×
29.12.2018
218.016.ac71

Результат интеллектуальной деятельности: МОЩНЫЙ ИМПУЛЬСНЫЙ СВЧ ФОТОДЕТЕКТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к области разработки и изготовления мощных фоточувствительных полупроводниковых приборов на основе GaAs, в частности к импульсным полупроводниковым сверхвысокочастотным (СВЧ) фотодетекторам. Мощный импульсный СВЧ фотодетектор лазерного излучения на основе гетероструктуры содержит подложку 2 из n-GaAs, слой 3 из n-AlGaAs с х=0,35-0,60 в начале роста слоя на границе с подложкой до х=0,10-0,15 в конце роста слоя и с градиентом параметра «х» в интервале 25-60 см, слой 4 из n-GaAs толщиной 0,5-2 мкм с концентрацией носителей тока (0,5-2,0)⋅10 см, слой 5 из р-AlGaAs с х=0,15-0,30 в начале роста слоя до х=0,05-0,10 в конце роста слоя, контактный слой 6 из р-GaAs и сплошные омические контакты 1, 7. Изобретение обеспечивает улучшение быстродействия, уменьшение омических и тепловых потерь, а также уменьшение оптических потерь. 7 з.п. ф-лы, 2 ил., 2 пр.

Настоящее изобретение относится к области разработки и изготовления мощных фоточувствительных полупроводниковых приборов на основе GaAs, в частности, к импульсным полупроводниковым сверхвысокочастотным (СВЧ) фотодетекторам (ФД).

В настоящее время одним из перспективных стратегических направлений фотоэнергетики является создание информационного канала связи, работающего в оптическом диапазоне (например, фотонный тракт лазер-фотодетектор). Для преобразования мощного информационно-энергетического сигнала мощностью (~10 Вт) необходимо иметь мощные быстродействующие фотодетекторы.

Известен фотодетектор (см. патент US 7259439, МПК H01L 31/00, опубликован 21.08.2007) на основе ступенчатой по высоте структуре (микрорельеф, сформирован последовательностью операций травления и роста) на полуизолирующей подложке из GaAs, включающий слой из n-GaAs толщиной 0,5-2,0 мкм, слой из i-GaAs толщиной 0,5-5,0 мкм, слой из p-GaAs толщиной 0,005-0,002 мкм, антиотражающее покрытие, диэлектрическое покрытие, закрывающее p-i-n интерфейсы структуры и омических контакты, сформированные на небольших по площади частях, к p-GaAs и n-GaAs слоям ФД.

Недостатком известной структуры ФД является отсутствие тыльного потенциального барьера и широкозонного окна, что приводит к значительным потерям в спектральной чувствительности и КПД приборов на основе такой структуры. Другим недостатком является малая площадь омических контактов к ФД, поскольку в случае преобразования мощного лазерного излучения требуется свести к минимуму омические потери в полупроводнике.

Известен фотодетектор лазерного излучения (см. патент US 20120153417, МПК H01L 31/0232, опубликован 21.06.2012) на основе гетероструктуры, содержащий Брэгговское зеркало, стоп-слой на основе нелегированного i-AlAs толщиной 300 нм, буферный слой из нелегированного i-Al0.2Ga0.8As толщиной 1 мкм, слой из n-Al0,15Ga0,75As к n-части ФД толщиной 400 нм, слой из n- или i-Al0,15Ga0,75As толщиной 750 нм, в котором происходит транспорт носителей, слой потенциального барьера из i-AlxGa1-xAs с градиентом по ширине запрещенной зоны толщиной 20 нм, слой из i-GaAs толщиной 50 нм, поглощающий свет слой из p-GaAs с градиентом легирования примеси толщиной 400 нм, слой из p-Al0.2Ga0.8As потенциального барьера для электронов толщиной 20 нм, контактный слой из p-GaAs к p-части ФД, омические контакты и защитное покрытие на боковых поверхностях ФД для защиты p-i-n интерфейса. Внешний квантовый выход таких ФД составляет около 60% (0,41 А/Вт), а эффективность варьируется от 34% до 21% для длины волны падающего излучения 850 нм и рабочем напряжении 1 В и фототоке 0,2 мА (при диаметре светового пятна 20 мкм).

