×
23.12.2018
218.016.aa72

Результат интеллектуальной деятельности: Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора

Вид РИД

Изобретение

Аннотация: Предложен катализатор для риформинга бензиновых фракций, гидрирования бензольной фракции или ароматических углеводородов, содержащий оксид алюминия, платину, цеолит со структурой ZSM-5 или ZSM-11. В качестве цеолита катализатор содержит кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита ZSM-5 или ZSM-11, и имеет следующий состав, мас.%: платина 0,1-0,5, указанный цеолит 1-75, оксид алюминия - остальное. Также в изобретение раскрывается способ получения катализатора, описанного выше, способ риформинга бензиновых фракций и способ гидрирования бензольной фракции или ароматических углеводородов. Технический результат - снижение температуры полного выжигания катализаторного кокса на стадии регенерации катализатора, а также увеличение выхода ароматических углеводородов и октанового числа получаемой бензиновой фракции. 4 н. и 13 з.п. ф-лы, 32 пр., 2 табл., 3 ил.

Изобретение относится к катализаторам риформинга бензиновых фракций для получения высокооктановых бензиновых фракций и/или ароматических углеводородов, а также к способам применения этого катализатора в процессах риформинга и в процессах гидрирования ароматических углеводородов и их фракций. Изобретение может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности.

Основным процессом получения высокооктановых бензиновых фракций и ароматических углеводородов С610 из низкооктановых бензиновых фракций является процесс каталитического риформинга, который осуществляют с применением катализаторов, содержащих по меньшей мере один металл из платиновой группы (Гуреев А.А., Жоров Ю.М., Смидович Е.В., «Производство высокооктановых бензинов», М., Химия, 1981, 224 с.; Маслянский Г.Н., Шапиро Р.Н., «Каталитический риформинг бензинов», Л., Химия, 1985, 222 с.). Для повышения эффективности процесса риформинга применяемые катализаторы постоянно совершенствуются путем изменения природы и концентрации металлов, используемых в качестве активных компонентов и/или промоторов, а так же путем изменения соотношения дегидрирующей и кислотной функций.

Одним из путей изменения соотношения дегидрирующей и кислотной функций катализатора риформинга является введение в его состав цеолитного компонента, причем для этого используют цеолиты различных структурных типов. Известны способы различных вариантов риформинга бензиновых фракций с применением цеолитсодержащих катализаторов, например, содержащих широкопористые цеолиты типа L (пат. США №4645586, C10G 59/02, 1987; пат. США №4985132, C10G 59/02, 1991; пат. РФ №2108153, B01J 29/62; B01J 23/34; C10G 61/06, 1998; пат. РФ №2123382, B01J 29/62; C10G 35/09, 1998) и ZSM-12 (пат. США №4652360, C10G 35/095, 1987) или узкопористые цеолиты со структурой эрионита, ферьерита и филиппсита (пат. РФ №2458103, C10G 35/085; B01J 29/54; B01J 29/67; B01J 21/04; B01J 21/12; B01J 32/00; B01J 37/04, 2012; пат. РФ №2471854, C10G 35/085; C10G 35/095; B01J 23/42; B01J 23/36; B01J 21/04; B01J 29/00; B01J 27/047; B01J 37/02, 2013).

Применение в составе катализаторов риформинга узкопористых цеолитов, к которым относятся эрионит, ферьерит, филлипсит и др., приводит к дополнительной переработке непрореагировавших на металлоксидном катализаторе н-парафинов, однако при этом не затрагиваются слаборазветвленные монометилпарафины, имеющие невысокие октановые числа, что приводит к получению бензиновых фракций с относительно низкими октановыми числами. В случае применения в составе катализаторов риформинга широкопористых цеолитов, таких как цеолиты L, бета, омега и пр., в переработку вовлекаются высокооктановые сильноразветвленные изопарафины, что в результате протекания побочных реакций гидрокрекинга приводит к снижению выхода бензиновых фракций. Таких недостатков лишены катализаторы, содержащие средаепористые цеолиты со структурой ZSM-5 и ZSM-11, вовлекающие в переработку монометил- и н-парафины, и не затрагивающие вследствие молекулярно-ситового эффекта сильноразветвленные изопарафины.

Известен способ приготовления катализаторов риформинга, содержащих 0,01-10% маc. металлов VIII группы и цеолиты ZSM-5, ZSM-11, ZSM-12, ZSM-35 и ZSM-38 (пат. США №4652360, C10G 35/095, 1987). Согласно данному способу катализатор готовят путем прокаливания натриевой формы цеолита при температуре 200-600°С, последующей его пропитки или ионного обмена с водным раствором, содержащим соединения платины или палладия, или платины в сочетании с соединениями металлов VIII группы, прокаливания металлсодержащего цеолита при температуре 150-550°С, последующего ионного обмена с раствором, содержащим соединения щелочных металлов, промывки водой и сушкой при температуре 110°С. В качестве второго металла VIII группы возможно использование иридия или родия. Процесс риформинга осуществляют при температуре 375-575°С и массовой скорости подачи сырья 0,2-5 ч-1.

Известен катализатор и способ риформинга (пат. США №4276151, C10G 35/095, 1981). Согласно данному способу процесс риформинга бензиновых фракций осуществляют при температуре 427-565°С, давлении 0,6-3,4 МПа, массовой скорости подачи сырья 0,5-50 ч-1 (лучше 1-20 ч-1) и мольном отношении водород/углеводороды 1-10 на катализаторе, содержащем платину или смесь платины и рения на оксиде алюминия и 1-15% маc. цеолита ZSM-5 в аммиачной (NH4-) форме.

Известен способ приготовления цеолитсодержащего катализатора риформинга бензиновых фракций (пат. РФ №2108154, B01J 37/02; B01J 29/40; C10G 35/095, 1998). Согласно данному способу цеолитсодержащий катализатор риформинга получают путем пропитки под избыточным давлением 0,02-0,3 МПа предварительно прокаленного цеолитсодержащего носителя раствором смеси аммиаката платины, соединения промотора и соли натрия или калия при рН 8,5-12 и атомном соотношении натрий или калий: платина - (1-50):1, последующей сушки и прокалки полученного материала. В качестве носителя используют оксид алюминия в смеси с натриевой формой цеолита ZSM-5, ZSM-8, ZSM-11 в массовом соотношении (35-45):(55-65), а в качестве промотора используют вольфрам и молибден.

