×
09.11.2018
218.016.9b62

Результат интеллектуальной деятельности: Измеритель воздушной скорости

Вид РИД

Изобретение

№ охранного документа
0002672037
Дата охранного документа
08.11.2018
Аннотация: Изобретение относится к измерительной технике и может быть использовано в системах измерения расходов газообразных сред. Измеритель воздушной скорости содержит проточный корпус с расположенной, перпендикулярно потоку, внутри пластиной, на которой размещены по ее разные стороны в потоке струйные элементы, на одной стороне - два, на другой - один, соединенные каналами управления в последовательную цепь, замкнутую с выхода последнего элемента на вход первого элемента, и подключенные соплами питания к потоку, выход последнего струйного элемента подключен каналами к пневмоэлектропреобразователю, и далее к индикатору скорости потока, атмосферные каналы элементов соединены в общую полость, связанную с набегающим потоком через прорези в корпусе. Технический результат – расширение диапазона измерения воздушной скорости, автономности измерения, упрощение функционального состава. 3 ил.

Изобретение относится к измерительной технике и может быть использовано в системах измерения расходов газообразных сред, скорости подвижных объектов, например, планеров, дронов, вертолетов в качестве элементов «условного ПВД» (приемник воздушного давления) и резервных измерителях скорости движения электровозов.

Известны измерители скорости потока (анемометры) - см. http://www.eksis.ru/catalog/measures-the-speed-of-the-air-flow-anemometers. Анемометры - приборы для измерения скорости потока воздуха, которые наиболее широко используются для оценки эффективности работы систем вентиляции и кондиционирования; аттестации аэродинамических установок; оценки качества работы авиационных двигателей; измерения скорости направленного воздушного потока в жилых и производственных помещениях и др. Данные измерения скорости предоставлены в цифровой форме.

Чашечные или крыльчатые анемометры работают по принципу отмеривания определенного объема или массы измеряемого вещества подвижными элементами их конструкций. Скорость вращения подвижных элементов приборов, измеряемая тахометром, пропорциональна скорости измеряемого потока. Недостатки подобных анемометров- крупные габариты, подвижные элементы, ограничения измерения малых скоростей потока.

Тепловые измерители скорости потока воздуха - термоанемометры - работают по принципу «нагретой проволоки». Принцип основан на изменении мощности нагрева чувствительного элемента, пропорциональном скорости аспирации этого элемента потоком воздуха. Чувствительные элементы, лежащие в основе измерительных преобразователей, могут быть проволочного, пленочного и терморезисторного типов. Чаще всего анемометры такого типа применяются при измерениях малых расходов газа. Недостатки подобных анемометров в необходимости стабилизированного внешнего питания.

Известен струйный измеритель скорости течения жидкости или газа (RU 2 277 224 С2, 27.05.2006), содержащий автогенератор, состоящий из струйных элементов с соплами и приемными каналами. Недостатки:

- уменьшение камеры взаимодействия струй управления и питания приводит к стесненной работе объемов в камере, их перемещению в пространстве, повышению давления внутри камеры и изменению плотности среды в камере, недостаточно эффективной работе отражателя суммарной струи на больших частотах переключения струи, к сбоям при переключении и искажению результата измерения по частоте,

- трудности при малой камере в конструировании геометрии подвода сопел управления и каналов слива, при устранении которых увеличиваются между ними расстояния для обеспечения герметичности отвода и в целом к увеличению габаритов устройства,

- значительно уменьшены длины участков стены, к которым примыкает силовая струя, что ухудшает характеристики струйного элемента генератора за счет снижения эффект примыкания с появлением дребезга сигнала, появлению дополнительной помехи в информационном частотном сигнале,

- заявлено, что «сопла струйных элементов спрофилированы таким образом, что скорость в соплах и в поперечных сечениях силовых струй в пределах ядра турбулентной струи распределяется равномерно при ламинарной, турбулентной и смешанной формах течения». Однако не показывается, как практически это выполнить, тем более что величина ядра турбулентной струи не имеет отношения к ламинарному течению потока.

