×
23.11.2018
218.016.a032

Результат интеллектуальной деятельности: Теплообменный аппарат

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплотехники, а именно к теплообменным аппаратам с трубами с развитой поверхностью теплообмена, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях промышленности. Теплообменный аппарат содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, профилированные теплообменные трубы, установленные внутри корпуса в трубных досках. Поперечное сечение центральной части каждой теплообменной трубы выполнено профилированным в виде прямоугольника со скругленными переходами между его сторонами, при этом соотношение сторон указанного прямоугольника составляет h=(0,1…0,5)b, где h - высота прямоугольника, b - ширина прямоугольника. Входная и выходная части упомянутых труб выполнены цилиндрическими с обеспечением переходной зоны от цилиндрических участков трубы к профилированному. Проходная площадь профилированного поперечного сечения теплообменной трубы равна или больше проходной площади каждого цилиндрического участка указанной трубы. В варианте исполнения, поперечное сечение трубы выполнено в виде плоской спирали. 3 з.п. ф-лы, 6 ил.

Изобретение относится к области теплотехники, а именно: к теплообменным аппаратам с трубами с развитой поверхностью теплообмена, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях промышленности.

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и пучок теплообменных прямых труб (А.Г. Касаткин. Основные процессы и аппараты химической технологии. Издательство Альянс, Москва, 2008, стр. 326-333).

Основными недостатками указанных конструкций является недостаточно интенсивный теплообмен в связи с низким коэффициентом теплопередачи из-за слабой турбулизации потоков, проходящих как внутри труб, так и в межтрубном пространстве, высокая материалоемкость и значительные габариты.

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и пучок теплообменных труб в виде пространственно-спиральных змеевиков, установленных в зазорах между витками друг друга (патенты РФ №2152574, МПК: F28D 7/02 от 16.09.1999 и №2238500, МПК: F28D 7/02 от 27.12.2002).

Основными недостатками указанных конструкций является сложность изготовления змеевиков, формирование трубных пучков в межтрубном пространстве теплообменного аппарата, теплообмен между средами недостаточно интенсивный, особенно в межтрубном пространстве, низкий коэффициент теплопередачи на уровне 150 ккал/ч*м2 («Теплообменное оборудование ООО «АНОД-ТЦ»»).

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и змеевиковые элементы из труб, установленных в зазорах между витками змеевиковых элементов (патент РФ №2451875, МПК: F22B 37/00, F28D 7/02 от 14.10.2010).

Основным недостатком указанной конструкции является недостаточно интенсивный теплообмен между средами, особенно при движении теплопередающей среды снаружи змеевиковых элементов поперек оси пучка труб и изготовления змеевиковых пучков труб вложением одного пучка труб в другие пучки.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является теплообменный аппарат с оребренными теплообменными трубами, в частности аппарат воздушного охлаждения, содержащий корпус, входной и выходной коллекторы с устройствами ввода и вывода горячего и холодного потоков и пучок теплообменных прямых оребренных труб (Основы расчета и проектирования теплообменников воздушного охлаждения.: Справочник А.Н. Бессонов, Г.А., Дрейцер, В.Б. Кунтыш и др. СПб, «Недра», 1996, стр. 89-104).

Основными недостатками указанной конструкции является недостаточно интенсивный теплообмен из-за слабой турбулизации потока, проходящего внутри прямых труб, и низкого коэффициента теплоотдачи от стенки к потоку внутри труб, лимитирующего общий коэффициент теплопередачи.

Задача, на решение которой направлено заявленное изобретение, заключается в интенсификации теплообмена как в трубном, так и межтрубном пространствах пучков теплообменных труб с одновременным увеличением удельной площади теплообмена.

Решение указанной задачи достигается тем, что, в предложенном теплообменном аппарате, содержащем корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные трубы, установленные внутри корпуса в трубных досках, при этом полости указанных труб сообщены с соответствующими полостями подвода и отвода, согласно изобретению, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным в виде геометрической фигуры с несколькими лучами, причем полости лучей сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока, при этом входная и выходная части трубы выполнены цилиндрическими с обеспечением переходной зоны от цилиндрических участков трубы к профилированному, при этом проходная площадь профилированного поперечного сечения теплообменной трубы, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы выполнено профилированным в виде прямоугольника со скругленными переходами между его сторонами, при этом соотношение сторон указанного прямоугольника составляет h=(0,1…0,5)b, где: h - высота прямоугольника, b - ширина прямоугольника,