Наиболее близким по своей технической сущности и достигаемому эффекту является катализатор риформинга бензиновых фракций и способ его приготовления (пат. РФ №2043149, B01J29/44; C10G35/09, 1995). Согласно выбранному прототипу катализатор содержит носитель - оксид алюминия, 0,2-1,2% мас. платины или смесь платины и промотора, выбранного из группы: Re, Ir, Rh, W, Mo в массовом соотношении (0,5-12): 1, цеолит типа ZSM-5 или ZSM-8, или ZSM-11 в количестве 50-75% и 0,4-6,8% оксида щелочного металла - Li или Na или К. Катализатор готовят в несколько стадий. Первоначально готовят цеолитсодержащий носитель, для чего смешивают гидроксид алюминия с цеолитом в натриевой форме и добавляют азотную кислоту в качестве пептизатора, полученную смесь формуют в экструдаты, сушат и прокаливают в токе воздуха при температуре 500°С. Полученные экструдаты пропитывают раствором аммиаката платины или смесью аммиаката платины с соединением промотора при температуре 80-90°С и рН=10, после чего избыток раствора сливают, а экструдаты пропитывают при 80-90°С водным раствором соли щелочного металла (Li, Na или К), после чего избыток раствора сливают, полученный катализатор сушат и прокаливают в токе воздуха при температуре 500°С.

Основными недостатками прототипа и перечисленных выше аналогов являются относительно высокая температуры выгорания кокса, образующегося на цеолитном компоненте катализатора и неполная глубина его выгорания при умеренных температурах регенерации катализатора.

Задачей изобретения является разработка катализатора риформинга бензиновых фракций с пониженной температурой полного выгорания кокса, образующегося на цеолитном компоненте катализатора в условиях процесса, при сохранении высокого уровня активности катализатора, а так же способ приготовления такого катализатора, способ риформинга бензиновых фракций и способ применения данного катализатора в процессах гидрирования бензольной фракции и ароматических углеводородов.

Поставленная задача достигается тем, что катализатор риформинга бензиновых фракций содержит 1-75% мас. кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11, 0,1-0,5% платины, 0-1,6% рения и/или олова, возможно 0,5-2,0% хлора, и остальное - гамма оксид алюминия.

Поставленная задача достигается так же тем, что катализатор для риформинга бензиновых фракций готовят путем смешения порошка или пасты гидроксида алюминия и кристаллического ферроалюмосиликата или феррогаллийалюмосиликата, возможно с оловосодержащим реагентом, последующего добавления раствора минеральной и/или органической кислоты в качестве пептизатора, формования полученной смеси, нейтрализации сформованных гранул аммиачным раствором, сушки и прокаливания сформованных гранул носителя, пропитки прокаленных гранул соединениями платины, возможно соединениями олова или рения, возможно в растворах кислот, последующей сушки и прокаливания гранул катализатора, а применяемый ферроалюмосиликат или феррогаллийалюмосиликат имеет структуру цеолита ZSM-5 или ZSM-11.

Поставленная задача достигается так же тем, что ферроалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 38-310 и содержит 0,1-1,5% мас. железа, а феррогаллийалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 61-320 и содержит 0,1-1,2% железа и 0,1-1,5% галлия.

Применяемый катализатор содержит 0,1-0,5% мас. платины, 0-1,6% олова и/или рения и может содержать 0,1-1,6% хлора.

Поставленная задача достигается так же тем, что риформинг бензиновых фракций осуществляют путем их контактирования при повышенных температурах и избыточном давлении в присутствии водородсодержащего газа с вышеупомянутым катализатором, содержащим гамма оксид алюминия, платину, возможно рений и/или олово, и содержащим 1-75% мас. кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11.

Поставленная задача достигается также тем, что вышеупомянутый катализатор применяют для гидрирования бензольной фракции или ароматических углеводородов путем контактирования сырья в присутствии водородсодержащего газа при избыточном давлении с катализатором, содержащим гамма оксид алюминия, платину, возможно рений и/или олово, и содержащим 1-75% мас. кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11.

Основным отличительным признаком предлагаемого способа является применение в составе катализатора кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11.

Катализатор готовят следующим образом. Гидроксид алюминия, полученный по алюминатной технологии по однопоточному или непрерывному осаждению, смешивают с кристаллическим ферроалюмосиликатом или феррогаллийалюмосиликатом, возможно смешивание с растворимым соединением олова, добавляют водный раствор минеральной и/или органической кислоты в качестве пептизатора, гранулируют известными методами в виде экструдатов или сфер, сушат при температуре до 200°С и прокаливают в токе воздуха при температуре 500-650°С.Прокаленные гранулы после охлаждения пропитывают известными методами растворами, содержащими соединения платины или смесь соединений платины и рения, возможно минеральной и/или органической кислоты. Возможна предварительная пропитка соединениями олова. После стадии пропитки раствор отделяют от гранул катализатора, катализатор сушат и прокаливают в токе воздуха при температуре 450-550°С. Применяемый при приготовлении катализатора кристаллический ферроалюмосиликат или феррогаллийалюмосиликат имеет структуру цеолита ZSM-5 или ZSM-11 и используется в катионной Na-форме или в катион-декатионированной HNa-форме, или в декатионированной кислой Н-форме.

Для внесения дополнительного количества хлора в катализатор стадию пропитки гранул соединениями платины или смесью соединений платины и промотора осуществляют раствором, содержащим соляную кислоту.

Риформинг бензиновых фракций осуществляют путем контактирования сырья с вышеописанным катализатором в присутствии водородсодержащего газа при температуре 440-560°С, избыточном давлении 0,3-4,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 1-10.

Перед использованием катализатора в процессе риформинга его восстанавливают водородом при температуре 450-550°С. После восстановления водородом катализатор может быть предварительно осернен сероводородом и/или сераорганическими соединениями из расчета 0,01-0,07% мас. серы на катализатор.