Известен многоканальный аэрометрический преобразователь (RU 2042137 С1, 20.08.1995), принятый за прототип, который решает задачу измерения вектора скорости воздушного потока в плоскости. Это устройство содержит сложное аэродинамическое тело, снабженное радиально расположенными трубчатыми приемниками полного давления, аэродинамическое тело выполнено в виде двух шаровых сегментов, обращенных друг к другу шаровыми поверхностями и соединенных между собой держателями, на которых закреплены трубчатые приемники полного давления. Каждая из полостей снабжена приемными отверстиями статического давления, расположенными на плоских поверхностях конусовидных выборок в обеих частях аэродинамического тела.

Недостатками известного измерителя состоят в сложной пространственной форме конструкции с измерением в аналоговой форме параметров набегающего потока в виде скоростного (динамического) и статического давлений, нелинейная связь входного и выходного сигнала.

Техническим результатом является расширение диапазона измерения воздушной скорости, автономности измерения, не используя дополнительный источник питания, отсутствие вспомогательных параметров в виде статического давления и скоростного напора, увеличения чувствительности, отсутствия аналогового измерения параметра скорости, непосредственного преобразования воздушной скорости в частотный сигнал пропорциональный измеряемой скорости (линейная связь), независимость измеренной величины скорости от плотности измеряемого потока, чувствительный элемент не имеет подвижных частей.

Технический результат достигается тем, что предложенный измеритель воздушной скорости, характеризуется тем, что содержит проточный корпус с расположенной внутри, перпендикулярно потоку пластиной, на которой размещены по ее разные стороны в потоке струйные элементы, на одной стороне - два элемента, на другой - один элемент, соединенные каналами управления в последовательную цепь и замкнутую с выхода последнего элемента на вход первого элемента и подключенные соплами питания к потоку, при этом выход последнего струйного элемента подключен каналами к пневмоэлектропреобразователю, и далее к индикатору скорости потока, причем атмосферные каналы элементов выведены в общую полость, связанную с набегающим потоком через прорези в корпусе.

Предлагается непосредственное измерение воздушной скорости набегающего потока, т.е. «скорость в скорость объекта» через частоту. Часть функций в приемнике воздушного давления (ПВД) можно заменить прибором- измерителем воздушной скорости (ИВС). При этом важно, что показания измеренной истинной воздушной скорости не зависят от плотности воздушной среды и соответственно высоты полета изделия.

ИВС можно применять в качестве измерения угла скоса потока на фюзеляже, угла атаки на лопасти, скорости перемещения ее отдельных секций, вертикальной скорости всего изделия.

На фиг. 1 представлен измеритель воздушной скорости в разрезе по разным плоскостям.

На фиг. 2 показан вид на пластину 2 (сторона 3) без корпуса 1 и крышки 12.

На фиг. 3 показан поперечный разрез измерителя и пластины 2 по стороне 4.

Предложенный измеритель воздушной скорости содержит проточный корпус 1 (рис. 1) с расположенной, перпендикулярно потоку 5, внутри пластиной 2, на которой размещены по ее разные стороны 3 и 4 в потоке струйные элементы 6 и 7 на стороне 4, на другой стороне 3 - струйный элемент 8. На фиг. 1, 2, 3 струйные элементы обозначены принадлежностью сопел питания и соединены каналами управления 9 в последовательную цепь, замкнутую с выхода 11 последнего элемента 8 на вход 12 первого элемента 6, и подключенные соплами питания 6, 7, 8 к потоку 5, из круговой камеры 10 (фиг. 2 и 3), которая позволяет одновременно запитать струйные элементы более равномерно. Отсутствие стенки прилипания в геометрии струйных элементов позволило повысить чувствительность и снизить минимальный уровень скорости входного потока. Расположение струйных элементов друг над другом 3 и 4 сократило каналы связи между ними, что повысило частоту выходного сигнала и точность отсчета. Выход 11 последнего струйного элемента 8 через каналы управления 12 подключен каналами 13 к пневмоэлектропреобразователю 14, и далее через пневмосъем 15 к индикатору скорости потока (на фиг. 1 не показан), атмосферные каналы 16 элементов 6, 7, 8 соединены в общую полость 17, связанную с набегающим потоком 5 через прорези 18 в корпусе 1. Сторона 3 пластины 2 закрыта верхней крышкой 19. Сторона 4 закрыта нижней крышкой 20, в которой атмосферные отверстия 21 связывают каналы 16 с полостью 17. На входе корпуса 1 расположен фильтр 22 и внутри корпуса электрообогреватель 23. На верхней крышке 19 показано в разрезе типичное соединение винтами (на фиг. 2 обозначено АА). Нижняя крышка 20 на рис. 1 показана в разрезе ББ (фиг. 3).