В варианте исполнения, каждая труба по длине выполнена в виде плоской спирали.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным в виде трехлучевой звезды с полыми лучами, образованными монотонно чередующимися выступами и впадинами, при этом теплообменные трубы расположены таким образом, что выступ вертикального луча поперечного сечения каждой предыдущей трубы располагается во впадине между лучами поперечного сечения каждой последующей трубы в поперечном сечении пучка труб, причем лучи смежных участков труб расположены параллельно или практически параллельно между собой, при этом максимальное расстояние между плоскими поверхностями двух смежных лучей не превышает толщину луча.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным в виде четырехлучевой звезды с полыми лучами, образованными монотонно чередующимися выступами и впадинами, при этом теплообменные трубы расположены таким образом, что расстояние между противоположно расположенными выступами равно ширине луча, причем лучи смежных участков труб расположены параллельно или практически параллельно между собой.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным с радиальными каналами, проходящими по всей длине центральной части трубы и делящими поперечное сечение трубы на несколько секторов, причем полости указанных секторов сообщаются между собой.

В варианте исполнения, указанные радиальные каналы располагаются по спирали по длине трубы.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показан продольный разрез предложенного теплообменного аппарата, на фиг. 2 - поперечное сечение предложенного теплообменного аппарата, на фиг. 3 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменных труб плоским с двумя лучами, в виде прямоугольника со скругленными торцами, на фиг. 4 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменной трубы профилированным в виде трехлучевой звезды с полыми лучами, на фиг. 5 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменной трубы профилированным в виде четырехлучевой звезды с полыми лучами, на фиг. 6 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменной трубы профилированным с радиальными каналами, проходящими по всей длине центральной части трубы и делящими поперечное сечение трубы на несколько секторов.

Описание основного варианта исполнения

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода.

Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде звезды с полыми лучами 9, образованными монотонно чередующимися выступами 10 и впадинами 11. Полости лучей 9 сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет 0,6…0,8 диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде звезды с полыми лучами 9, образованными монотонно чередующимися выступами 10 и впадинами 11.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную с лучами 9, образованными монотонно чередующимися выступами 10 и впадинами 11.

Такое изменение формы поперечного сечения трубы позволяет улучшить условия теплообмена за счет увеличения поверхности теплообмена при неизменной площади поперечного сечения.

Описание варианта исполнения с плоским сечением

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода. Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде прямоугольника 15, образованного сторонами 16 и 17. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде прямоугольника, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет (0,6…0,8) диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде прямоугольника, образованными сторонами 16 и 17.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,8…2,2 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. В этом случае толщина центральной части струи будет равна толщине луча. Изменение формы поперечного сечения - со сплошного круглого на профилированное прямоугольное с одновременным уменьшением толщины - позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонким поперечным сечением. Кроме того, такое исполнение поперечного сечения - переход от сплошного круглого к профилированному прямоугольному и обратно - позволяет дополнительно турбулизовать поток, так как в местах деформации потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью 8. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде прямоугольника 9, образованными сторонами 16 и 17.

Выполнение центральных участков теплообменных труб плоскими позволит более компактно разместить теплообменные трубы в полости корпуса, что, в конечном итоге, позволит на 30-40% уменьшить радиальные размеры теплообменного аппарата, улучшить условия теплообмена и улучшить массово-габаритные характеристики теплообменного аппарата за счет уменьшения его габаритных размеров при сохранении длины пути потока.

Описание варианта исполнения с трехлучевым сечением

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода.

Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде трехлучевой звезды с полыми лучами 18, образованными монотонно чередующимися выступами 19 и впадинами 20. Полости лучей 18 сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде трехлучевой звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы. Теплообменные трубы 6 расположены таким образом, что выступ 19 вертикального луча 18 поперечного сечения каждой предыдущей трубы располагается во впадине 20 между лучами 18 поперечного сечения каждой последующей трубы в поперечном сечении пучка труб. Лучи 18 смежных участков труб 6 расположены параллельно или практически параллельно между собой, при этом максимальное расстояние между плоскими поверхностями двух смежных лучей 18 не превышает толщину луча.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет 0,6…0,8 диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде трехлучевой звезды с полыми лучами 18, образованными монотонно чередующимися выступами 19 и впадинами 20.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. В этом случае толщина центральной части струи будет равна толщине луча, что приведет к улучшению условий теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонкими лучами без ярко выраженной центральной части струи. Кроме того, такое исполнение поперечного сечения - переход от сплошного к профилированному и обратно - позволяет дополнительно турбулизовать поток, так как в местах разделения/слияния потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде трехлучевой звезды с лучами 18, образованными монотонно чередующимися выступами 19 и впадинами 20.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. В этом случае толщина центральной части струи будет равна толщине луча, что позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не периферийная часть струи, а вся струя, причем видоизменение формы струи приводит к ее дополнительной турбулизации за счет того, что в местах разделения сплошной струи на лучи и в местах слияния лучей в сплошную струю будет возникать турбулизация потока, что приведет к дополнительному перемешиванию слоев потока между собой и позволит улучшить условия теплообмена и теплопередачи.

Кроме того, расположение лучей смежных участков труб параллельно или практически параллельно между собой, таким образом, что максимальное расстояние между плоскими поверхностями двух смежных лучей не превышает толщину луча, позволит значительно увеличить длину пути другого потока от входного патрубка к выходному, что, в конечном итоге, также позволит улучшить условия теплообмена и улучшить массово-габаритные характеристики теплообменного аппарата за счет уменьшения его габаритных размеров при сохранении длины пути потока.

Описание варианта исполнения с четырехлучевым сечением

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода. Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде четырехлучевой звезды с полыми лучами 21, образованными монотонно чередующимися выступами 22 и впадинами 23. Полости лучей 21 сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходных зон 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде четырехлучевой звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы. Лучи 21 смежных участков труб 6 расположены параллельно или практически параллельно между собой, при этом максимальное расстояние между плоскими поверхностями двух смежных лучей 21 не превышает толщину луча.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет (0,6…0,8) диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде четырехлучевой звезды с полыми лучами 21, образованными монотонно чередующимися выступами 22 и впадинами 23.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,2…1,4 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в два-три раза и позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонкими лучами. Кроме того, такое исполнение поперечного сечения - переход от сплошного к профилированному и обратно - позволяет дополнительно турбулизовать поток, так как в местах разделения/слияния потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью 8. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде четырелучевой звезды с лучами 21, образованными монотонно чередующимися выступами 22 и впадинами 23.

Кроме того, расположение лучей смежных участков труб параллельно или практически параллельно между собой, таким образом, что максимальное расстояние между плоскими поверхностями двух смежных лучей не превышает толщину луча, позволит значительно увеличить длину пути другого потока от входного патрубка к выходному, что, в конечном итоге, также позволит улучшить условия теплообмена и улучшить массово-габаритные характеристики теплообменного аппарата за счет уменьшения его габаритных размеров при сохранении длины пути потока. При этом поток, проходя от входного патрубка к выходному, будет проходить через участки «расширения - сжатия», образованные монотонно чередующимися выступами 22 и впадинами 23, что приведет к дополнительному перемешиванию слоев внутри потока.

Описание варианта исполнения с полыми радиальными каналами Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода. Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде трехлучевой звезды с полыми радиальными каналами 24, проходящими по всей длине центральной части трубы и делящими поперечное сечение трубы на несколько секторов 25, причем полости указанных секторов сообщаются между собой в центральной части сечения 26 и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде трехлучевой звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет 0,6…0,8 диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде трехлучевой звезды с полыми радиальными каналами 24, делящими поперечное сечение на несколько секторов 25.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза и улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонкими лучами, при этом прогрев/теплоотдача будут происходить не только по периметру теплообменной трубы, но и по стенкам полых радиальных каналов 24, расположенных в центральной части сечения. Кроме того, такое исполнение поперечного сечения - переход от сплошного к профилированному и обратно - позволяет дополнительно турбулизовать поток, так как в местах разделения/слияния потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью 8.

Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде трехлучевой звезды с секторами 25, образованными монотонно чередующимися радиальными каналами 24.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. Такое изменение формы поперечного сечения - со сплошного круглого на профилированное трехлучевое с одновременным уменьшением толщины - позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не периферийная часть струи, а вся струя. Такое видоизменение формы струи приводит к ее дополнительной турбулизации за счет того, что в местах разделения сплошной струи на лучи и в местах слияния лучей в сплошную струю будет возникать турбулизация потока, что приведет к дополнительному перемешиванию слоев потока между собой и позволит улучшить условия теплообмена и теплопередачи.