Гидрирование бензольной фракции или ароматических углеводородов осуществляют путем контактирования сырья с вышеописанным катализатором в присутствии водородсодержащего газа при температуре 220-400°С, избыточном давлении 0,5-5,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 4-15. Перед использованием катализатора в процессе гидрирования его восстанавливают водородом при температуре 400-500°С. В результате гидрирования бензол превращается в циклогексан, который далее частично изомеризуется в метилциклопентан. Варьируя условия процесса возможно дальнейшее раскрытие 6-ти и 5-тичленных углеводородных колец с образованием парафинов С6 - н-гексана, метилпентанов и диметилбутанов. При гидрировании алкилбензолов первичным продуктом является соответствующий алкилциклогексан, который в зависимости от условий процесса далее может превращаться подобно вышеописанной схеме.

В ходе переработки углеводородного сырья происходит постепенное закоксование катализатора, приводящее к снижению его каталитической активности, что в свою очередь приводит к падению выхода ароматических углеводородов и к снижению октанового числа получаемых бензиновых фракций. Для восстановления начального уровня активности катализатора осуществляют его регенерацию, заключающуюся в регулируемом выжигании коксовых отложений с поверхности катализатора регенерирующим газом с определенным содержанием кислорода. Однако выгорание кокса на металлическом компоненте катализатора, находящемся на оксиде алюминия, происходит более полно и при более низких температурах, чем выгорание кокса, образовавшегося внутри кристаллов алюмо силикатного (цеолитного) компонента, так как вводимые на стадии пропитки катализатора поливалентные катионы металлов (Pt, Re и пр.) не внедряются внутрь кристаллов цеолитов типа ZSM-5 и ZSM-11 и поэтому не влияют на процесс выжигания катализаторного кокса внутри цеолитных каналов. Вследствие этого коксовые отложения, находящиеся внутри цеолитных кристаллов, могут полностью не выгорать при умеренных температурах регенерации и постепенно накапливаться от регенерации к регенерации приводя к снижению уровня активности и/или к сокращению времени межрегенерационного пробега катализатора. Введение же на стадии гидротермального синтеза в кристаллический каркас цеолита атомов железа и галлия при синтезе ферроалюмосиликата или феррогаллийалюмосиликата со структурой ZSM-5 и ZSM-11 приводит к образованию в объеме их кристаллов активных центров, ускоряющих реакции выгорания катализаторного кокса, что в свою очередь приводит к снижению температуры и увеличению глубины выжигания кокса в цеолитном компоненте катализатора при сохранении высокого уровня активности катализатора.

Сущность предлагаемого способа и его практическая применимость иллюстрируется нижеприведенными примерами. Примеры №№1-12 описывают приготовление катализатора по предлагаемому способу, пример №13 - приготовление катализатора подобно прототипу; составы получаемых катализаторов дополнительно представлены в таблице 1. Для иллюстрации достижимости поставленной цели - снижения температуры выгорания кокса, образующегося на цеолитном компоненте катализатора и увеличения полноты его выгорания, приведены примеры №№14-16 и Фиг. 1-3 - пример №14 (Фиг. 1) показывает глубину выгорания кокса, образующегося на цеолитном компоненте катализатора, приготовленного аналогично прототипу, а примеры №№15 и 16 (Фиг. 2 и 3) иллюстрируют выгорание кокса на цеолитном компоненте предлагаемого катализатора. Примеры №№17-28 иллюстрируют способ применения предлагаемого катализатора в процессе риформинга бензиновых фракций, а пример №29 - применение катализатора, приготовленного подобно прототипу и приведен для сравнения; результаты испытаний катализаторов приведены в таблице 2. Примеры №№30-32 иллюстрируют способ применения катализатора в процессе гидрирования бензольной фракции и ароматических углеводородов.

Пример 1.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия однопоточного осаждения с суммарной влажностью 75%. Гидроксид алюминия в количестве 1000 г при температуре 20°С пластифицируют 36 мл 46% уксусной кислотой из расчета получения кислотного модуля (мольное отношение кислоты к оксиду алюминия в гидроксиде) Мк=0,12 и добавляют при перемешивании 28 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в декатионированной кислой Н-форме, имеющего мольное отношение SiO2/Al2O3=86 и содержащего 0,4% мас. железа. Полученную жидкотекучую тиксотропную смесь формуют в сферические гранулы капельным методом в дизельной фракции и нейтрализуют их в 18% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 24 часов, сушат при температуре 120°С в течение 4 часов и прокаливают при температуре 550°С в течение 2 часов в токе воздуха с объемной скоростью подачи 500 ч-1. Полученные сферические гранулы носителя на основе γ-А12O3 содержат 10% мас. цеолита и имеют диаметр 1,6-2,0 мм, прочность на раздавливание 25 МПа, удельную поверхность 220 м2/г. Пористая структура оксида алюминия представлена порами со средним диаметром 70 и объемом пор 0,6 см3/г.

Охлажденные гранулы приготовленного носителя, взятые в количестве 200 г, увлажняют 290 мл водного раствора 0,5% уксусной кислоты при температуре 25°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании добавляют 75 мл раствора нитрата платины (IV) с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при температуре 60°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 10% мас. ферроалюмосиликата со структурой цеолита ZSM-5 и 0,5% платины.

Пример 2.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия однопоточного осаждения с суммарной влажностью 73%. Гидроксид алюминия в количестве 1000 г пластифицируют раствором 31 г щавелевой кислоты в 124 мл воды при 45°С из расчета получения Мк=0,13. Полученную тиксотропную массу смешивают при перемешивании с 30 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=92 и содержащего 0,3% мас. железа и 0,1% галлия. Гранулирование полученной смеси осуществляют капельным методом в дизельной фракции, а нейтрализацию сформованных гранул проводят в 15% водном растворе аммиака. Сформованные гранулы выдерживают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 4 часов и прокаливают при температуре 600°С в токе сухого воздуха при скорости подачи 1000 ч"1 в течение 2 часов. Полученные сферические гранулы носителя на основе γ-А12O3 содержат 10% мас. цеолита и имеют диаметр 1,6-1,9 мм, прочность на раздавливание 22 МПа и удельную поверхность 250 м2/г.

