×
14.12.2018
218.016.a72b

Результат интеллектуальной деятельности: Способ получения деталей из жаропрочных никелевых сплавов, включающий технологию селективного лазерного сплавления и термическую обработку

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу изготовления деталей из жаропрочных сплавов на основе никеля, предназначенных для работы в условиях повышенных температур в газотурбинных двигателях. Деталь получают путем селективного лазерного сплавления с мощностью лазерного излучения от 280 до 320 Вт, скоростью сканирования от 700 до 760 мм/с, толщиной слоя 50 мкм и шагом сканирования 0,12 мм. Процесс изготовления деталей технологией селективного лазерного сплавления происходит внутри герметичной камеры в среде защитного газа. Затем проводят термическую обработку при температуре 1000±100°С в течение 2 часов. Нагрев детали осуществляют постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С. Охлаждение детали проводят совместно с печкой. Технический результат - получение деталей с низкой пористостью, с высокими механическими свойствами и низким уровнем остаточных напряжений. 2 ил., 1 табл.

Изобретение относится к аддитивным технологиям (технология Selective laser melting, SLM, селективное лазерное сплавление, СЛС), а именно к изготовлению деталей технологией селективного лазерного сплавления металлических порошков жаропрочных никелевых сплавов, и может использоваться для производства деталей и узлов авиационных и ракетно-космических систем.

Известны способы (патенты РФ №2371512 и №2285736) получения изделий из сложнолегированных жаропрочных никелевых сплавов с количеством γ'-фазы более 40%, основанных на многостадийной деформации слитка и последующей термической обработке при температуре ниже температуры полного растворения γ'-фазы. Недостатком этих способов является низкий и неоднородный уровень механических свойств.

Известен способ (патент РФ №2453398) получения деталей из сплава типа ВВ751П с высокой прочностью и жаропрочностью с использованием горячего изостатического прессования и последующей закалки выше температуры сольвуса. Недостатком этого способа является необходимость использования оснастки при формовании заготовок, низкий выход годных изделий при использовании в качестве оснастки капсул из-за плохой их герметизации, использование металлического порошка большой фракции, что приводит к возникновению высокой шероховатости поверхностей деталей.

С целью устранения перечисленных недостатков предлагается способ получения изделия из жаропрочных никелевых сплавов с высокой прочностью и жаропрочностью, включающий технологию селективного лазерного сплавления и термическую обработку.

Предлагаемый способ отличается от известных тем, что изготовление деталей производят послойно из металлического порошка фракцией до 50 мкм жаропрочного никелевого сплава технологией селективного лазерного сплавления. Изготовление деталей технологией селективного лазерного сплавления происходит при следующих технологических параметрах: мощность лазерного излучения от 280 до 320 Вт, скорость сканирования от 700 до 760 мм/с, толщина слоя 50 мкм и шаг сканирования 0,12 мм. Термическая обработка проводится при температуре 1000±100°С в течение 2 часов. При этом нагрев деталей осуществляют постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С. Охлаждение деталей происходит совместно с печкой.

Технический результат - получение функциональных деталей технологией селективного лазерного сплавления, высокие механические характеристики деталей достигаемые за счет применения оптимальных технологических параметров обработки, высокая плотность деталей за счет применения оптимальных параметров обработки, низкий уровень остаточных напряжений в деталях за счет проведения термической обработки, и, как следствие, высокая точность размеров и расположения поверхностей, существенное повышение коэффициента использования материала (КИМ).

Технический результат достигается за счет того, что изготовление деталей технологией селективного лазерного сплавления проводят при мощности лазерного излучения от 280 до 320 Вт, скорости сканирования от 700 до 760 мм/с, толщине слоя 50 мкм и шаге сканирования 0,12 мм. Термическая обработка проводится при температуре 1000±100°С в течение 2 часов, при этом нагрев деталей осуществляют постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С. Охлаждение деталей происходит совместно с печкой.

Это достигается тем, что при применении оптимальных технологических параметров изготовления деталей технологией селективного лазерного сплавления достигается высокая плотность материала за счет подвода оптимального количества энергии. Так, например, при использовании не оптимальных параметров (низкой мощности лазерного излучения совместно с высокой скоростью сканирования) не будет подводиться достаточной энергии для полного расплавления порошка. Если мощность лазерного излучения в высокоскоростном режиме достаточно высока, чтобы полностью расплавить металлический порошок, существует вероятность того, что сильно вытянутый бассейн расплава будет разбит на более мелкие расплавы. При использовании режимов с высокой мощностью лазерного излучения и низкой скоростью сканирования, на материал будет подаваться избыточное количество теплоты, и плавление материала будет происходить в режиме, который называется «замочной скважиной». При этом режиме лазерный луч локально создает температуру достаточную для испарения материала, что приводит к возникновению высокой пористости материала и, как следствие, к его низким механическим свойствам.

Изобретение поясняется следующими чертежами.

На фиг. 1 изображено образование зоны перекрытия между векторами сканирования.

На фиг. 2 изображена микроструктура материала.