В варианте исполнения, монотонно чередующиеся радиальные каналы 24 выполнены по спирали. Такое исполнение позволяет придать дополнительное вращение потоку компонентов, находящихся как внутри канала 24, так и внутри секторов 25, что, в конечном итоге, дополнительно позволит интенсифицировать теплообмен за счет вращения потоков.

Использование предложенного технического решения позволит интенсифицировать теплообмен как в трубном, так и межтрубном пространствах пучков теплообменных труб с одновременным увеличением удельной площади теплообмена, что, в конечном итоге, позволит уменьшить габаритные размеры теплообменного аппарата, либо увеличить площадь теплообмена при неизменных габаритных размерах.


Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Источник поступления информации: Роспатент

Showing 31-40 of 244 items.
19.01.2018
№218.016.046f

Способ компенсации теплового изгиба и деформации оптических каналов моноблока лазерного гироскопа

Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности бесплатформенных инерциальных навигационных систем. Предложенный способ компенсации теплового изгиба и деформации оптических каналов многоугольного моноблока лазерного...
Тип: Изобретение
Номер охранного документа: 0002630531
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.047c

Способ компенсации теплового изгиба и деформации оптических каналов моноблока лазерного гироскопа

Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности бесплатформенных инерциальных навигационных систем. Способ компенсации теплового изгиба и деформации оптических каналов многоугольного моноблока лазерного гироскопа...
Тип: Изобретение
Номер охранного документа: 0002630533
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0932

Устройство для измерения разности фаз радиосигналов

Изобретение относится к радиотехнике и может быть использовано в радиопеленгаторах, средствах радиомониторинга, системах фазовой автоподстройки частоты, системах синхронизации различного назначения и аналогичных средствах и системах, в которых осуществляются измерения разности фаз радиосигналов...
Тип: Изобретение
Номер охранного документа: 0002631668
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.0d69

Пьезорезонансный датчик для определения относительной влажности воздуха

Использование: для определения влажности атмосферного воздуха. Сущность изобретения заключается в том, что пьезорезонансный датчик содержит камеру с генератором частоты колебаний пьезорезонатора, пьезорезонатор и частотомер, камера оснащена изменителем и измерителем температуры, последовательно...
Тип: Изобретение
Номер охранного документа: 0002632997
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0dd9

Пиротехнический патрон инфракрасного излучения

Изобретение относится к области военной техники, а именно к боеприпасам для создания ложных целей, имитирующих нагретые агрегаты летательного аппарата и предназначенных для их защиты от оружия противника с тепловыми системами наведения. Пиротехнический патрон инфракрасного излучения содержит...
Тип: Изобретение
Номер охранного документа: 0002633012
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0e44

Осевой компрессор

Изобретение относится к области авиационного двигателестроения и может быть использовано в осевых компрессорах. Изобретение от известных отличается тем, что в осевом компрессоре, состоящем из N ступеней, каждая из которых содержит корпус, направляющий аппарат, рабочее колесо, установленное на...
Тип: Изобретение
Номер охранного документа: 0002633221
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.142c

Способ защиты вертолета от управляемых боеприпасов

Способ защиты вертолета от управляемых боеприпасов заключается в поиске с борта вертолета оптического излучения управляемого боеприпаса (УБП), включает отстрел аэрозолеобразующего боеприпаса в направлении полета вертолета и формирование на установленной дистанции аэрозольного облака,...
Тип: Изобретение
Номер охранного документа: 0002634798
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1479

Устройство для экспресс-анализа качества продуктов

Изобретение предназначено для экспрессного анализа «на месте» жидких и твердых продуктов по концентрации их газов-маркеров. Устройство для экспресс-анализа качества продуктов включает один пьезосенсор с чувствительным пленочным покрытием для сорбции газов-маркеров, встроенный в держатель крышки...
Тип: Изобретение
Номер охранного документа: 0002634803
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.14d5

Ветроэнергетическая установка

Изобретение относится к ветроэнергетике. Ветроэнергетическая установка содержит платформу, выполненную в виде многолучевой звезды с возможностью вращения вокруг собственной оси симметрии, и парусные элементы, установленные на концах лучей указанной звезды, выполненные с возможностью вращения...
Тип: Изобретение
Номер охранного документа: 0002635010
Дата охранного документа: 08.11.2017
20.01.2018
№218.016.1596