Охлажденные гранулы приготовленного носителя, взятые в количестве 200 г, увлажняют 290 мл водного раствора 0,5% уксусной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании добавляют 45 мл раствора платинохлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при температуре 60°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 10% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,3% платины и 0,5% хлора.

Пример 3.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия холодного осаждения с суммарной влажностью 80%. Гидроксид алюминия в количестве 1000 г пластифицируют при температуре 22°С раствором 56,5 г лимонной кислоты в 45 мл воды из расчета получения кислотного модуля Мк=0,15. В полученную смесь при перемешивании добавляют раствор 2 г тетрахлорида олова пятиводного в 10 мл воды и 50 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в катионной Na-форме, имеющего мольное отношение SiO2/Аl2О3=310 и содержащего 1,5% мас. железа. Гранулирование полученной смеси осуществляют капельным методом в дизельной фракции, а нейтрализацию гранул проводят в 15% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 4 часов, сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в токе воздуха при объемной скорости подачи 1000 ч-1 в течение 2 часов. Полученные сферические гранулы носителя на основе γ-Аl2О3 содержат 20% мас. цеолита и 0,2% олова; гранулы имеют диаметр 1,6-1,8 мм, прочность на раздавливание 21 МПа и средний диаметр пор оксида алюминия 100.

Охлажденные гранулы приготовленного носителя, взятые в количестве 200 г, увлажняют 320 мл водного раствора 1% лимонной кислоты при температуре 20°С в течение получаса, затем в раствор с гранулами носителя при перемешивании добавляют 25 мл водного раствора рениевой кислоты с концентрацией рения 35 г/л, 30 мл раствора платинохлористоводородной кислоты с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 60°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 20% мас. ферроалюмосиликата со структурой цеолита ZSM-5, 0,2% платины, 0,3% рения и 0,4% хлора.

Пример 4.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия смесевого осаждения при соотношении гидроксидов алюминия холодного и горячего осаждения 1:1 мас. Смесевой гидроксид алюминия высушивают при 110°С до суммарной влажности 25%, размалывают на шаровой мельнице до порошкообразного состояния с размером частиц не более 50 мкм. Полученный порошок гидроксида алюминия в количестве 1000 г с суммарной влажностью 25% смешивают с 2,7 л деионизированной воды, 38 мл раствора 69% азотной кислоты до получения Мк=0,08, после чего при перемешивании добавляют 40 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=38 и содержащего 0,1% мас. железа. Стадию пластификации и смешивания с порошком цеолита осуществляют при температуре 28°С до содержания в массе 248 г Аl2O3/кг смеси. Полученную пластифицированную массу выдерживают в течение 24 часов при температуре 22°С и формуют в сферические гранулы капельным методом в дизельной фракции с последующей нейтрализацией в 15% водном растворе аммиака. Сформованные гранулы провяливают на воздухе при температуре 20°С в течение 24 часов, затем сушат при 110°С в течение 2 часов и прокаливают при температуре 650°С в течение 4 часов в токе сухого воздуха с объемной скоростью подачи 600 ч-1. Полученные сферические гранулы носителя на основе γ-А12O3 содержат 5% мас. цеолита, имеют диаметр 1,4-1,8 мм, прочность на раздавливание 28 МПа и средний диаметр пор оксида алюминия 65.

Охлажденные гранулы приготовленного носителя в количестве 700 г увлажняют 1000 мл водного раствора 0,3 н соляной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании последовательно добавляют 21 мл водного раствора 0,5% уксусной кислоты, 105 мл раствора платано хлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при 60°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 5% мас. ферроалюмосиликата со структурой цеолита ZSM-5, 0,2% платины, 0,3% олова и 1,4% хлора.

Пример 5.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 85%. Гидроксид алюминия в количестве 500 г пластифицируют при температуре 20°С смесью кислот, добавляя 3,8 мл раствора 69% азотной кислотой и 3,6 мл 46% уксусной кислоты из расчета получения суммарной величины кислотного модуля Мк=0,12, и смешивают с 8,4 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-11 в декатионированной Н-форме, имеющего мольное отношение SiO/Al2O3=61 и содержащего 0,1% мас. железа и 0,3% галлия. Гранулирование полученной смеси в сферические гранулы осуществляют жидкостным методом в керосиновой фракции, а твердение и нейтрализацию гранул проводят в 18% водном растворе аммиака. Сформованные гранулы сушат при температуре 110°С в течение 2 часов и прокаливают в токе сухого воздуха с объемной скоростью 1000 ч'1 при температуре 550°С в течение 4 часов. Полученные сферические гранулы носителя на основе γ-А12O3 содержат 10% мас. цеолита и имеют диаметр 1,6-2,0 мм, прочность на раздавливание 20 МПа, удельную поверхность 270 м2/г и средний диаметр пор оксида алюминия 65.

Охлажденные гранулы приготовленного носителя, взятые в количестве 70 г, увлажняют 150 мл водного раствора 0,5% уксусной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании последовательно добавляют 10 мл раствора рениевой кислоты с концентрацией рения 35 г/л, 20 мл раствора нитрата платины (IV) с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при 80°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 10% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-11, 0,2% платины и 0,4% рения.

Пример 6.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия однопоточного осаждения с суммарной влажностью 73%. Гидроксид алюминия в количестве 1000 г пластифицируют раствором 31 г щавелевой кислоты в 124 мл воды при 45°С из расчета получения Мк=0,13. Полученную тиксотропную массу перемешивают с добавлением 30 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-11 в катион-декатионированной HNa-форме, имеющего мольное отношение SiO2/Al2O3=320 и содержащего 1,1% мас. железа и 1,5% галлия. Гранулирование полученной смеси осуществляют методом капельной формовки в дизельной фракции, а нейтрализацию гранул проводят в 18% водном растворе аммиака. Сформованные гранулы выдерживают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 4 часов и прокаливают при температуре 600°С в токе сухого воздуха при скорости подачи 1000 ч-1 в течение 2 часов. Полученные сферические гранулы носителя на основе γ-А12O3 содержат 10% мас. цеолита и 0,5% олова, гранулы имеют диаметр 1,6-1,9 мм, прочность на раздавливание 15 МПа и удельную поверхность 250 м2/г.