Недостатком данной структуры фотодетектора является использование большого количества нелегированных слоев, что в случае использования мощного лазерного излучения может приводить к значительным омическим потерям в полупроводнике, другим недостатком известного ФД является недостаточно высокое значение квантовой эффективности и, как следствие, невысокое значение КПД прибора.

Известен фотодетектор импульсов лазерного излучения, модулированного в диапазоне частот 100 кГц с интенсивностью излучения до 50 Вт/см2 (см. Tiqiang Shan, Xinglin Qi, Response of GaAs photovoltaic converters under pulsed laser illumination, WSEAS transactions on Circuits and Systems, vol. 14, 2015, pp. 19-23). Известный фотодетектор включает подложку из n-GaAs толщиной 350 мкм (Nn=5⋅1018 см-3), буферный слой из n-GaAs толщиной 1 мкм (Nn=5⋅1018 см-3), слой тыльного потенциального барьера из n-AlGaAs толщиной 0,05 мкм (Nn=5⋅1018 см-3), базовый слой из n-GaAs толщиной 3,5 мкм (Nn=5⋅1017 см-3), эмиттерный слой из p-GaAs толщиной 0,5 мкм (Nn=2⋅1018 см-3), слой широкозонного окна из р-GaInP толщиной 0,05 мкм (Nn=5⋅1018 см-3), контактный слой из р+-GaAs толщиной 0,5 мкм (Nn=5⋅1019 см-3), двухслойное антиотражающее покрытие TaOx/SiO2 для спектрального диапазона 810-840 нм, тыльный и лицевой омические контакты. Быстродействие фотодетектора составило 25 нс.

Недостатком известного ФД является недостаточно высокое быстродействие и ввод излучения перпендикулярно слоям фотодетектора, что может приводить к дополнительным оптическим и омическим потерям прибора и снижению эффективности и параметров быстродействия.

Известен фотодетектор с «торцевым» вводом излучения в интегрированный волновод, основанный на отражении света от одной из его граней (см. US 5391869 А), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков и принятый за прототип. Известный фотодетектор включает в себя длинную волноводную структуру, которая принимает свет из входного конца ФД и ограничивает его в определенном пространственном оптическом режиме. Свет распространяется вдоль волновода (в слое Al0.21Ga0.79As) и претерпевает внутреннее отражение на противоположной границе, расположенной под углом. Таким образом, свет попадает в светопоглощающий (детекторный) слой фото детектора, создавая там электронно-дырочные пары. Поглощенный свет детектируется с помощью структуры металл-полупроводник-металл, выполненной в виде повторяющейся электродной структуры, расположенной на внешней поверхности слоя детектора. Для света с длиной волны 0,84 мкм детекторный слой выполнен из GaAs. В качестве альтернативы, для света с длиной волны 1,3-1,55 мкм детекторный слой выполнен из InGaAs.

Конструкция известного фото детектора включает в себя 500 мкм подложку GaAs, 7 мкм нижнее покрытие волновода Al0.25Ga0.75As, 0,7 мкм волновод Al0.21Ga0.79As, 1,5 мкм верхнее покрытие волновода Al0.25Ga0.75As, и 1,5 мкм фотодетектор GaAs или In0.53Ga0.47As.

Недостатками известного ФД является сложность изготовления наклонной грани для внутреннего отражения излучения и дополнительные оптические потери при отражении света от наклонной грани.

Задачей настоящего изобретения является создание мощного импульсного фотодетектора с вводом по оптоволокну мощных лазерных импульсов через боковую «торцевую» поверхность структуры, который обеспечивает улучшение быстродействия, уменьшение омических и тепловых потерь, а также уменьшение оптических потерь.

Для улучшения параметров СВЧ ФД разработана конструкция с торцевым вводом излучения. В ФД с такой конструкцией верхний и нижний контакты сплошные, а свет вводится в структуру с торца. При плавном (градиентном) изменении состава полупроводниковой структуры изменяется ее показатель преломления. Градиентный показатель преломления позволяет изменять ход лучей света таким образом, что излучение, введенное в торец, ФД постепенно преломляется в сторону активной области.

