH)6W6O18]3-, и комплексоната Ni и Fe, содержащего не менее двух карбоксильных групп и 2-10 атомов углерода, нанесенных на пористый носитель с содержанием углерода 0-10% мае, при этом содержание в прокаленном при 550°С катализаторе W составляет 9-19 мас. %, Ni - 0,4-4 мас. % и Fe - 0,2-3 мас. %; катализатор имеет удельную поверхность 150-350 м2/г, объем пор 0,3-1,0 см3/г, средний диаметр пор 4,0-10,0 нм. В качестве пористого носителя катализатора используют оксид алюминия, оксид кремния или их композиты с содержанием углерода 0-10 мас. % [Никульшин, П.А. Молекулярный дизайн катализаторов гидроочистки на основе гетерополисоединений, хелатонов и зауглероженных носителей [Текст]: Дисс. докт. хим. Наук 02.00.15, 02.00.13 / Никульшин П.А. - Самара, 2015]. В качестве комплексоната Ni и Fe используют цитрат никеля (железа), тартрат никеля (железа), этилендиаминтетраацетат никеля (железа), нитрилотриацетат никеля (железа), диэтилентриаминпентаацетат никеля (железа), при этом атомное соотношение Ni/(Ni+Fe) составляет 0,1-1,0.

Способ приготовления катализатора селективной гидроочистки олефинсодержащего углеводородного сырья включает пропитку пористого носителя по влагоемкости с последующей сушкой, отличается тем, что носитель вакуумируют, однократно пропитывают водным раствором предшественников активных компонентов, содержащим как минимум один из гетерополианионов следующего ряда: [SiW12O40]4-, [SiW11O39]8-, [SiW9O34]10-, [PW12O4o]3-, [PW11O39]7-, [PW9O34]9-, [Ni(OH)6W6O18]4-, [Fe(OH)6W6O18]3-,,и комплексонат Ni и Fe, содержащий не менее двух карбоксильных групп и 2-10 атомов углерода; при этом содержание в прокаленном при 550°С катализаторе W составляет 9-19 мас. %, Ni - 0,4-4 мас. % и Fe - 0,2-3 мас. %; катализатор имеет удельную поверхность 150-350 м2/г, объем пор 0,3-1,0 см3/г, средний диаметр пор 4,0-10,0 нм. Предшественники активных компонентов вносят из избытка пропиточного раствора или путем пропитки носителя по влагоемкости. После пропитки катализатор сушат при температуре 110-250°С в потоке воздуха или азота.

Исходные соединения для приготовления совместного пропиточного раствора, состав и текстурные характеристики используемых носителей приведены в табл. 1.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Состав катализатора и способ его приготовления согласно известному техническому решению - прототипу.

Катализатор готовят пропиткой 100 г γ-Al2O3 раствором 3,9 г нитрата кобальта Co(NO3)2⋅6H2O, 7,4 г молибдата аммония в 58,7 воды. Полученные образцы сушили при комнатной температуре, далее при 121°C в течение 12 ч и прокаливали при 538°C в течение 2 ч. Затем полученный образец (100 г) пропитывали 6,37 г Mg(NO3)26H2O в 58,7 г воды. Снова проводили сушку при комнатной температуре, далее при 121°C в течение 12 ч и прокаливали при 538°C в течение 2 ч.

Катализатор в прокаленном при 550°C состоянии содержит, мас. %: Мо - 4,0; Co - 0,9; Mg - 0,5; Na - 0,06; Al2O3 - остальное.

Примеры 2-10 иллюстрируют предлагаемое техническое решение.

Пример 2

Для приготовления пропиточного раствора 14,0 г 12-вольфрамокремниевой гетерополикислоты H4[SiW12O40], 0,9 г карбоната никеля NiCO3⋅H2O, 18,4 г нитрата железа (II) Fe(NO3)2⋅6H2O и 1,8 г моногидрата лимонной кислоты C6H8O7⋅H2O последовательно растворяют в 60 см3 воды при 40-60°C и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 81 см3. pH пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (95% мас.) и оксида кремния SiO2 (5% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°C в течение 4 ч.

Катализатор в прокаленном при 550°C состоянии содержит, мас. %: W - 9,0; Ni - 0,4; Si - 0,1; Fe - 3,0; носитель - остальное; имеет удельную поверхность 272 м2/г, объем пор 0,62 см3/г и средний диаметр пор 6,0 нм (табл. 1).