Охлажденные гранулы приготовленного носителя в количестве 250 г увлажняют 360 мл водного раствора 0,5% соляной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя добавляют раствор 4,5 г пятиводного тетрахлорида олова в 50 мл воды и проводят обработку гранул полученным раствором в течение часа при температуре 60°С, после чего смесь декантируют, гранулы сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Охлажденные гранулы увлажняют при температуре 20°С деионизированной водой, затем в раствор с гранулами добавляют при перемешивании 55 мл раствора платинохлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором первоначально при 20°С, а затем при 70°С, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 10% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-11, 0,3% платины, 0,5% олова и 0,9% хлора.

Пример 7.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 79%. Пасту данного гидроксида алюминия в количестве 600 г при температуре 25°С пептизируют 9,5 мл раствора 69% азотной кислоты из расчета получения кислотного модуля Мк=0,10 и смешивают при перемешивании с 0,4 г тетрахлорида олова пятиводного в 5 мл воды и 1,3 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-11 в катионной Na-форме, имеющего мольное отношение SiO2/Al2O3=88 и содержащего 0,1% мас. железа. Полученную жидкотекучую тиксотропную смесь формуют методом капельной формовки в дизельной фракции и нейтрализуют их в 20% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 10 часов и сушат первоначально при температуре 60°С в течение 2-х часов, а затем при температуре 110°С в течение 4 часов, после чего их прокаливают в течение 3 часов при температуре 550°С в токе сухого воздуха с объемной скоростью подачи 1000 ч-1. Полученные гранулы γ-А12O3 содержат 1% мас. цеолита и 0,1% олова, имеют размер 1,6-1,8 мм, прочность на раздавливание 31 МПа, удельную поверхность 210 м2/г и пористую структуру со средним диаметром пор 90 и объемом пор 0,55 см3/г.

Охлажденные гранулы приготовленного носителя в количестве 100 г увлажняют в 200 мл деионизированной воды при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании добавляют 16 мл раствора рениевой кислоты с концентрацией рения 35 г/л, 22 мл раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 1% мас. ферроалюмосиликата со структурой цеолита ZSM-11, 0,3% платины, 0,5% рения и 0,1% олова.

Пример 8.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 79%. Пасту данного гидроксида алюминия в количестве 500 г пластифицируют 5,1 мл раствора 69% азотной кислотой из расчета получения кислотного модуля Мк=0,08. Полученную тиксотропную массу гидроксида алюминия перемешивают с 3 г тетрахлорида олова пятиводного в 30 мл воды и с 3,2 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=212 и содержащего 0,6% мас. железа и 1,1% галлия. Смесь формуют в сферические гранулы методом капельной формовки в керосиновой фракции, а нейтрализацию сформованных гранул проводят в 15% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 10 часов и сушат при температуре 110°С в течение 4 часов, после чего их прокаливают в течение 3 часов при температуре 550°С в токе сухого воздуха с объемной скоростью 600 ч-1. Полученные гранулы носителя - γ-А12O3 размером 1,6-1,8 мм обладают прочностью на раздавливание 20 МПа, удельной поверхностью 250 м2/г и содержат 3% мас. цеолита и 1% олова. Пористая структура оксида алюминия представлена порами со средним диаметром 90 и объемом пор 0,8 см3/г.

Охлажденные гранулы приготовленного носителя, взятые в количестве 100 г, увлажняют 150 мл водного раствора 1% соляной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании добавляют 3 мл водного раствора 0,5% уксусной кислоты, 35 мл водного раствора рениевой кислоты с концентрацией рения 20,0 г/л, 33 мл раствора платинохлористоводородной кислоты с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение получаса, а затем при 80°С в течение 1 часа, после чего раствор декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 3% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,4% платины, 0,6% рения, 1% олова и 1,6% хлора.

Пример 9.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 85%. Гидроксид алюминия в количестве 1500 г пластифицируют при температуре 20°С смесью кислот, добавляя по 11 мл 69% азотной кислотой и 46% уксусной кислоты из расчета получения суммарной величины кислотного модуля Мк=0,12. Полученную тиксотропную массу гидроксида алюминия перемешивают с раствором 7 г тетрахлорида олова пятиводного в 60 мл воды и с 25 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-11 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=186 и содержащего 1,2% мас. железа и 0,3% галлия. Гранулирование полученной смеси в сферические гранулы осуществляют жидкостным методом в керосиновой фракции, а твердение и нейтрализацию гранул проводят в 18% водном растворе аммиака. Сформованные гранулы сушат при температуре 120°С в течение 2 часов и прокаливают в токе сухого воздуха с объемной скоростью 800 ч-1 при температуре 550°С в течение 4 часов. Полученные сферические гранулы носителя на основе γ-А12O3 имеют диаметр 1,6-1,9 мм, прочность на раздавливание 22 МПа, удельную поверхность 260 м2/г, средний диаметр пор оксида алюминия 70 и содержат 10% мас. цеолита и 1% олова.

Охлажденные гранулы приготовленного носителя в количестве 200 г увлажняют в 400 мл деионизированной воды при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании добавляют 40 мл раствора перрената аммония с концентрацией рения 35 г/л, 15 мл раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 10% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,1% платины, 0,6% рения и 1,0% олова.

Пример 10.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 80%. В смеситель с Z-образными лопастями загружают 3,0 кг пасты гидроксида алюминия и при постоянном перемешивании добавляют 19 мл 69% азотной кислоты. После перемешивания в течение 15 минут к пластифицированной массе добавляют при перемешивании 1,4 кг порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=96 и содержащего 0,5% мас. железа. Полученную массу с суммарной влажностью 50% формуют на экструдере в черенки с диаметром 3-4 мм и длиной 5-7 мм. Экструдаты выдерживают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 4 часов и прокаливают при 500°С в течение 4 часов. Полученные гранулы носителя содержат 30% мас. γ-А12O3 и 70% цеолита, имеют прочностью на раздавливание по образующей 7,1 МПа и удельную поверхностью 340 м2/г.

