×
26.12.2018
218.016.aafd

Результат интеллектуальной деятельности: Способ получения Mn-Fe-содержащего спин-стекольного магнитного материала

Вид РИД

Изобретение

Аннотация: Изобретение относится к области технологических процессов, связанных с получением нового магнитного материала с магнитным состоянием типа спинового стекла, и может найти применение при разработке моделей новых типов устройств современной электроники. Способ получения Mn-Fe-содержащего спин-стекольного материала включает высушивание соединений, составляющих шихту, при температуре 105°С в течение 6 часов, сплавление их в печи, приготовление растворов-расплавов в платиновом 100 см тигле при Т=1100°С последовательным сплавлением смесей порошков BiMoO и ВО, затем в расплав вносят MnO и FeO, последними порциями добавляют порошок NaCO, после выдержки раствора-расплава в течение 3 часов при Т=1100°С температуру в печи быстро понижают до (Тнас - 10)°С и далее понижают медленно, со скоростью 3-4°С/сут, через 3-ое суток тигель извлекают из печи и раствор-расплав сливают, выросшие монокристаллы в виде черных призм отделяют от остатков раствор-расплава травлением в 20% растворе азотной кислоты. Техническим результатом изобретения является получение Mn-Fe-содержащего магнитного материала с состоянием спинового стекла, обладающего фазовой и химической однородностью. 1 ил., 2 табл., 1 пр.

Изобретение относится к области технологических процессов, связанных с получением нового магнитного материала с магнитным состоянием типа спинового стекла и может найти применение при разработке моделей новых типов устройств современной электроники.

Известен способ получения спин-стекольного материала HoFeTi2O7 методом твердотельной реакции [патент RU 2555719 С1, МПК С04В 35/40, опубл. 10.07.2015]. Недостатком материала, полученного данным способом является его поликристалличность.

Наиболее близким аналогом, принятым за прототип, является многокомпонентный спин-стекольный магнитный материал TbFeTi2O7 [патент RU 2526086 С1, МПК С04В 35/40, С04В 35/462, опубл. 20.08.14], который включает железо, титан, кислород и тербий в соотношениях мас. %: Tb-37,61; Fe - 13,22; Ti - 22,66; О - 26,51.

Способ получения этого спин-стекольного магнитного материала представляет собой твердофазный синтез в несколько этапов. В качестве исходных компонентов используются оксиды Fe2O3, TiO2 и Tb2O3. Из приготовленной шихты с помощью пресс формы формируются таблетки под давлением около 10 кбар диаметром 10 мм и толщиной 1,5-2,0 мм. Таблетки помещают в алундовый тигель и отжигают в печи. Максимальная температура отжига составляет 1250°С. После завершения каждого этапа синтеза таблетки вновь перетираются, прессуются и снова помещаются в печь для последующего отжига. Химический и фазовый состав полученных образцов контролируется методом рентгеноструктурного анализа, а также с помощью оптического микроскопа после каждого этапа синтеза. Недостатком данного способа получения спин-стекольных материалов является невозможность получать качественные монокристаллы, что негативно сказывается на области их применения в устройствах твердотельной микроэлектроники.

Задачей, на решение которой направлено изобретение, является разработка способа получения Mn-Fe-содержащего спин-стекольного магнитного материала, качество которого допускает проведение ориентационных физических исследований.

Техническим результатом изобретения является способ получения Mn-Fe-содержащего магнитного материала с состоянием спинового стекла, обладающего фазовой и химической однородностью.

Технический результат достигается тем, что способ получения Mn-Fe-содержащего спин-стекольного материала включает высушивание соединений, составляющих шихту при температуре 105°С в течение 6 часов, сплавление их в печи, новым является то, что растворы-расплавы готовят при Т=1100°С последовательным сплавлением смесей порошков Bi2Mo3O12 и В2О3, затем в расплав вносят Mn2O3 и Fe2O3, последним добавляют порошок N2CO3, после выдержки раствора-расплава в течение 3 часов при Т=1100°С температуру в печи быстро понижают до (Тнас - 10)°С, и далее, медленно, со скоростью 3-4°С/сут, через 3-ое суток тигель извлекают из печи и раствор-расплав сливают, выросшие монокристаллы отделяют от остатков раствор-расплава травлением в 20% растворе азотной кислоты.