Пример 3

Для приготовления пропиточного раствора 36,6 11-вольфрамокремниевой гетерополикислоты H8[SiW11O39], 7,8 г карбоната никеля NiCO3⋅H2O, 16,4 г сульфата железа (II) FeSO4⋅4H2O и 14,0 г нитрилотриуксусной кислоты C6H9NO6 последовательно растворяют в 70 см воды при 30-50°C и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 100 см3. pH пропиточного раствора равен 3,0-4,0.

Носитель - зауглероженный оксид алюминия γ-Al2O3, содержаний 2% мас. углерода - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 45°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при комнатной температуре, а далее при 120°C в течение 4 ч.

Катализатор в прокаленном при 550°C состоянии содержит, мас. %: W - 18,5; Ni - 3,0; Si - 0,3; Fe - 2,8; Al2O3 - остальное; имеет удельную поверхность 207 м2/г, объем пор 0,53 см3/г и средний диаметр пор 4,8 нм (табл. 1).

Пример 4

Для приготовления пропиточного раствора 25,6 г 9-вольфрамокремниевой кислоты H10[SiW9O34], 3,2 г гидрокарбоната никеля NiCO3⋅Ni(OH)2⋅H2O, 10,3 г ацетата железа (II) г Fe(CH3COO)2 и 8,7 г этилендиаминтетрауксусной кислоты C10H16N2O8 последовательно растворяют в 60 см воды при 40-60°C и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 80 см3. pH пропиточного раствора равен 3,5-4,5.

Носитель - зауглероженная смесь оксида алюминия γ-А1203 (89,4% мас.) и оксида кремния SiO2 (5% мас.), содержащая углерод в количестве 5,6% мас. - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при комнатной температуре, а далее при 150°С в течение 6 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: W - 14,0; Ni - 1,3; Si - 0,2; Fe - 2,6; носитель - остальное; имеет удельную поверхность 258 м2/г, объем пор 0,5 см3/г и средний диаметр пор 6,0 нм (табл. 1).

Пример 5

Для приготовления пропиточного раствора 19,9 г 12-вольфрамофосфорной кислоты H3[PW12O40] растворяют в 50 см3 воды, добавляют 2,6 г карбоната никеля NiCO3⋅H2O, 8,5 г ацетата железа (II) Fe(CH3COO)2 и 5,1 г лимонной кислоты C6H8O7. После окончания выделения CO2 доводят объем пропиточного раствора водой до 85 см3. pH пропиточного раствора равен 3,0-4,0.

Носитель - зауглероженный оксид алюминия γ-Al2O3, содержащий 5,6% мас. углерода - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 110°С в течение 10 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: W - 12,0; Ni - 1,2; Si - 0,2; Fe - 2,2; Al2O3 - остальное; имеет удельную поверхность 201 м2/г, объем пор 0,46 см3/г и средний диаметр пор 4,8 нм (табл. 1).

Пример 6

В раствор 25,0 г 11-вольфрамофосфорной кислоты H7[PW11O39] в 65 см3 воды добавляют 5,3 г гидрокарбоната никеля NiCO3⋅Ni(OH)2⋅H2O, 11,2 г сульфата железа (II) FeSO4⋅4H2O и 19,6 г диэтилентриаминпентауксусной кислоты C14H23N3O10. После окончания выделения CO2 доводят объем пропиточного раствора водой до 106 см3. рН пропиточного раствора равен 3,5-4,5.

Носитель - зауглероженная смесь оксида алюминия γ-Al2O3 (86,5% мас.) и оксида кремния SiO2 (5% мас.), содержащая углерод в количестве 8,5% мас. - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 30°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°С в течение 7 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: W - 14,0; Ni - 2,2; P - 0,2; Fe - 2,1; носитель - остальное; имеет удельную поверхность 224 м2/г, объем пор 0,57 см3/г и средний диаметр пор 6,0 нм (табл. 1).

Пример 7

Для приготовления пропиточного раствора 21,2 г 9-вольфрамофосфорной кислоты H9[PW9O34], 4,4 г гидрокарбоната никеля NiCO3⋅Ni(OH)2⋅H2O, 11,8 г нитрата железа (II) Fe(NO3)2⋅6H2O и 6,1 г винной кислоты C4H6O6 последовательно растворяют в 55 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 101,5 см3. pH пропиточного раствора равен 2,5-3,5.