Указанные режимы позволяют полностью сплавлять металлический порошок жаропрочного никелевого сплава, создавая зону перекрытия между векторами сканирования на уровне 30…45% (Фиг. 1 и Фиг. 2) что положительно сказывается на механических свойствах материала.

Низкий уровень остаточных напряжений достигается за счет применения термической обработки, которая проводится при температуре 1000±100°С в течение 2 часов, при этом нагрев деталей осуществляют постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С. Охлаждение деталей происходит совместно с печкой. Термическая обработка проводится после изготовления детали технологией селективного лазерного сплавления и до отрезки детали от платформы построения. Поэтапное повышение температуры в процессе термической обработки позволяет избежать появления трещин и короблений, а также приводит к более равномерному снятию остаточных напряжений.

Предлагаемым способом были изготовлены полномасштабные цилиндрические образцы для испытания на одноосное растяжение.

Для осуществления изобретения образцы изготавливались из жаропрочного никелевого сплава ВВ751П производства ОАО "ВИЛС" фракцией до 50 мкм. Изготовление деталей технологией селективного лазерного сплавления осуществлялось при мощности лазерного излучения 320 Вт, скорости сканирования 760 мм/с, толщине слоя 50 мкм и шаге сканирования 0,12 мм. Процесс изготовления деталей технологией селективного лазерного сплавления происходил внутри герметичной камеры в среде защитного газа. Также осуществляется предварительный нагрев платформы построения до температуры 180°С.

Процесс селективного лазерного сплавления заключался в разбиении цифровой трехмерной CAD модели на слои толщиной 50 мкм. Затем при помощи специального модуля, входящего в программное обеспечение MagicsRP, были назначены параметры построения детали (мощность лазерного излучения, скорость сканирования и т.д.). Затем все данные были переданы в установку для начала процесса построения. Из бака, в котором содержался металлический порошок при помощи шнека исходный материал порционно подавался в дозатор (рекоутер). Дозатор перемещаясь в горизонтальном направлении доставлял металлический порошок на платформу построения и при помощи силиконового ножа разравнивал его. После того как слой порошка был выравнен в работу вступал лазер и при помощи системы зеркал выборочно сплавлял металлический порошок. При воздействии лазерного излучения порошок нагревался, а при приложении необходимой энергии, плавился образуя жидкую ванну. Затем жидкая ванна быстро затвердевала тем самым образуя фрагмент детали. После того как селективное лазерное сканирование текущего слоя было закончено, платформа построения при помощи поршня опускалась по оси Z на величину слоя, и насыпался новый слой порошка. Процесс являлся циклическим и повторяется до тех пор, пока деталь не была полностью закончена.

Далее изготовленные образцы подвергались термической обработке по режиму: постепенный нагрев деталей осуществлялся постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С. Затем термическая обработка в течение 2 часов при температуре 1000±100°С. Затем охлаждение детали в печи.

Результаты испытаний механических свойств образцов, изготовленных предлагаемым способом, представлены в таблице 1.

Таким образом, предлагаемый способ позволяет изготавливать функциональные детали с достаточным уровнем механических свойств, высокой плотностью и низким КИМ.

В результате этого применение предлагаемого способа изготовления для горелок, завихрителей и камер сгорания газотурбинных двигателей позволит повысить КИМ, снизить затраты на изготовление технологической оснастки, сократить время изготовления подобных деталей в несколько раз.

Способ получения детали из жаропрочных никелевых сплавов, включающий использование металлических порошков, отличающийся тем, что осуществляют селективное лазерное сплавление металлического порошка с мощностью лазерного излучения от 280 до 320 Вт, скоростью сканирования от 700 до 760 мм/с, шагом сканирования 0,12 мм и толщиной каждого слоя 50 мкм и затем термическую обработку полученной детали при температуре 1000±100°С в течение 2 часов, при этом нагрев детали осуществляют постепенно с выдержкой в течение 2 часов при температурах 200°С, 400°С, 600°С, 800°С, причем охлаждение детали производят совместно с печкой.
Способ получения деталей из жаропрочных никелевых сплавов, включающий технологию селективного лазерного сплавления и термическую обработку
Источник поступления информации: Роспатент

Showing 31-40 of 77 items.
13.01.2019
№219.016.af50

Способ импульсного электромагнитного воздействия на клеточные культуры в медицинских или биологических целях

Изобретение относится к медицине и может быть использовано для импульсного электромагнитного воздействия на клеточную культуру в медицинских и биологических целях. Действуют на клеточную культуру импульсным электромагнитным полем при индукции магнитного поля В=(0,35÷4) Тл, частоте f=(10÷70)...
Тип: Изобретение
Номер охранного документа: 0002676846
Дата охранного документа: 11.01.2019
25.01.2019
№219.016.b3d2

Комбинированная установка опреснения морской воды и выработки электроэнергии

Изобретение относится к теплоэнергетике, а точнее к направлению опреснения морской воды и выработки электроэнергии. Установка содержит: газотурбинную установку 1 с компрессором, камерой сгорания и газовой турбиной, электрогенератор 2, паропровод 3 перегретого пара, паровую турбину 4 с...
Тип: Изобретение
Номер охранного документа: 0002678065
Дата охранного документа: 22.01.2019
02.02.2019
№219.016.b5df