Сопоставительный анализ с прототипом позволяет сделать вывод о том, что заявляемое изобретение отличается от известного тем, что растворы-расплавы готовят при Т=1100°С последовательным сплавлением смесей порошков Bi2Mo3O12 и В2О3, затем в расплав вносят Mn2O3 и Fe2O3, последним добавляют порошок Na2CO3, после выдержки раствора-расплава в течение 3 часов при Т=1100°С температуру в печи быстро понижают до (Тнас - 10)°С, и далее, медленно, со скоростью 3-4°С/сут, через 3-ое суток тигель извлекают из печи и раствор-расплав сливают, выросшие монокристаллы отделяют от остатков раствор-расплава травлением в 20% растворе азотной кислоты.

Признаки, отличающие заявляемое решение от прототипа, обеспечивают заявляемому техническому решению соответствие критерию «новизна».

Признаки, отличающие заявляемое решение от прототипа не выявлены при изучении других известных технических решений в данной области техники и, следовательно, обеспечивают ему соответствие критерию «изобретательский уровень».

Изобретение поясняется фигурой. На ней представлена температурная зависимость магнитного момента полученного материала в магнитном поле (FC) 500 Э и без поля (ZFC).

Сущность изобретения заключается в том, что спин-стекольный материал Mn2-xFexOBO3 (0<х<1) образуется в результате спонтанной кристаллизации из растворов-расплавов с соотношением компонентов:

где n - кристаллообразующая концентрация оксида, соответствующая стехиометрии Mn2-xFexOBO3 (для примера х=0; 0.3, 0.5, 0.7); р и q - отношения кристаллообразующего оксида к матрице.

Пример осуществления

1. Порошки Bi2Mo3O12, В2О3, Mn2O3 и Fe2O3 высушиваются при температуре 105°С в

течение 6 часов.

2. Растворы-расплавы приготовлены в платиновом 100 см3 тигле при Т=1100°С последовательным сплавлением смесей порошков Bi2Mo3O12 и В2О3, затем в расплав вносят Mn2O3 и Fe2O3, последним порциями добавлялся порошок Na2CO3. Общая масса реактивов составляла 83÷90 г. В таких растворах-расплавах высокотемпературной кристаллизующейся фазой, в достаточно широком температурном интервале (не менее 40°С), является варвикит Mn2-xFexOBO3 (0<х<1). Температуры насыщения растворов-расплавов представлены в таблице 1. После выдержки раствора-расплава в течение 3 часов при Т=1100°С, температура в печи быстро понижалась до (Тнас - 10)°С, и далее, медленно, со скоростью 3-4°С/сут. Через 3-ое суток тигель извлекался из печи и раствор-расплав сливался. Выросшие монокристаллы в виде черных призм длиной до 8 мм и поперечным размером до 0,4 мм отделялись от остатков раствор-расплава травлением в 20% растворе азотной кислоты.

Химический и фазовый состав материалов контролировался методами рентгеноструктурного анализа, а также с помощью оптического микроскопа после каждого этапа синтеза.

В таблице 2 приведены содержание элементов, симметрия кристаллической решетки и параметры элементарной ячейки. Согласно результатам рентгеноструктурного анализа полученный Fe-Mn-содержащий спин-стекольный магнитный материал имеет ромбическую кристаллическую структуру (пространственная группа ). Соотношения Mn/Fe контролировались по экспериментальным скачкам спектров рентгеновского поглощения. Были получены следующие стехиометрические коэффициенты: х=0.34, 0.53 и 0.72. Эти составы согласуются с предсказанными технологическими значениями с уточненными химическими формулами MN1.7Fe0.3ОВО3, Mn1.5Fe0.5OBO3 и Mn1.3Fe0.7OBO3.

Полученный материал Mn2-xFexOBO3 (0<х<1) обладает магнитным состоянием спинового стекла. Состояние спинового стекла в Mn2-xFexOBO3 (0<х<1) с температурами TSG=11, 14 и 18 K подтверждают измерения температурной зависимости магнитного момента (фиг.), где показано, что намагниченность образца зависит от термической предыстории (охлаждение образца в магнитном поле (FC) 500 Э и без поля (ZFC), вставка к фиг. с температурной зависимостью переменной магнитной восприимчивости).