Охлажденные гранулы приготовленного носителя в количестве 2,0 кг увлажняют 3,3 л водного раствора 0,5% уксусной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при циркуляции раствора добавляют 420 мл раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором первоначально при 20°С в течение 0,5 часа, а затем при 70°С в течение 1 часа, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 70% мас. ферроалюмосиликата со структурой цеолита ZSM-5 и 0,3% платины.

Пример 11.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия смесевого осаждения при соотношении гидроксида алюминия холодного осаждения и горячего 1:1 мас. Смесевой гидроксид алюминия высушивают при 110°С до суммарной влажности ~25%, размалывают на шаровой мельнице до порошкообразного состояния с размером частиц не более 50 мкм. Полученный порошок гидроксида алюминия в количестве 3 кг с суммарной влажностью 25% помещают в смеситель с Z-образными лопастями и смешивают при постоянном перемешивании с 1,5 кг порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=145 и содержащего 0,2% мас. железа и 0,6% галлия. К полученной смеси порошков добавляют при постоянном перемешивании раствор азотной кислоты, содержащий 114 мл 69% азотной кислоты для получения кислотного модуля Мк=0,08 и 1930 мл воды. Полученную массу перемешивают в течение 20 минут и добавляют 25 г тетрахлорида олова пятиводного в 140 мл воды. Смесь с суммарной влажностью 46% формуют в экструдаты диаметром 4-5 мм и длиной 5-8 мм. Гранулы выдерживают на воздухе в течение 10 часов и сушат при температуре 120°С в течение 4 часов. Прокаливание гранул проводят при температуре 550°С в токе сухого воздуха при его объемной скорости подачи 1000 ч-1 в течение 4 часов. Полученные гранулы экструдатов на основе γ-А12O3 содержат 40% мас. цеолита и 0,2% олова, гранулы обладают прочностью на раздавливание по образующей 8,9 МПа и удельной поверхностью 310 м2/г.

Охлажденные гранулы приготовленного носителя в количестве 3,5 кг увлажняют 5,5 л водного раствора 0,1 н соляной кислоты при температуре 20°С в течение 0,5 часа, затем при циркуляции раствора добавляют 130 мл раствора платинохлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором первоначально при 20°С в течение 0,5 часа, а затем при 70°С в течение 1 часа, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 40% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,1% платины, 0,2% олова и 0,9% хлора.

Пример 12.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 75%. В смеситель с Z-образными лопастями загружают 2,0 кг пасты гидроксида алюминия и при постоянном перемешивании добавляют 222 мл 69% азотной кислоты. После перемешивания пластифицированной массы в течение 15 минут к ней добавляют при постоянном перемешивании 4,0 кг порошка смесевого гидроксида алюминия, полученного после сушки влажной лепешки смесевого гидроксида алюминия при 110°С до влажности ~25% и размола его на шаровой мельнице до частиц с размером менее 50 мкм. Через 30 минут перемешивания в полученную пластифицированную массу вводят 10,5 кг порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-11 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=105 и содержащего 0,4% мас. железа и 0,1% галлия. Полученную пластифицированную массу гидроксида алюминия с суммарной влажностью 50% экструдируют в гранулы диаметром 5-7 мм и длиной 7-10 мм. Экструдированные гранулы выдерживают на воздухе при комнатной температуре в течение 10 часов, сушат при 110°С в течение 4-х часов и прокаливают в токе воздуха при объемной скорости подачи 500 ч-1 при температуре 550°С в течение 2-х часов. Полученные гранулы носителя содержат 25% мас. γ-А12O3 и 75% цеолита, гранулы обладает прочностью на раздавливание по образующей 4,8 МПа и удельной поверхностью 350 м2/г.

Охлажденные гранулы приготовленного носителя в количестве 14,0 кг увлажняют под вакуумом 25 л деионизированной воды при температуре 20°С в течение 0,5 часа, затем при циркуляции раствора добавляют 1,4 л раствора рениевой кислоты с концентрацией рения 35 г/л и 2,1 л раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 75% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-11, 0,2% платины и 0,3% рения.

Пример 13 (для сравнения).

Носитель для катализатора и сам катализатор готовят подобно их приготовлению по прототипу. Для приготовления носителя применяют пасту гидроксида алюминия с влажностью 30%. Пасту гидроксида алюминия в количестве 43 г смешивают с 70 г цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=91, и добавляют раствор 57% азотной кислоты в качестве пептизатора до получения кислотного модуля Мк=0,05. Смесь формуют на экструдере в черенки с диаметром 3-4 мм и длиной 5-7 мм, сушат на воздухе в течение 10 часов и прокаливают в токе воздуха при температуре 500°С в течение 4 часов. Полученные гранулы носителя имеют прочностью на раздавливание по образующей 5,1 МПа и удельную поверхностью 340 м2/г и содержат 30% мас. γ-А12O3 и 70% цеолита.

Пропитку 100 г полученного носителя 200 мл раствора нитрата платины (IV) с содержанием платины 2 г/л ведут при температуре 85°С в течение 3 ч, избыток раствора сливают, катализатор сушат на воздухе в течение 10 часов и прокаливают в токе воздуха при температуре 500°С в течение 4 часов. Полученные гранулы катализатора содержат 70% мас. цеолита ZSM-5 и 0,3% платины.

Пример 14 (для сравнения).

Изучение процесса выжигания катализаторного кокса закоксованного образца осуществляют по контролю изменения массы 0,2 г образца в реакторе, близком к изотермическому. Выжигание кокса проводят путем контактирования с катализатором регенерирующего газа, содержащего 1,3% об. кислорода в смеси с азотом, которое осуществляют при атмосферном давлении, температуре 500-600°С и скорости подачи газа 50 л/ч.

Выжиганию кокса подвергают носитель примера 13, проработавший 15 ч как катализатор переработки углеводородной фракции C6-C8 и содержащий 5,1% мас. кокса.