При использовании предложенного измерителя воздушной скорости, например, на летательном аппарате -планере, набегающий поток 5 воздуха через фильтр 22 проходит через вход корпуса 1 сечением А1, скоростью ϑ1, давлением р1 внутрь корпуса 1, и далее в круговую камеру 10, окружающей пластину 2 с расположенными на ней струйными элементами 6, 7, 8 в сопла питания общим суммарным сечением А2 всех струйных элементов 6, 7, 8. Далее поток проходит через камеры взаимодействия струйных элементов и атмосферные каналы 16 в полость 17, герметично отделенной от струйных элементов 6 и 7, расположенных на пластине 2 со стороны 4. Из полости 17 поток проходит через прорези 18 в атмосферу с набегающим потоком 5, который на прорезях 18 создает пониженное давление и компенсирует эффект сжатия газа путем увеличения проводимости сопел питания струйных элементов. В устройстве по описанной схеме соединения струйных элементов при наличии на входе 22 воздушной скорости ϑ1 возникает процесс автоколебаний с некоторой частотой ƒ (автогенерация). Направление струи питания внутри каждого струйного элемента периодически изменяется в процессе ее автоколебаний, и в приемных каналах на выходе струйных элементов возникают импульсы давления, частота ƒ которых пропорциональна скорости ϑ2 (см. например RU 2 277 224 С2). В отсутствии сжатия воздуха отношение скоростей равно - ϑ12=1.

Для конкретного прибора ИВС (фиг. 1) рассчитаем скорость набегающего потока для принятых параметров: Δр=5000 (Па = Н/м2)(сжимаемость воздуха практически отсутствует), А2=13 мм2, A1 = Fd=15 = 176 мм2, (А21)2=0,005≅0, ρ=1,22 кг/м3 - плотность воздуха на уровне Н=0 м (стандартная атмосфера).

Принимаем, что для одного струйного элемента с суммарным живым сечением А2 сопел питания струйных элементов и осредненном давлении р2 скорость ϑ2 потока сопла питания будет, [м/с], k1 [м/с Гц] - коэффициент скорости потока, ƒ [Гц] - частота выходного сигнала, измеряющего скорость потока. В частном примере k1=0,04 (м/с)/Гц, т.е. при ϑ2=0,5 м/с, ƒ=12,5 Гц и при ϑ2=100 м/с, ƒ=2500 Гц.

Определяя частоту ƒ выходного сигнала от скорости набегающего потока ϑ1, которая мало отличается от частоты скорости течения в сопле струйного элемента ϑ2 и (при подстановке данных (A2/A1)2≅0), будем иметь равенство ϑ1 ≅ ϑ2 = 91 м/с = 326 км/ч.

Таким образом, имеем пропорциональную зависимость между величиной воздушной скорости, поступающей в измерительный прибор, и частотным сигналом ƒ в виде ƒ=k2 ϑ1.

Поскольку скорость струи питания зависит только от перепада давления на сопле питания, она зависит от плотности среды конкретного набегающего потока в данных условиях полета, характеризующего общее сопротивление, например, летательного аппарата, к которому прикреплен разработанный измеритель воздушной скорости. Например, при полете в облаках с другим значением плотности ρ будет другая большая величина сопротивления, требующая проталкивания аппарата в этой среде, ей будет соответствовать полет с другой измеренной воздушной скоростью ϑ2. Каналы 13 подсоединены к пневмоэлектропреобразователю 14, например, пьезокристаллического типа, в котором струйные импульсные сигналы давления преобразуются в электрические. Частота ƒ импульсов давления является показателем истинной воздушной скорости ϑ1 набегающего потока и фиксируется на индикаторе 15.