Технический результат поставленной задачи достигается группой изобретений, объединенных единым изобретательским замыслом.

Поставленная задача решается тем, что мощный импульсный фотодетектор лазерного излучения на основе гетероструктуры включает подложку из n-GaAs, слой из n-AlxGa1-xAs с х=0,35-0,60 в начале роста слоя на границе с подложкой и до х=0,10-0,15 в конце роста слоя и градиентом параметра «х» в интервале 25-60 см-1, активный слой из n0-GaAs толщиной 0,5-2,0 мкм с концентрацией носителей тока (0,5-2,0)⋅1016 см-3, слой из р-AlxGa1-xAs с х=0,15-0,30 в начале роста слоя до х=0,05-0,10 в конце роста слоя, контактный слой из р+-GaAs и первый и второй сплошные омические контакты, нанесенные соответственно на подложку и контактный слой, при этом длина фотодетектора вдоль p-n перехода равна 350-500 мкм.

Подложка может иметь концентрацию носителей тока не менее 3⋅1018 см-3.

Слой из n-AlxGa1-xAs может иметь концентрацию носителей тока (1-5)⋅1018 см-3.

Слой из n0-GaAs может иметь толщину 0,5-2,0 мкм и концентрацию носителей тока (0,5-2)⋅1016 см-3.

Слой из р-AlxGa1-xAs может иметь толщину 1-2 мкм и концентрацию носителей тока (1-5)⋅1018 см-3.

Контактный слой из р+-GaAs может иметь толщину 1-3 мкм и концентрацию носителей тока (1-3)⋅1019 см-3.

На поверхность освещаемого торца фотодетектора может быть нанесено антиотражающее покрытие с минимумом отражения в спектральном интервале 810-860 нм.

Новым в настоящем фотодетекторе является наличие в структуре слоя из n-AlxGa1-xAs с х=0,35-0,60 в начале роста слоя на границе с подложкой и до х=0,10-0,15 в конце роста слоя и градиентом параметра «х» в интервале 25-60 см-1, и слоя из n0-GaAs толщиной 0,5-2,0 мкм с концентрацией носителей тока (0,5-2,0)⋅1016 см-3, слоя из р-AlxGa1-xAs с х=0,15-0,30 в начале роста слоя до х=0,05-0,10 в конце роста слоя, а также длина фото детектора вдоль p-n перехода, равная 350-500 мкм.

Настоящий способ поясняется чертежом, где на фиг. 1 показан общий вид фотодетектора в аксонометрии (L - длина фотодетектора, D - линейный размер вертикальной оси светового пятна эллипса, d - линейный размер по горизонтальной оси светового пятна эллипса; α1 - угол наклона излучения лазера по отношении к нормали торцевой поверхности фотодетектора.

На фиг. 2 приведено поперечное сечение настоящего фотодетектора.

Импульсный фотодетектор (см. фиг. 1 - фиг. 2) выполняют в виде прямоугольного параллелепипеда, длина которого вдоль p-n перехода равна 350-500 мкм. Фото детектор содержит первый сплошной омический контакт 1, нанесенный на внешнюю сторону полупроводниковой подложки 2 из n-GaAs, на внутренней стороне которой выращены: слой 3 из n-AlxGa1-xAs с х=0,35-0,60 в начале роста слоя на границе с подложкой 2 и до х=0,10-0,15 в конце роста слоя и градиентом параметра «х» в интервале 25-60 см-1, активный слой 4 из n0-GaAs толщиной 0,5-2,0 мкм с концентрацией носителей тока (0,5-2,0)⋅1016 см-3, слой 5 p-AlxGa1-xAs толщиной, например, 1-2 мкм с х=0,15-0,30 в начале роста слоя до х=0,05-0,10 в конце роста слоя, контактный слой 6 из р+-GaAs и второй сплошной омический контакт 7. Лазерное излучение подают на торец 8 фотодетектора, на который может быть нанесено антиотражающее покрытие 9. Противоположный (тыльный) торец 10 фото детектора выполняет функцию отражателя лазерного излучения.