Носитель - смесь оксида алюминия γ-Al2O3 (90% мас.) и оксида кремния SiO2 (10% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при комнатной температуре, а далее при 140°C в течение 4 ч.

Катализатор в прокаленном при 550°C состоянии содержит, мас. %: W - 12,0; Ni - 1,9; Р - 0,2; Fe - 1,8; носитель - остальное; имеет удельную поверхность 260 м2/г, объем пор 0,70 см3/г и средний диаметр пор 7,0 нм (табл. 1).

Пример 8

Для приготовления пропиточного раствора 39,2 г 6-вольфрамоникелевой гетерополикислоты H4[Ni(OH)6W6O18], 1,3 г карбоната никеля NiCO3⋅H2O, 12,3 г ацетата железа (II) Fe(CH3COO)2 и 2,2 г нитрилотриуксусной кислоты C6H9NO6 последовательно растворяют в 70 см3 воды при 40-60°C и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 102 см3. pH пропиточного раствора равен 3,0-4,0.

Носитель - зауглероженная смесь оксида алюминия γ-Al2O3 (93% мас.) и оксида кремния SiO2 (5% мас.), содержащая 2% мас. углерода - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при комнатной температуре, а далее при 180°C в течение 8 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: W - 18,5; Ni - 1,5; Fe - 2,8; носитель - остальное; имеет удельную поверхность 224 м2/г, объем пор 0,57 см3/г и средний диаметр пор 6,0 нм (табл. 1).

Пример 9

Для приготовления пропиточного раствора 22,6 г 6-вольфраможелезной гетерополикислоты H3[Fe(OH)6W6O18], 2,6 г гидрокарбоната никеля NiCO3⋅Ni(OH)2H2O, 6,1 г ацетата железа (II) Fe(CH3COO)2 и 3,6 г винной кислоты C4H6O6 последовательно растворяют в 65 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 88 см3. pH пропиточного раствора равен 2,5-3,5.

Носитель - зауглероженная смесь γ-Al203 (81,5% мас.) и оксида кремния SiO2 (10% мас.), содержащая 8,5% мас. углерода - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 150°C в течение 6 ч.

Катализатор в прокаленном при 550°С состоянии содержит, мас. %: W - 12,0; Ni - 1,2; Fe - 2,2; носитель - остальное; имеет удельную поверхность 174 м2/г, объем пор 0,48 см3/г и средний диаметр пор 7,0 нм (табл. 1).

Пример 10

Для приготовления пропиточного раствора 13,8 г 12-вольфрамофосфорной гетерополикислоты H3[PW12O40], 3,0 г карбоната никеля NiCO3⋅H2O, 1,2 г нитрата железа (II) Fe(NO3)2⋅6H2O и 8,3 г этилендиаминтетрауксусной кислоты C10H16N2O8 последовательно растворяют в 90 см3 воды при 35-55°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 126 см3. pH пропиточного раствора равен 2,5-3,5.

Носитель - зауглероженный оксид кремния SiO2, содержащий 2% мас. углерода - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 220°С в течение 2 ч.

Катализатор содержит, мас. %: W - 9,0; Ni - 1,4; Р - 0,1; SiO2 - остальное; имеет удельную поверхность 293 м2/г, объем пор 1,00 см3/г и средний диаметр пор 6,5 нм (табл. 1).

Катализаторы испытывали в процессе гидроочистки БКК, выкипающего в пределах 110-220°С, с содержанием серы 0.15% мас. и олефинов 9% мас и октановым числом 91.0 п. (по исследовательскому методу). В трубчатый реактор загружали 15 см катализатора в виде частиц размером 0,25-0,50 мм, приготовленных путем измельчения и рассеивания исходных гранул катализатора, разбавленного SiC до общего объема 30 см3. Далее катализатор сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси H2S и Н2 (5 об. % H2S) при объемном расходе смеси 500 ч-1.Условия испытания: давление водорода 1,5 МПа, кратность циркуляции водорода 300 нл/л сырья, объемная скорость подачи сырья 3,0 ч-1, температура в реакторе 300°С.

Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали над прокаленным CaCl2. Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660, содержание олефиновых углеводородов - по ГОСТ 2070, фракционный состав - по ГОСТ 2177-99, октановое число - исследовательским методом по ГОСТ 8226.