Боевой элемент с координатором цели

Изобретение относится к области ракетной техники и, в частности, к боевым элементам реактивных снарядов. Технический результат - повышение надежности работы устройства за счет возможности корректирования траектории его движения для сближения с целью. Боевой элемент с координатором цели...
Тип: Изобретение
Номер охранного документа: 0002634875
Дата охранного документа: 07.11.2017
Showing 31-40 of 590 items.
10.06.2013
№216.012.4915

Смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Смесительная головка ЖРД содержит корпус, блок подачи окислителя, блок подачи водорода, блок подачи керосина, соосно-струйные форсунки,...
Тип: Изобретение
Номер охранного документа: 0002484289
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4d2b

Смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к ракетному двигателестроению и может быть использовано при разработке форсуночных головок камер сгорания жидкостных ракетных двигателей (ЖРД), содержащих систему воспламенения. Смесительная головка камеры ЖРД содержит корпус, блок подачи окислителя, блок подачи горючего,...
Тип: Изобретение
Номер охранного документа: 0002485337
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d2c

Камера жидкостного ракетного двигателя

Изобретение относится к ракетному двигателестроению и может быть использовано при разработке форсуночных головок камер сгорания жидкостных ракетных двигателей (ЖРД), содержащих систему воспламенения. Камера содержит смесительную головку, включающую корпус, блок подачи окислителя, блок подачи...
Тип: Изобретение
Номер охранного документа: 0002485338
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d2d

Жидкостный ракетный двигатель

Изобретение относится к ракетному двигателестроению и может быть использовано при разработке форсуночных головок камер сгорания жидкостных ракетных двигателей (ЖРД), содержащих систему воспламенения. ЖРД, содержащий регенеративно охлаждаемую кольцевую камеру с тарельчатым соплом внешнего...
Тип: Изобретение
Номер охранного документа: 0002485339
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d2e

Способ подачи пускового горючего в камеру жидкостного ракетного двигателя

Изобретение относится к ракетному двигателестроению и может быть использовано при разработке форсуночных головок камер сгорания жидкостных ракетных двигателей (ЖРД), содержащих систему воспламенения. Способ подачи пускового горючего в ЖРД заключается в подаче пускового горючего в камеру...
Тип: Изобретение
Номер охранного документа: 0002485340
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.516e

Винтовочная граната

Изобретение относится к осколочным боеприпасам, в частности к винтовочным гранатам. Граната содержит корпус, на котором размещены гильза, головной взрыватель, капсюль-воспламенитель и пороховой заряд. Внутри корпуса размещен заряд взрывчатого вещества. Корпус содержит три связанные между собой...
Тип: Изобретение
Номер охранного документа: 0002486439
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.516f

Граната

Изобретение относится к осколочным боеприпасам, в частности к гранатам. Граната содержит корпус, на котором размещены гильза, головной взрыватель, капсюль-воспламенитель и пороховой заряд. Внутри корпуса размещен заряд взрывчатого вещества. Корпус содержит три связанные между собой оболочки....
Тип: Изобретение
Номер охранного документа: 0002486440
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5170

Осколочный боеприпас

Изобретение относится к осколочным боеприпасам. Боеприпас содержит корпус, на котором размещены гильза, головной взрыватель, капсюль-воспламенитель и пороховой заряд. Внутри корпуса размещен заряд взрывчатого вещества. Корпус содержит три связанные между собой оболочки. Внутренняя и наружная...
Тип: Изобретение
Номер охранного документа: 0002486441
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5171

Осколочный боеприпас заданного дробления

Изобретение относится к боеприпасам, в частности к осколочным боеприпасам заданного дробления. Боеприпас содержит корпус, на котором размещены гильза, головной взрыватель, капсюль-воспламенитель и пороховой заряд. Внутри корпуса размещен заряд взрывчатого вещества. Корпус содержит три связанные...
Тип: Изобретение
Номер охранного документа: 0002486442
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5172

Осколочная граната

Изобретение относится к осколочным боеприпасам, в частности к осколочным гранатам. Граната содержит корпус, на котором размещены гильза, головной взрыватель, капсюль-воспламенитель и пороховой заряд. Внутри корпуса размещен заряд взрывчатого вещества. Корпус содержит три связанные между собой...
Тип: Изобретение
Номер охранного документа: 0002486443
Дата охранного документа: 27.06.2013
+ добавить свой РИД