При вводе лазерного излучения из оптоволокна в фотодетектор через торец 8 перпендикулярно поверхности торца 8 излучение будет отклоняться в сторону более оптически плотного слоя с меньшим содержанием AlAs, а часть излучения, прошедшего через слой 3 из n-AlxGa1-xAs, будет отражаться от противоположного торца 10 в сторону активного слоя 4 из n0-GaAs и поглощаться в нем, генерируя фототок. Расположение оптической оси оптоволокна под углом более 13° (учитывая расходимость ±13° лазерного пучка на торце оптоволокна) от нормали к поверхности торца 8 фотодетектора позволяет: во-первых, уменьшить длину фотодетектора, при которой все падающее излучение будет попадать в область активного слоя 4 из n0-GaAs, а, во-вторых, исключить попадание зеркально-отраженных лучей внутри угла захвата этих лучей оптоволокном, по которому подводят лазерное излучение. Таким образом, оптимальная длина фотодетектора напрямую зависит от диаметра используемого оптического волокна. Учитывая тот факт, что излучение заводят под углом к нормали поверхности торца 8, световое пятно будет иметь форму эллипса с линейным размером вертикальной оси D. Максимальную длину, равную 500 мкм, фотодетектор (при максимальной толщине слоя 3 из n-AlxGa1-xAs) будет иметь, когда вертикальный размер светового пятна будет равен толщине слоя 3 из n-AlxGa1-xAs. При использовании оптического волокна диаметром более 100 мкм используют оптические микросистемы для фокусировки светового пятна до размеров близким толщине слоя 3 из n-AlxGa1-xAs.

Зная градиент концентрации AlAs и показателя преломления в слое из n-AlxGa1-xAs и предварительно смоделировав траекторию прохождения крайнего луча на границе подложки и градиентного слоя из n-AlxGa1-xAs через ФД, можно установить минимальную длину фотодетектора, при которой исключается сквозное прохождение лучей и выход лучей из ФД. Лазерное излучение, распространяющееся в кристалле, при попадании на торец претерпевает полное внутреннее отражение при углах падения больших 16°. Была установлена связь углов ввода излучения со значениями минимальной длины ФД, при которой обеспечивается полное поглощение излучения. При длине ФД более 500 мкм (и значении «х» более 0,6) увеличивается емкость прибора, что снижает его быстродействие. При длине меньше 350 мкм (и значении «х» менее 0,35) часть лучей пройдут сквозь фотодетектор, что приводит к оптическим потерям ФД и снижает его КПД. Выбор оптимальных параметров ФД поясняется в Примере 1 и Примере 2.

В структуре настоящего ФД все слои, включая подложку, кроме активного n0-слоя, должны иметь концентрацию носителей тока не менее 1018 см-3, что обеспечивает низкие омические потери в полупроводнике, верхний предел концентрации носителей тока для каждого слоя определяется качеством морфологии растущего слоя и для каждого слоя в зависимости от легирующей примеси установлен индивидуально. Низкая концентрация носителей тока (0,5-2,0)⋅1016 см-3 в слое из n0-GaAs обеспечивает снижение емкости фото детектора и увеличение его быстродействия.

Наличие в структуре слоя 3 n-AlxGa1-xAs градиентного состава обеспечивает отклонение лучей лазера из области с большим содержанием AlAs (с меньшим показателем преломления) к активному слою из n0- GaAs (с большим показателем преломления).

Выращивание на подложке из n-GaAs слоя 3 из n-AlxGa1-xAs с х=0,35-0,60 в начале слоя и с х=0,10-0,15 в конце слоя обеспечивает потенциальный барьер для генерированных в активном слое 4 неосновных носителей заряда. Такую же роль тыльного потенциального барьера для генерированных носителей тока в активном слое 4 играет верхний слой из р-AlxGa1-xAs с х=0,15-0,30 до х=0,05-0,10. Таким образом, наличие в структуре широкозонных слоев из AlxGa1-xAs способствует эффективному собиранию носителей из n-GaAs области (активный слой 4) к p-n-переходу.