Способ получения Mn-Fe-содержащего спин-стекольного магнитного материала, включающий высушивание соединений, составляющих шихту, при температуре 105°С в течение 6 часов, сплавление их в печи, отличающийся тем, что растворы-расплавы готовят при Т=1100°С последовательным сплавлением смесей порошков BiМоО и ВО, затем в расплав вносят МnО и FеО, последним добавляют порошок NaCO, после выдержки раствора-расплава в течение 3 часов при Т=1100°С температуру в печи быстро понижают до (Тнас-10)°С, и далее, медленно, со скоростью 3-4°С/сут, через 3-ое суток тигель извлекают из печи и раствор-расплав сливают, выросшие монокристаллы отделяют от остатков раствор-расплава травлением в 20% растворе азотной кислоты.
Способ получения Mn-Fe-содержащего спин-стекольного магнитного материала
Источник поступления информации: Роспатент

Showing 41-50 of 60 items.
22.12.2019
№219.017.f11f

Способ обработки поверхности туш и субпродуктов северного оленя для хранения

Изобретение относится к мясной промышленности, в частности к технологии продления сроков качественного хранения мяса и субпродуктов северного оленя. Обработку поверхности предварительно охлажденного до температуры (-1)-(-3)°С продукта проводят посредством мелкодисперсного аэрозольного...
Тип: Изобретение
Номер охранного документа: 0002709768
Дата охранного документа: 19.12.2019
24.01.2020
№220.017.f951

Способ получения композиционного высокоанизотропного материала copt-alo с вращательной анизотропией

Изобретение относится к области технологических процессов, связанных с получением высокоанизотропных композиционных материалов с помощью твердотельных реакций по методу алюмотермии и формированию в них магнитной вращательной анизотропии. Получаемый материал может быть использован в качестве...
Тип: Изобретение
Номер охранного документа: 0002711700
Дата охранного документа: 21.01.2020
08.02.2020
№220.018.00cb

Способ получения суперпарамагнитных наночастиц на основе силицида железа fesi с модифицированной поверхностью

Изобретение относится к области нанотехнологии и может быть использовано для производства наноструктурированных материалов биомедицинского назначения. Способ получения суперпарамагнитных наночастиц на основе силицида железа FеSi с модифицированной поверхностью включает синтез силицида железа...
Тип: Изобретение
Номер охранного документа: 0002713598
Дата охранного документа: 05.02.2020
13.03.2020
№220.018.0b3c

Днк аптамеры, связывающие сердечный тропонин i человека

Изобретение относится к области биотехнологии и медицины, а именно к области ДНК аптамеров, способных специфично и с высоким сродством связываться с сердечным тропонином I человека. Основными областями применения ДНК-аптамеров к сердечному тропонину I являются клинические исследования,...
Тип: Изобретение
Номер охранного документа: 0002716409
Дата охранного документа: 11.03.2020
12.07.2020
№220.018.31f1

Держатель образца для сквид-магнитометра типа mpms

Изобретение относится к устройствам для измерения переменных магнитных величин. Держатель образца для СКВИД-магнитометра типа MPMS содержит цилиндрическую трубку из органического материала, внутри которой вертикально помещен немагнитный цилиндр, при этом дополнительно содержит второй цилиндр,...
Тип: Изобретение
Номер охранного документа: 0002726268
Дата охранного документа: 10.07.2020
21.07.2020
№220.018.3511

Установка для консервирования сырья животного и растительного происхождения

Изобретение относится к области сельского хозяйства, в частности к оборудованию для переработки, консервирования сырья животного и растительного происхождения. Установка для консервирования сырья животного и растительного происхождения включает установленный на полозьях мобильный модуль. Модуль...
Тип: Изобретение
Номер охранного документа: 0002727010
Дата охранного документа: 17.07.2020
31.07.2020
№220.018.3932

Способ извлечения палладия из солянокислых растворов

Изобретение относится к гидрометаллургии палладия и может быть использовано при выделении палладия из солянокислых растворов сложного состава при переработке медь и никель содержащих концентратов, а также вторичного сырья, в частности, при переработке отработанных катализаторов автомобильной...
Тип: Изобретение
Номер охранного документа: 0002728120
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3a27

Кормовая добавка для коров "хвойная плюс"

Изобретение относится к животноводству, в частности к кормовой добавке для коров. Добавка характеризуется тем, что содержит хвойную муку, измельченную скорлупу кедрового ореха, арабиногалактан, Амилосубтилин Г3х. Исходные компоненты берут в определенном соотношении. Использование изобретения...
Тип: Изобретение
Номер охранного документа: 0002728463
Дата охранного документа: 29.07.2020
01.08.2020
№220.018.3afe

Рекомбинантная плазмидная днк pet19b-sav, обеспечивающая синтез полноразмерного белка стрептавидина streptomyces avidinii, штамм бактерий escherichia coli - продуцент растворимого полноразмерного белка стрептавидина streptomyces avidinii