Выжигание кокса начинают при постоянной температуре 500°С и ведут 60 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 39% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 60 мин до стабилизации массы образца катализатора было удалено еще 22% от начального содержания кокса. При температуре 550°С было удалено еще 8% кокса. Остаточный кокс в количестве 31% от начального содержания кокса выгорел при температуре 600°С за 70 мин. Общее время выжигания кокса составило ~250 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 1.

Пример 15.

Аналогичен примеру 14 с тем отличием, что выжиганию кокса подвергают носитель примера 10, проработавший 15 ч как катализатор переработки углеводородной фракции C6-C8 и содержащий 5,2% мас. кокса.

Выжигание кокса начинают при постоянной температуре 500°С и ведут 85 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 62% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 75 мин до стабилизации массы образца катализатора было удалено еще 28% от начального содержания кокса. Остаточный кокс в количестве 10% от начального содержания кокса выгорел при температуре 550°С за 20 мин. Контрольное повышение температуры до 600°С не привело к дальнейшему изменению массы образца, что подтверждает полное удаление кокса при температуре 550°С. Общее время выжигания кокса составило ~180 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 2.

Пример 16.

Аналогичен примеру 14 с тем отличием, что выжиганию кокса подвергают носитель примера 12, проработавший 100 ч как катализатор переработки углеводородной фракции С68 и содержащий 10,2% мас. кокса.

Выжигание кокса начинают при постоянной температуре 500°С и ведут 80 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 81% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 60 мин до стабилизации массы образца катализатора было удалено еще 13% от начального содержания кокса. Остаточный кокс в количестве 6% от начального содержания кокса выгорел при температуре 550°С за 20 мин. Контрольное повышение температуры до 600°С не привело к дальнейшему изменению массы образца, что подтверждает полное удаление кокса при температуре 550°С. Общее время выжигания кокса составило ~160 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 3.

Пример 17.

Испытание катализатора в процессе риформинга проводят на лабораторной установке с трубчатым изотермическим реактором. При тестировании катализатора в качестве сырья процесса риформинга применяют модельную фракцию углеводородов С6-C8, содержащую нафтены, н-парафины и изопарафины в массовом соотношении 1:1:1. В качестве катализатора используют катализатор примера 10. Перед испытанием катализатор активируют в токе воздуха в течение 1 часа при температуре 450°С, затем продувают азотом и восстанавливают в токе водорода при температуре 480°С в течение 4 часов. Риформинг углеводородной фракции C6-C8 осуществляют при температуре 480°С, избыточном давлении 1,0 МПа, объемной скорости подачи жидкого сырья 2,0 ч-1 и мольном отношении водорода к углеводородам Н2/СН=5. При этих условиях получаемая бензиновая фракция C5+ содержит, % маc.: н-парафины - 11,4; изопарафины - 29,6; нафтены - 6,2; ароматические углеводороды - 52,8; и имеет октановое число 83,6 ММ.

Примеры 18-28.

Аналогичны примеру 17. Условия процесса риформинга и результаты испытаний катализаторов приведены в таблице 2. Составы катализаторов приведены в таблице 1.

Пример 29 (для сравнения).

Аналогичен примеру 17. В качестве катализатора используют катализатор примера №13, приготовленный подобно прототипу. Состав катализатора приведен в таблице 1. Условия процесса риформинга и результаты испытаний катализаторов приведены в таблице 2.

Пример 30.

Испытание катализатора в реакциях гидрирования проводят на лабораторной установке с трубчатым изотермическим реактором. Катализатор тестируют в процессе гидрирования бензольной фракции, содержащей % маc.: парафины С6 - 24,6, нафтены С6 - 4,1, бензол - 34,8, парафины С7 - 36,5. В качестве катализатора применяют катализатор примера 10. Перед испытанием катализатора его активируют в токе воздуха в течение 1 часа при температуре 450°С, затем продувают азотом и восстанавливают в токе водорода при температуре 500°С в течение 2 часов. Испытание катализатора проводят при температуре 380°С, избыточном давлении 3,0 МПа, объемной скорости подачи жидкого сырья 5,0 ч-1 и мольном отношении водорода к углеводородам Н2/СН=5. При этих условиях конверсия бензола составляет 83%, выход фракции С5+ - 65% мас. Фракция С5+ содержит 75,9% мас. парафинов С57, 12,9% нафтенов С6, 9,1% бензола, 1,3% толуола и 0,8% ксилолов.

Пример 31.

Аналогичен примеру 30. В качестве сырья процесса гидрирования используют смесь бензола и толуола в соотношении 2:1 маc., в качестве катализатора применяют катализатор примера 1. Превращение сырья проводят при температуре 300°С, давлении 3,0 МПа, объемной скорости подачи жидкого сырья 2,0 ч-1 и мольном отношении Н2/СН=15. При этих условиях конверсия бензола составляет 84%, конверсия толуола - 98%, выход фракции С5+ - 96% мас. Фракция С5+ содержит 0,1% мас. парафинов С6, 94,9% нафтенов С67 и 5,0% бензола с толуолом.

Пример 32.

Аналогичен примеру 30. В качестве сырья процесса гидрирования используют бензол, в качестве катализатора применяют катализатор примера 12. Превращение сырья проводят при температуре 280°С, давлении 5,0 МПа, объемной скорости подачи жидкого сырья 1,7 ч-1 и мольном отношении Н2/СН=10. При этих условиях конверсия бензола составляет 96%, выход фракции С5+ - 97% мас. Фракция С5+ содержит 0,1% мас. парафинов С6, 24,9% метилциклопентана, 71,2% циклогексана и 3,8% бензола.

Как видно из приведенных примеров №№13-15 и фиг. 1-3 предлагаемый катализатор обладает способностью проводить удаление коксовых отложений с поверхности цеолитного компонента регенерируемого катализатора в более мягких условиях, заключающихся в снижении температуры полного выжигания кокса с 600°С до 550°С и сокращении общего времени регенерации. При этом он проявляет высокую активность в процессах риформинга бензиновых фракций и гидрирования ароматических углеводородов. Кроме того, при одинаковых с прототипом условиях процесса риформинга предлагаемый катализатор производит бензиновую фракцию С5+ с большим содержанием ароматических углеводородов и большим октановым числом, чем катализатор прототипа (см. соответственно примеры 17 и 29 в табл. 2).


Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора
Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора
Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора
Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора
Источник поступления информации: Роспатент

Showing 21-30 of 37 items.
09.11.2018
№218.016.9b97

Способ получения олефиновых углеводородов

Изобретение относится к способу получения олефиновых углеводородов дегидрированием парафиновых углеводородов в кипящем слое пылевидного алюмохромового катализатора, циркулирующего в системе реактор-регенератор, включающий испарение парафинсодержащего сырья, состоящего из смеси свежего и...
Тип: Изобретение
Номер охранного документа: 0002671867
Дата охранного документа: 07.11.2018
21.11.2018
№218.016.9f8a

Способ риформинга бензиновых фракций

Настоящее изобретение относится к способу риформинга бензиновых фракций путем их последовательного контактирования в присутствии водородсодержащего газа при повышенных температурах и избыточном давлении в нескольких реакционных зонах первоначально с металлоксидным катализатором риформинга,...
Тип: Изобретение
Номер охранного документа: 0002672882
Дата охранного документа: 20.11.2018
25.01.2019
№219.016.b401

Рекуперация тепла в процессах дегидрирования парафиновых углеводородов

Изобретение относится к процессам получения олефиновых углеводородов. Изобретение касается способа получения олефиновых углеводородов дегидрированием соответствующих парафиновых углеводородов в кипящем слое алюмохромового катализатора, циркулирующего в системе реактор-регенератор, включающего...
Тип: Изобретение
Номер охранного документа: 0002678094
Дата охранного документа: 23.01.2019
16.02.2019
№219.016.bafa

Тарельчатый скруббер

Изобретение относится к области нефтехимии и может быть использовано, в частности, в процессах получения олефиновых углеводородов, используемых в производствах синтетических каучуков, пластмасс, высокооктановых компонентов бензина и других органических продуктов. Предлагается тарельчатый...
Тип: Изобретение
Номер охранного документа: 0002680069
Дата охранного документа: 14.02.2019
20.04.2019
№219.017.359c

Носитель на основе оксида алюминия для катализаторов переработки углеводородного сырья и способ его приготовления

Изобретение относится к области катализа и нефтепереработки. Заявлен носитель для катализатора переработки углеводородного сырья, включающий оксид алюминия и цеолит, при этом в качестве цеолита носитель содержит кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита...
Тип: Изобретение
Номер охранного документа: 0002685263
Дата охранного документа: 17.04.2019
19.07.2019
№219.017.b620

Распределители катализатора и транспортного газа для систем циркуляции реактор-регенератор с кипящим слоем

Изобретение относится к области нефтехимии, в частности к установкам дегидрирования парафиновых углеводородов С-С в соответствующие олефиновые углеводороды. Изобретение касается распределителя катализатора и транспортного газа для систем циркуляции реактор-регенератор дегидрирования парафиновых...
Тип: Изобретение
Номер охранного документа: 0002694840
Дата охранного документа: 17.07.2019
24.10.2019
№219.017.da4b

Способ получения алюмооксидного металлсодержащего катализатора переработки углеводородного сырья (варианты)

Изобретение относится к области катализа и нефтепереработки - к вариантам способа приготовления алюмооксидных металлсодержащих катализаторов переработки углеводородного сырья на основе оксида алюминия. Алюмооксидный металлсодержащий катализатор переработки углеводородного сырья готовят из...
Тип: Изобретение
Номер охранного документа: 0002704014
Дата охранного документа: 23.10.2019
24.10.2019
№219.017.da80

Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Изобретение относится к области нефтепереработки, в частности к двухстадийным способам получения высокооктановых бензиновых фракций и ароматических углеводородов С-С с применением процесса риформинга бензиновых фракций. На первой стадии процесса риформинг бензиновых фракций осуществляют путем...
Тип: Изобретение
Номер охранного документа: 0002704006
Дата охранного документа: 23.10.2019
25.12.2019
№219.017.f1f7

Способ подготовки катализатора в процессах дегидрирования парафиновых углеводородов с-с и устройство для его осуществления

Изобретение относится к области нефтехимии, в частности к установкам дегидрирования парафиновых углеводородов С-С в соответствующие олефиновые углеводороды, используемые для получения основных мономеров для синтетического каучука, а также при производстве полипропилена, метилтретичнобутилового...
Тип: Изобретение
Номер охранного документа: 0002710016
Дата охранного документа: 24.12.2019
25.12.2019
№219.017.f26a

Устройство для подготовки катализатора в процессах дегидрирования парафиновых углеводородов с-с

Предложено устройство для восстановительно-десорбционной подготовки алюмохромового катализатора в процессах дегидрирования парафиновых углеводородов С-С с кипящим слоем, циркулирующего в системе, содержащей реактор, регенератор, включающее вертикальные перегородки для циркуляции катализатора,...
Тип: Изобретение
Номер охранного документа: 0002710017
Дата охранного документа: 24.12.2019
Showing 11-12 of 12 items.
01.02.2020
№220.017.fc61

Способ приготовления носителя для катализаторов на основе оксида алюминия

Изобретение относится к области катализа - к способу получения носителя с повышенной водостойкостью для приготовления катализаторов процессов нефте- и газопереработки, нефте- и газохимии. Описан способ приготовления носителя для катализаторов на основе оксида алюминия путем пептизации...
Тип: Изобретение
Номер охранного документа: 0002712446
Дата охранного документа: 29.01.2020
13.02.2020
№220.018.0219

Способ получения переосажденного гидроксида алюминия и способ получения гамма-оксида алюминия на его основе

Изобретение относится к способу получения гидроксида алюминия, используемого для приготовления носителей для катализаторов. Заявленный способ включает однопоточное осаждение из раствора алюмината натрия азотной кислотой, его стабилизацию, отмывку, фильтрацию, при этом процесс осаждения ведут...
Тип: Изобретение
Номер охранного документа: 0002713903
Дата охранного документа: 11.02.2020
+ добавить свой РИД