Создание сплошных омических контактов к верхней и нижней поверхности структуры позволяет свести к минимуму постростовую обработку для получения фотодетектора (опускаются ряд операций: фотолитография по созданию рисунка лицевого контакта; фотолитография для разделительного травления структуры на приборы). При этом улучшается теплоотвод - при равной температуре p-n перехода возможна работа при мощностях излучения, по крайней мере, вдвое больших рабочих мощностей излучения аналогичных ФД с нормальным вводом излучения (перпендикулярно к плоскости p-n перехода). Наряду с этим на порядок снижаются омические потери в ФД: сплошные контакты уменьшают омические потери, поскольку на порядок увеличивается площадь токосъема по сравнению с площадью токосъемной сетки ФД с нормальным вводом излучения. Ввод излучения в поглощающую область под углом меньшим 90° к плоскости p-n перехода позволяет уменьшить толщину поглощающей области из-за увеличения оптического пути лучей света через нее. Для уменьшения оптических потерь размеры ФД установлены такими, чтобы все излучение, попавшее на входной торец ФД, достигало узкозонной поглощающей области ФД и поглощалось в ней. Для пояснения этих аспектов ниже приведены 2 примера.

Пример 1. Для засветки ФД использовали лазерное излучение, подводимое через волокно диаметром 90 мкм, ось которого установлена под углом 13° к нормали торцевой поверхности. Максимальное расстояние по вертикальной оси светового пятна эллипса составляло ~100 мкм. Был изготовлен импульсный СВЧ ФД на основе структуры, содержащей подложку из n-GaAs, слой из n-AlxGa1-xAs толщиной 100 мкм при х=0,6 в начале роста слоя и х=0,10 в конце роста слоя, градиент параметра «х» в начале слоя установлен равным 40 см-1, а в конце слоя градиент параметра «х» установлен равным 25 см-1; активный слой из n0-GaAs толщиной 2 мкм и уровнем легирования 0,5⋅1016 см-3; слой из р-AlxGa1-xAs при х=0,30 в начале роста слоя и х=0,10 в конце роста слоя; контактный слой из p+-GaAs, а также сплошные лицевой и тыльный омические контакты. Минимальная длина ФД определялась траекторией крайнего луча на границе подложки и градиентного слоя из n-AlxGa1-xAs. В данном примере минимальная длина фото детектора составляет ~500 мкм, а ширина фотодетектора была установлена равной 250 мкм, так как размер светового пятна лазерного излучения составлял 240 мкм в плоскости торца ФД.

Пример 2. Для засветки фотодетектора использовали параллельные лучи через световую апертуру 55 мкм, ось которой была установлена под углом 13° к нормали торцевой поверхности ФД, максимальное расстояние по вертикальной оси светового пятна эллипса составляло ~60 мкм. Был изготовлен импульсный СВЧ ФД на основе структуры, содержащей подложку из n-GaAs, слой из n-AlxGa1-xAs толщиной 60 мкм при х=0,35 в начале роста слоя и х=0,05 в конце роста слоя, градиент параметра «х» в начале слоя был установлен равным 60 см-1, а в конце слоя равным 30 см-1; активный слой из n0-GaAs; слой из р-AlxGa1-xAs, при х=0,15 в начале роста слоя и х=0,05 в конце роста слоя; контактный слой из р+- GaAs, а также сплошные первый и второй омические контакты. Минимальная длина фотодетектора определялась траекторией крайнего луча на границе подложки и градиентного слоя из n-AlxGa1-xAs. В данном примере минимальная длина фотодетектора составляла ~350 мкм, а ширина 150 мкм, так как размер светового пятна в данном примере составил 140 мкм в торцевой плоскости ФД.


МОЩНЫЙ ИМПУЛЬСНЫЙ СВЧ ФОТОДЕТЕКТОР
Источник поступления информации: Роспатент

Showing 41-50 of 174 items.
26.10.2018
№218.016.9620

Оптоволоконный фотоэлектрический свч модуль

Изобретение относится к области радиотехники, в частности к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и антенных решеток для связи, радиолокации и радиоэлектронной борьбы. Оптоволоконный фотоэлектрический СВЧ модуль включает симметричный...
Тип: Изобретение
Номер охранного документа: 0002670719
Дата охранного документа: 24.10.2018
06.12.2018
№218.016.a444