От проникновения воды, льда, мелких крылатых насекомых и др., содержащихся в потоке 5, измеритель защищен на входе фильтром 22 и обогревателем 23, расположенным внутри корпуса 1.

Измеритель воздушной скорости, характеризующийся тем, что содержит проточный корпус с расположенной внутри, перпендикулярно потоку пластиной, на которой размещены по ее разные стороны в потоке струйные элементы, на одной стороне - два элемента, на другой - один элемент, соединенные каналами управления в последовательную цепь, замкнутую с выхода последнего элемента на вход первого элемента, и подключенные соплами питания к потоку, при этом выход последнего струйного элемента подключен каналами к пневмоэлектропреобразователю, и далее к индикатору скорости потока, причем атмосферные каналы элементов выведены в общую полость, связанную с набегающим потоком через прорези в корпусе.
Измеритель воздушной скорости
Измеритель воздушной скорости
Источник поступления информации: Роспатент

Showing 11-20 of 276 items.
20.02.2014
№216.012.a328

Автономный счетчик газа

Изобретение относится к измерительным устройствам и может быть использовано в технологических трубопроводах для измерения количества газа или жидкости в производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета в ЖКХ. Автономный счетчик газа содержит вход и...
Тип: Изобретение
Номер охранного документа: 0002507483
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a743

Устройство для измерения геометрического размера диэлектрической частицы

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом является повышение точности измерения. Технический результат достигается тем, что в устройство для измерения геометрического размера диэлектрической частицы, содержащее источник излучения, детектор и...
Тип: Изобретение
Номер охранного документа: 0002508534
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.b945

Способ отказоустойчивого управления движением корабля по глубине

Изобретение относится к области судостроения. Способ заключается в использовании задатчика глубины, первого фильтра оценки сигнала глубины, четвертого фильтра оценки сигнала угла дифферента и сумматора, на вход которого вводят сигналы. С выхода сумматора сигнал заданной скорости...
Тип: Изобретение
Номер охранного документа: 0002513157
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c0ab

Устройство для определения поступательного перемещения

Изобретение относится к измерительной технике. Техническим результатом заявляемого изобретения является повышение точности измерения. Технический результат достигается тем, что в устройство для определения поступательного перемещения, содержащее источник излучения и приемник, введены измеритель...
Тип: Изобретение
Номер охранного документа: 0002515072
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c131

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к вычислительной технике, в частности к специализированным процессорам с высокой степенью параллелизма. Технический результат заключается в снижении сложности спецпроцессора и повышении скорости решения задачи о выполнимости булевых функций за счет упрощения структуры...
Тип: Изобретение
Номер охранного документа: 0002515206
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c136

Спецпроцессор для поиска гамильтоновых циклов в графах

Изобретение относится к вычислительной технике и направлено на построение эффективного спецпроцессора, осуществляющего поиск Гамильтонова цикла в графе, заданном матрицей смежностей, хранящейся в памяти. Техническим результатом является увеличение скорости решения задачи отыскания Гамильтонова...
Тип: Изобретение
Номер охранного документа: 0002515211
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c144

Каскадное парафазное логическое устройство

Изобретение относится к области вычислительной техники и может быть использовано в КМДП интегральных схемах при реализации логических устройств. Технический результат - повышение быстродействия устройства. Устройство содержит тактовый КМДП инвертор и в каждом каскаде два транзистора сброса...
Тип: Изобретение
Номер охранного документа: 0002515225
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c2ae

Способ организации и ведения медицинского мониторинга

Изобретение относится к способу организации и ведения медицинского мониторинга данных состояния пациентов. Технический результат заключается в повышении эффективности и надежности мониторинга и диагностики состояния пациентов. В способе на каждого пациента формируют несколько электронных карт,...
Тип: Изобретение
Номер охранного документа: 0002515587
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c317

Тактируемый логический элемент и-или

Изобретение относится к области вычислительной техники и может быть использовано для реализации каскадных логических устройств конвейерного типа. Техническим результатом является уменьшение потребляемой мощности. Тактируемый логический элемент И-ИЛИ содержит предзарядовый транзистор 1 p-типа,...
Тип: Изобретение
Номер охранного документа: 0002515702
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c405