Изобретение относится к микробиологической промышленности, биотехнологии, генной и белковой инженерии и касается рекомбинантной плазмидной ДНК pET19b-SAV, обеспечивающей синтез полноразмерного белка стрептавидина, имеющей молекулярную массу 4 МДа и размер 6126 п.о. и содержащей, в соответствии...
Тип: Изобретение
Номер охранного документа: 0002728652
Дата охранного документа: 30.07.2020
07.08.2020
№220.018.3dd9

Устройство для электромагнитного облучения биологических объектов

Изобретение относится к СВЧ-технике и предназначено для исследования действия электромагнитного излучения на биологические объекты, применимо в биологии, медицине, сельском хозяйстве. В устройстве для электромагнитного облучения биологических объектов, состоящем из источника СВЧ-энергии,...
Тип: Изобретение
Номер охранного документа: 0002729198
Дата охранного документа: 05.08.2020
Showing 11-18 of 18 items.
04.04.2018
№218.016.366f

Способ получения оксиборатов cumn gabo

Изобретение относится к технологии получения новых магнитных материалов - оксиборатов CuMnGaBO (0≤x<1), включающих ионы переходных металлов, которые могут найти применение в химической промышленности, развитии магнитных информационных технологий, создании магнитных датчиков. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002646429
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.3b75

Спин-стекольный магнитный материал с содержанием иттербия

Изобретение относится к области разработки новых керамических редкоземельных оксидных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти....
Тип: Изобретение
Номер охранного документа: 0002647544
Дата охранного документа: 16.03.2018
22.08.2018
№218.016.7e56

Держатель образца для сквид-магнитометра типа mpms для исследования анизотропных свойств орторомбических монокристаллов

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений. Держатель образца для СКВИД-магнитометра типа MPMS для исследования анизотропных свойств орторомбических монокристаллов содержит цилиндрическую трубку из...
Тип: Изобретение
Номер охранного документа: 0002664421
Дата охранного документа: 20.08.2018
28.10.2018
№218.016.97a3

Оксидный керамический магнитный материал на основе натрия, ванадия, железа и никеля

Изобретение относится к разработке новых материалов, которые могут быть полезны для химической промышленности, материаловедения, спинтроники. Оксидный керамический магнитный материал содержит кислород, железо и ванадий и дополнительно натрий и никель при следующем соотношении компонентов, ат....
Тип: Изобретение
Номер охранного документа: 0002670973
Дата охранного документа: 26.10.2018
25.07.2019
№219.017.b89c

Способ обеспечения проведения физических измерений в проточном термостате при температурах выше комнатной

В способе обеспечения проведения физических измерений в проточном термостате при температурах выше комнатной газообразный теплоноситель нагревают техническим феном, герметично подсоединенным к входу канала термостата, а ток газообразного теплоносителя в канале термостата создают за счет...
Тип: Изобретение
Номер охранного документа: 0002695482
Дата охранного документа: 23.07.2019
12.07.2020
№220.018.31f1

Держатель образца для сквид-магнитометра типа mpms

Изобретение относится к устройствам для измерения переменных магнитных величин. Держатель образца для СКВИД-магнитометра типа MPMS содержит цилиндрическую трубку из органического материала, внутри которой вертикально помещен немагнитный цилиндр, при этом дополнительно содержит второй цилиндр,...
Тип: Изобретение
Номер охранного документа: 0002726268
Дата охранного документа: 10.07.2020
21.05.2023
№223.018.685a

Магнитный аффинный сорбент для выделения рекомбинантных белков

Настоящее изобретение относится к магнитному аффинному сорбенту для выделения рекомбинантных белков, характеризующемуся тем, что состоит из крахмал-активированных магнитных наночастиц оксида железа со средним размером 11,5 нм, значением намагниченности насыщения при комнатной температуре 29,8...
Тип: Изобретение
Номер охранного документа: 0002794889
Дата охранного документа: 25.04.2023
27.05.2023
№223.018.70a0

Способ получения материала, проявляющего газочувствительные и каталитические свойства, на основе cafeo

Изобретение может быть использовано при создании газоаналитических устройств и катализаторов для окислительных процессов. Для получения материала на основе CaFeO, проявляющего газочувствительные и каталитические свойства, готовят шихту из реактивных препаратов, проводят прессование образца и...
Тип: Изобретение
Номер охранного документа: 0002729783
Дата охранного документа: 12.08.2020
+ добавить свой РИД