Стендовый жидкостный ракетный двигатель с непрерывной спиновой детонацией

Изобретение относится к области испытаний, в частности стендовых испытаний режимов работы ЖРД, работающих в режиме непрерывной детонации на топливной смеси, состоящей из газообразного кислорода и керосина. Изобретение представляет собой стендовый ЖРД с кольцевой камерой детонационного горения,...
Тип: Изобретение
Номер охранного документа: 0002674117
Дата охранного документа: 04.12.2018
07.12.2018
№218.016.a463

Устройство для импульсной деформации длинномерных трубчатых изделий

Изобретение относится к обработке металлов давлением, а именно к устройствам для магнитоимпульсной обработки металлов давлением. Устройство содержит приспособление для прижимного соединения и разъединения торцевых частей полувитков блока разъемного индуктора. При этом указанное приспособление...
Тип: Изобретение
Номер охранного документа: 0002674184
Дата охранного документа: 05.12.2018
09.12.2018
№218.016.a50b

Радиофотонный передающий тракт для передачи мощных широкополосных сигналов и эффективного возбуждения антенн

Изобретение относится к радиофотонике, в том числе к технике передачи мощных широкополосных радиосигналов по волоконно-оптическим линиям связи к антеннам и антенным решеткам. Техническим результатом является повышение КПД, максимально достижимой мощности, широкополосности (расширение мгновенной...
Тип: Изобретение
Номер охранного документа: 0002674074
Дата охранного документа: 07.12.2018
20.12.2018
№218.016.a95b

Радиофотонный широкополосный приемный тракт на основе ммшг-модулятора с подавлением собственных шумов лазера

Изобретение относится к радиофотонике, в том числе к технике приема слабых широкополосных радиосигналов, например, от антенн и антенных решеток. Заявленный радиофотонный широкополосный приемный тракт на основе ММШГ-модулятора с подавлением собственных шумов лазера содержит лазер, оптическую...
Тип: Изобретение
Номер охранного документа: 0002675410
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a963

Способ изготовления фотодетекторов мощного оптоволоконного свч модуля

Изобретение может быть использовано для создания мощных СВЧ фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ изготовления фотодетекторов мощного оптоволоконного СВЧ модуля включает создание на полупроводниковой подложке...
Тип: Изобретение
Номер охранного документа: 0002675408
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a99f

Конструкция высокопрочных датчиков

Изобретение относится к области авиационной техники, диагностики технического состояния конструкций из полимерных композиционных, металлических и гибридных материалов с использованием волоконно-оптических акустических средств встроенного контроля. Конструкция высокопрочного датчика деформации...
Тип: Изобретение
Номер охранного документа: 0002675411
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a9dd

Фотодетекторный свч модуль

Изобретение относится к области радиотехники, а именно к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и активных фазированных антенных решеток (АФАР) для связи, радиолокации, радионавигации и радиоэлектронной борьбы. Фотодетекторный СВЧ модуль включает...
Тип: Изобретение
Номер охранного документа: 0002675409
Дата охранного документа: 19.12.2018
26.12.2018
№218.016.ab9c

Фильтрующий пакет, способ получения мембраны для него и способ изготовления противоаэрозольного фильтра противогаза

Изобретение относится к области получения противоаэрозольных фильтров из волокнистых фильтрующих материалов. Фильтрующий слой изготовлен из полиакрилонитрильных нановолокон. Нановолокна получены методом электроформования по технологии Nanospider из раствора полиакрилонитрила с концентрацией...
Тип: Изобретение
Номер охранного документа: 0002675924
Дата охранного документа: 25.12.2018
27.12.2018
№218.016.ac66

Способ получения фильтрующего материала и фильтрующий материал

Изобретение относится к области получения высокоэффективных волокнистых фильтрующих материалов. Фильтрующий материал представляет собой трехслойную композицию, в которой один из слоев выполнен из полимерных (полиакрилонитрильных) нановолокон, полученных методом электроформования, и размещен...
Тип: Изобретение
Номер охранного документа: 0002676066
Дата охранного документа: 25.12.2018
Showing 41-50 of 60 items.
10.04.2019
№219.017.0277

Способ формирования многослойного омического контакта фотоэлектрического преобразователя (варианты)