Селективность катализаторов в отношении реакций гидрообессеривания оценивался по селективному фактору, рассчитанному по формуле:

где xS и хОУ - конверсия серосодержащих соединений и олефинов, соответственно %.

Результаты испытаний катализаторов представлены в табл. 2.

Заявляемые катализаторы превосходят по активности и селективности прототип. Показатели процесса при гидроочистке БКК позволяют сделать вывод о высокой эффективности заявляемых катализаторов и способов их приготовления.

Источник поступления информации: Роспатент

Showing 11-20 of 191 items.
25.08.2017
№217.015.b94b

Способ оценки огнестойкости железобетонной колонны здания

Изобретение относится к области пожарной безопасности зданий и может быть использовано для классификации железобетонных колонн зданий по показателям сопротивления их воздействию пожара. Согласно заявленному способу испытание железобетонных колонн здания проводят без разрушения по комплексу...
Тип: Изобретение
Номер охранного документа: 0002615047
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b985

Способ оценки огнестойкости железобетонной балочной конструкции здания

Изобретение относится к области пожарной безопасности зданий и сооружений и может быть использовано для классификации железобетонных балочных конструкций. Сущность изобретения заключается в том, что испытание железобетонной балочной конструкции здания проводят без разрушения, по комплексу...
Тип: Изобретение
Номер охранного документа: 0002615048
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bfab

Устройство для очистки сточных вод

Изобретение относится к устройствам для очистки сточных вод и может быть использовано для очистки воды от хрома, хлоридов, сульфатов, взвешенных веществ, СПАВ, БПК И ХПК. Устройство для очистки сточных вод состоит из последовательно расположенных по спирали отстойника, флотатора, вторичного...
Тип: Изобретение
Номер охранного документа: 0002617156
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c8b8

Узел сопряжения балок в одном уровне

Изобретение относится к области строительства, в частности к узлу сопряжения балок в одном уровне. Техническим результатом изобретения является повышение несущей способности узла сопряжения. В узле сопряжения балок в одном уровне, состоящем из второстепенной балки, опирающейся на главную балку...
Тип: Изобретение
Номер охранного документа: 0002619293
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c8d4

Способ изготовления узла сопряжения балок в одном уровне

Изобретение относится к области строительства, в частности к способу изготовления узла сопряжения балок в одном уровне. Техническим результатом изобретения является повышение несущей способности узла сопряжения. В способе изготовления узла сопряжения балок в одном уровне путем присоединения...
Тип: Изобретение
Номер охранного документа: 0002619295
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.cd01

Способ очистки запыленного воздуха

Изобретение предназначено для мокрой инерционной очистки спутных закрученных газовых потоков и может применяться в горной, химической, текстильной промышленности. В цилиндрическую сепарационную камеру по нижнему каналу подают первичный запыленный воздух и одновременно по верхнему каналу -...
Тип: Изобретение
Номер охранного документа: 0002619707
Дата охранного документа: 17.05.2017
25.08.2017
№217.015.ce05

Способ работы котельной установки

Изобретение относится к способу работы котельной установки, работающей на природном газе. Способ работы котельной установки, по которому в котел подают питательную воду, топливо и воздух, в котле в процессе сжигания топлива образуются продукты сгорания и вырабатывается перегретый водяной пар,...
Тип: Изобретение
Номер охранного документа: 0002620619
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce82

Способ работы парогазовой установки электростанции

Изобретение относится к энергетике. В способе работы парогазовой установки электростанции предлагается осуществлять промежуточный перегрев частично отработавшего в цилиндре низкого давления (ЦНД) паровой турбины конденсационного типа водяного пара теплотой воздуха, нагретого в результате...
Тип: Изобретение
Номер охранного документа: 0002620610
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cee6

Способ работы котельной установки

Изобретение относится к котельным установкам, работающим на природном газе. Способ работы котельной установки, по которому основной поток вырабатываемого в паровом котле водяного пара направляют в кожухотрубный теплообменник для подогрева сетевой воды до температуры 110-120°C, нагретую в...
Тип: Изобретение
Номер охранного документа: 0002620611
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d86f

Способ получения нефтяных сульфонатов

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способу синтеза технических нефтяных сульфонатов путем сульфирования углеводородного сырья (экстрактов селективной очистки масляных фракций, ароматических концентратов, нефтяных фракций, нефтей, масел) с последующей...
Тип: Изобретение
Номер охранного документа: 0002622652
Дата охранного документа: 19.06.2017
Showing 11-20 of 57 items.
26.08.2017
№217.015.e407