Инерционный магнитоэлектрический генератор

Изобретение относится к электротехнике и может служить автономным источником питания для различных систем. Технический результат состоит в получении высоких удельных показателей генерации электрических сигналов с величиной, достаточной для электропитания различных электротехнических устройств...
Тип: Изобретение
Номер охранного документа: 0002515940
Дата охранного документа: 20.05.2014
Showing 11-20 of 36 items.
20.10.2014
№216.012.fe98

Способ измерения расхода среды

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Способ измерения расхода среды, при котором основной поток суммируют с обратным потоком, проводят суммарный поток через основной...
Тип: Изобретение
Номер охранного документа: 0002531032
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.18e5

Способ обслуживания сложных технических систем и автоматизированная система контроля для его осуществления (варианты)

Изобретение относится к контрольно-измерительной технике и может быть использовано при техническом обслуживании сложных технических объектов. Технической результат заключается в расширении полноты контроля объекта контроля. Дополнительно к формированию инициирующих воздействий и контролю...
Тип: Изобретение
Номер охранного документа: 0002537801
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b0c

Способ изготовления структуры кремний-на-сапфире

Изобретение относится к полупроводниковой технологии и может быть использовано для изготовления приборных структур. В подложку из кремния проводят имплантацию ионов с формированием слоя, предназначенного для переноса. Осуществляют активирующую обработку поверхности, по которой проводят...
Тип: Изобретение
Номер охранного документа: 0002538352
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3e5c

Способ мелиорации почв для подготовки к рекультивации

Изобретение относится к мелиорации почв и подготовке грунтов к рекультивации и может быть использовано для очистки почв или грунтов земель различного назначения. Способ мелиорации почв для подготовки грунтов к рекультивации заключается в очистке почв и грунтов от водорастворимых органических и...
Тип: Изобретение
Номер охранного документа: 0002547452
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.4fa9

Способ преобразования механической энергии движения текучей среды в электрическую энергию

Способ преобразования относится к области энергетики и может быть использован для преобразования механической энергии движения текучей среды в электрическую энергию. В способе поступательно движущуюся текучую среду подают в струйный генератор, преобразуют в нем поступательно движущуюся текучую...
Тип: Изобретение
Номер охранного документа: 0002551914
Дата охранного документа: 10.06.2015
10.01.2016
№216.013.9f78

Измеритель расхода потока среды

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Измеритель расхода потока содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель...
Тип: Изобретение
Номер охранного документа: 0002572461
Дата охранного документа: 10.01.2016
10.08.2016
№216.015.53e0

Струйно-оптический триггер с раздельными входами и с постоянной памятью

Устройство относится к области автоматики и может быть использовано для преобразования газоструйного сигнала в оптический, а затем в электрический. Струйно-оптический триггер содержит источник и приемник светового потока, проходящего через щелевой канал. В канале располагается вдоль него...
Тип: Изобретение
Номер охранного документа: 0002593934
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.676e

Струйно-оптический преобразователь

Изобретение относится к области автоматики и может быть использовано для преобразования газоструйного сигнала в электрический. Устройство преобразования газоструйного сигнала в оптический содержит источник и приемник светового потока, проходящего через щелевой канал, в котором располагается...
Тип: Изобретение
Номер охранного документа: 0002591876
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7eea

Способ пневматического частотного измерения ускорения движения тела

Изобретение относится к устройствам, использующимся при навигации летательных аппаратов, при измерении ускорения. Техническим результатом является повышение достоверности (уменьшения погрешности) за счет включения в прямую цепь интегратора, линеаризующего выходную характеристику системы...
Тип: Изобретение
Номер охранного документа: 0002601271
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f1b

Оптоструйный преобразователь

Изобретение относится к области автоматики и может быть использовано для преобразования светового сигнала в струйный. Оптоструйный преобразователь содержит бистабильный струйный элемент с каналом питания, с первым и вторым выходными каналами, с первым управляющим каналом, который соединен...
Тип: Изобретение
Номер охранного документа: 0002601276
Дата охранного документа: 27.10.2016
+ добавить свой РИД