Изобретение относится к микроэлектронике. Сущность изобретения: в способе формирования многослойного омического контакта фотоэлектрического преобразователя на основе арсенида галлия электронной проводимости формируют фотолитографией топологию фоточувствительных областей и проводят травление...
Тип: Изобретение
Номер охранного документа: 0002391741
Дата охранного документа: 10.06.2010
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.5967

Солнечный фотоэлектрический модуль на основе наногетероструктурных фотопреобразователей

Концентраторный фотоэлектрический модуль на основе наногетероструктурных солнечных элементов относится к области фотоэлектрического преобразования энергии, в частности к системам с расщеплением солнечного спектра. Модуль содержит корпус (1), имеющий фронтальную панель (2), содержащую...
Тип: Изобретение
Номер охранного документа: 0002426198
Дата охранного документа: 10.08.2011
29.05.2019
№219.017.689a

Концентраторный солнечный элемент

Концентраторный солнечный элемент (8) выполнен в форме в форме прямоугольника с соотношением длин сторон, находящимся в интервале от 1 до 1,5. Он содержит подложку (3), многослойную структуру (4), сформированную на подложке (3), с центральной фоточувствительной областью (12), контактный слой...
Тип: Изобретение
Номер охранного документа: 0002407108
Дата охранного документа: 20.12.2010
09.06.2019
№219.017.7c22

Способ получения структуры многослойного фотоэлектрического преобразователя

Способ получения многослойной структуры двухпереходного фотоэлектрического преобразователя, включающий последовательное осаждение из газовой фазы на подложку p-типа GaAs тыльного потенциального барьера из триметилгаллия (TMGa), триметилалюминия (TMAl), арсина (AsH) и источника p-примеси, базы...
Тип: Изобретение
Номер охранного документа: 0002366035
Дата охранного документа: 27.08.2009
09.06.2019
№219.017.7d2a

Способ изготовления наноструктурного омического контакта фотоэлектрического преобразователя

Изобретение относится к технологии изготовления полупроводниковых приборов. Сущность изобретения: в способ изготовления наноструктурного омического контакта проводят предварительную очистку поверхности GaSb р-типа проводимости ионно-плазменным травлением на глубину 5-30 нм с последующим...
Тип: Изобретение
Номер охранного документа: 0002426194
Дата охранного документа: 10.08.2011
09.06.2019
№219.017.7d72

Способ формирования контакта для наногетероструктуры фотоэлектрического преобразователя на основе арсенида галлия

Изобретение относится к области создания полупроводниковых приборов, чувствительных к излучению, и может использоваться в технологиях по изготовлению омических контактных систем к фотоэлектрическим преобразователям (ФЭП) с высокими эксплуатационными характеристиками, и, в частности, изобретение...
Тип: Изобретение
Номер охранного документа: 0002428766
Дата охранного документа: 10.09.2011
03.08.2019
№219.017.bbdf

Оптоволоконный фотоэлектрический преобразователь лазерного излучения

Изобретение относится к оптоэлектронике и фотоэнергетике и может быть использовано для создания оптоволоконных систем передачи энергии по лазерному лучу. Заявленный оптоволоконный фотоэлектрический преобразователь лазерного излучения включает оптически последовательно соединенные лазер,...
Тип: Изобретение
Номер охранного документа: 0002696355
Дата охранного документа: 01.08.2019
04.10.2019
№219.017.d20f

Полупроводниковая структура многопереходного фотопреобразователя

Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным фотоэлектрическим преобразователям мощного оптического излучения с соединительными туннельными диодами. Полупроводниковая структура многопереходного фотопреобразователя содержит верхнюю субструктуру (1),...
Тип: Изобретение
Номер охранного документа: 0002701873
Дата охранного документа: 02.10.2019
31.12.2020
№219.017.f458

Способ изготовления фотоэлектрического преобразователя на основе gasb

Изобретение относится к способам изготовления фотоэлектрических преобразователей на основе GaSb, применяемых в солнечных элементах, термофотоэлектрических генераторах, в системах с расщеплением спектра солнечного излучения, в преобразователях лазерного излучения. Во всех перечисленных случаях...
Тип: Изобретение
Номер охранного документа: 0002710605
Дата охранного документа: 30.12.2019
+ добавить свой РИД