Способ переработки тяжелых нефтяных остатков

Настоящее изобретение относится к способу переработки тяжелых нефтяных остатков, включающему каталитический крекинг сырья при температуре выше 370°С с ипользованием железосодержащего катализатора. При этом в качестве железосодержащего катализатора используют измельченные железомарганцевые...
Тип: Изобретение
Номер охранного документа: 0002626393
Дата охранного документа: 26.07.2017
29.12.2017
№217.015.f138

Катализатор для переработки тяжелых нефтяных остатков и способ его получения

Изобретение относится к катализатору для термокаталитического крекинга тяжелых нефтяных остатков, таких как гудрон, мазут, легкий и тяжелый газойль, и способу его получения. В качестве железосодержащего катализатора используют измельченные железомарганцевые конкреции, содержащие (4,5-15,0)...
Тип: Изобретение
Номер охранного документа: 0002638834
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f51a

Катализатор, способ его приготовления и процесс селективной гидроочистки бензина каталитического крекинга

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Заявляется катализатор селективной гидроочистки бензина каталитического...
Тип: Изобретение
Номер охранного документа: 0002637808
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f6c0

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Изобретение относится к области производства катализаторов гидроочистки углеводородного сырья. Описан носитель для приготовления катализаторов, представляющий собой модифицированный γ-AlO, имеющий объем пор 0,3-0,95 см/г, удельную поверхность 170-280 м/г, средний диаметр пор 7-22 нм и...
Тип: Изобретение
Номер охранного документа: 0002639159
Дата охранного документа: 20.12.2017
19.01.2018
№218.016.078f

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Способ включает пропитку алюмооксидного носителя раствором соединений металлов VIII, VI и V групп. При этом готовят совместный пропиточный раствор MoO и/или WO, не обязательно VO, от 0,33 до...
Тип: Изобретение
Номер охранного документа: 0002631424
Дата охранного документа: 22.09.2017
29.05.2018
№218.016.5977

Способ активации катализатора селективного гидрообессеривания бензина каталитического крекинга

Изобретение относится к способу активации катализатора селективного гидрообессеривания бензина каталитического крекинга. Данный способ сочетает в себе разделение процесса активации на две стадии: на первой стадии осуществляют сульфидирование катализатора путем пропускания через слой...
Тип: Изобретение
Номер охранного документа: 0002655030
Дата охранного документа: 25.05.2018
28.06.2018
№218.016.682b

Установка для регенерации катализатора гидрообработки и способ с ее применением

Изобретение относится к каталитической химии, в частности к способам окислительной регенерации катализаторов на носителе из оксида алюминия, и может быть использовано для регенерации отработанных катализаторов процессов гидроочистки и гидрокрекинга нефтяного сырья. Установка для регенерации...
Тип: Изобретение
Номер охранного документа: 0002658850
Дата охранного документа: 25.06.2018
19.07.2018
№218.016.723f

Устройство для загрузки сыпучего материала (варианты)

Изобретение относится к устройствам для загрузки сыпучих материалов, например частиц катализаторов в реакторы, гранул удобрений в хранилища, зерна в элеваторы или бункеры, и может быть использовано, в частности, в нефтеперерабатывающей и нефтехимической промышленности, различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002661519
Дата охранного документа: 17.07.2018
02.08.2018
№218.016.77eb

Катализатор изодепарафинизации и способ получения низкозастывающих дизельных топлив с его использованием

Изобретение относится к области нефтепереработки, а именно к разработке катализатора изодепарафинизации и способа получения низкозастывающих дизельных топлив зимних и арктического сортов с использованием разработанного катализатора. Заявлен катализатор изодепарафинизации дизельных дистиллятов,...
Тип: Изобретение
Номер охранного документа: 0002662934
Дата охранного документа: 31.07.2018
19.08.2018
№218.016.7e15

Способ гидроочистки углеводородного сырья

Изобретение относится к области гидроочистки нефтяных фракций. Описан способ гидрообработки, который ведут путем контактирования сырья с системой катализаторов, на первой ступени с катализатором при содержании компонентов, мас.%: оксид кобальта - 3,5-6,0; оксид молибдена 14,0-20,0; оксид...
Тип: Изобретение
Номер охранного документа: 0002664325
Дата охранного документа: 16.08.2018
+ добавить свой РИД