Упругодемпфирующий зажим для трубопровода

Изобретение относится к средствам виброзащиты трубопроводных систем, преимущественно авиационных и ракетных двигателей, работающих в условиях повышенной вибрации и температуры. Технический результат, на достижение которого направлено изобретение, заключается в повышении функциональности,...
Тип: Изобретение
Номер охранного документа: 0002678610
Дата охранного документа: 30.01.2019
06.04.2019
№219.016.fdb7

Устройство с кормовым диффузором для высотных испытаний ракетных двигателей малой тяги

Изобретение относится к области испытаний ракетных двигателей малой тяги. Устройство для высотных испытаний ракетных двигателей выполнено с кормовым диффузором для обеспечения безотрывного течения продуктов сгорания в сопле ракетного двигателя при испытаниях и включает две вакуумные камеры и...
Тип: Изобретение
Номер охранного документа: 0002684071
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fe1b

Автоматическое устройство термомеханического управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора или турбины двухконтурного газотурбинного двигателя

Группа изобретений относится к авиационным газотурбинным двигателям и газотурбинным установкам, а именно к устройствам регулирования радиального зазора между концами рабочих лопаток ступени ротора компрессора или турбины и статором первого контура двухконтурного газотурбинного двигателя. Для...
Тип: Изобретение
Номер охранного документа: 0002684073
Дата охранного документа: 03.04.2019
27.04.2019
№219.017.3d9d

Место крепления рабочих лопаток роторов компрессора низкого и высокого давления авиадвигателей пятого поколения, ротор компрессора низкого давления и ротор компрессора высокого давления авиадвигателя пятого поколения с рабочими лопатками, закрепляемыми с помощью замков типа "ласточкин хвост" в кольцевых канавках этих устройств, способ сборки места крепления рабочих лопаток роторов компрессора

Группа изобретений относится к области гашения вибраций рабочих лопаток бустера и компрессора авиационных газотурбинных двигателей пятого поколения. Место крепления рабочих лопаток роторов компрессора низкого и высокого давления авиадвигателей пятого поколения, выполненное в виде кольцевого...
Тип: Изобретение
Номер охранного документа: 0002686353
Дата охранного документа: 25.04.2019
20.05.2019
№219.017.5c56

Установка для опреснения морской воды и выработки электроэнергии

Изобретение может быть использовано в теплоэнергетике и экологии. Установка для опреснения морской воды и выработки электроэнергии содержит газотурбинную установку 1 с компрессором, камерой сгорания, газовой турбиной и электрогенератором 2, паропровод перегретого пара 3, паровую турбину 4 с...
Тип: Изобретение
Номер охранного документа: 0002687922
Дата охранного документа: 16.05.2019
24.05.2019
№219.017.5ecb

Способ предварительной обработки и активации воздухом морской воды перед ее опреснением

Изобретение относится к области предварительной обработки морской воды перед опреснением в адиабатном многоступенчатом опреснителе путем ее гидродинамической кавитационной обработки и активации атмосферным воздухом. Исходную морскую воду подают через тангенциальные сопла во внутреннюю часть...
Тип: Изобретение
Номер охранного документа: 0002688617
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5ed6

Компрессорная станция магистральных газопроводов с электроприводными газоперекачивающими агрегатами

Изобретение относится к области транспорта газа и может быть применено на компрессорных станциях (КС) магистральных газопроводов. Компрессорная станция снабжена электроприводными ГПА и регенеративными энергетическими газотурбинными установками с высокооборотными компрессорами, газовыми...
Тип: Изобретение
Номер охранного документа: 0002688640
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5eec

Волоконно-оптический датчик угла поворота

Изобретение относится к средствам измерения угловых перемещений. Волоконно-оптический датчик угла поворота состоит из лазерного диода, микроконтроллера, оптического делителя мощности, двух фотодетекторов и двух отрезков оптического волокна. Отрезки оптического волокна свернуты в полукольца...
Тип: Изобретение
Номер охранного документа: 0002688596
Дата охранного документа: 21.05.2019
Showing 1-2 of 2 items.
06.02.2020
№220.017.ff7c

Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава

Изобретение относится к формированию композиционного материала в виде покрытия на поверхности изделия из титанового сплава. Способ включает нанесение на поверхность изделия порошковой композиции, содержащей следующие компоненты, вес.%: Аl - 3,91, Со - 15,6, Сr - 11,1, Fe - 0,06, Mo - 4,48, Nb -...
Тип: Изобретение
Номер охранного документа: 0002713255
Дата охранного документа: 04.02.2020
31.07.2020
№220.018.39f7

Способ получения деталей из алюминиевых сплавов методом селективного лазерного сплавления

Изобретение относится к способу изготовления деталей из алюминиевых сплавов и может использоваться для производства деталей и узлов авиационных и ракетно-космических систем. Изготовление деталей технологией селективного лазерного сплавления выполняют при следующих технологических параметрах:...
Тип: Изобретение
Номер охранного документа: 0002728450
Дата охранного документа: 29.07.2020
+ добавить свой РИД