×
03.11.2018
218.016.9a2b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИ ПРОЗРАЧНОЙ КЕРАМИКИ НА ОСНОВЕ ОКСИДА ЛЮТЕЦИЯ

Вид РИД

Изобретение

Аннотация: Использование: для создания оптически прозрачной керамики. Сущность изобретения заключается в том, что способ получения оптически прозрачной керамики на основе оксида лютеция заключается в спекании прокаленного пресс-порошка в искровой плазме, при этом максимально допустимая для используемой пресс-формы нагрузка прикладывается перед нагревом. Технический результат - обеспечение возможности снижения коэффициента экстинкции керамики на основе оксида лютенция, спеченной в искровой плазме, более чем в 2 раза. 1 табл.

Область техники

Настоящее изобретение относится к лазерной и сцинтилляционной технике, а более точно касается способа получения керамики на основе оксида лютеция, и может быть использовано в производстве оптически прозрачных материалов

Уровень техники

Оптически прозрачная керамика на основе оксида лютеция, допированная ионами редкоземельных элементов, является перспективной для использования в качестве активной среды твердотельных лазеров и сцинтилляционных устройств благодаря высоким оптическим и термомеханическим характеристикам. Для снижения деполяризации лазерного излучения и увеличения разрешающей способности сцинтилляционных экранов требуется эффективная технология получения, обеспечивающая одновременно высокое оптическое качество керамики и субмикрозернистую структуру.

Известен способ получения лазерной керамики на основе Yb3+:Lu2O3 с размером зёрен 2–100 мкм и коэффициентом пропускания не менее 80% на длине волны 1.06 мкм при толщине образца 2.44 мм, что равносильно коэффициенту экстинкции не более 0.08 см-1, описанный в патенте US №2014/0098411 A1 [Rare earth doped Lu2O3 polycrystalline ceramic laser gain medium, дата приоритета 28.09.2012], заключающийся в синтезе пресс-порошка требуемого состава осаждением из раствора гидроксидом аммония с последующим прокаливанием, смешивании пресс-порошка со спекающей добавкой флюорида лития, горячем прессовании заготовки давлением 50 МПа при температуре 1500–1700 °С в течение 2–6 часов с её дальнейшим горячим изостатическим прессованием давлением аргона 200 МПа при температуре 1300–1800 °С в течение 5 часов.

Недостатком способа является большая длительность этапа спекания (10 часов и более с учетом процесса нагрева), необходимость использования дорогостоящего оборудования горячего изостатического пресса, а также спекающей добавки LiF, которая ухудшает характеристики материала, способствуя интенсивному росту зёрен и получению крупнозернистой структуры керамики.

Известен способ получения оптически прозрачной керамики на основе Lu2O3 с размером зёрен 0.7–20 мкм и коэффициентом пропускания не менее 80% в диапазоне длин волн 0.5–6.5 мкм при толщине образца 1 мм, что равносильно коэффициенту экстинкции не более 0.18 см-1, защищённый патентом US №2008/0025895 A1 [Transparent lutetium oxide sinter, and method for manufacturing same, дата приоритета 02.07.2004], с использованием пресс-порошка оксида лютеция содержанием основного вещества не менее 99.9 масс.% с удельной поверхностью 2–15 м2/г и содержанием агломератов частиц размером 5 мкм не более 10 масс.%, оксида иттрия содержанием 0.01–0.7 масс.% в качестве спекающей добавки, формования заготовки с относительной плотностью не менее 58%, её спекания при температуре 1450–1750 °С с выдержкой 0.5–8 часов и последующего горячего изостатического прессования давлением 49–196 МПа при температуре 1450–1750 °С с выдержкой 0.5–2 часа.

Недостатком способа является большая длительность этапа спекания (6 часов и более с учётом процесса нагрева), необходимость использования дорогостоящего оборудования горячего изостатического пресса, а также наличие этапа введения спекающей добавки, что усложняет весь процесс изготовления.

Известен способ получения керамики на основе оксидов редкоземельных элементов (в том числе, Lu) с размером зёрен 2–6.5 мкм и коэффициентом экстинкции 0.03–0.64 см-1 на длине волны 0.6 мкм, защищённый патентом US №2014/0094357 A1, [Method of manufacturing transparent sesquioxide body, and transparent sesquioxide body manufactured by the method, дата приоритета 02.10.2013], с использованием пресс-порошка оксида лютеция содержанием основного вещества не менее 99.9 масс.%, диоксида циркония содержанием 0.5 вес.% в качестве спекающей добавки, формования заготовки изостатическим давлением 198 МПа, её спекания при температуре 1600–1700 °С с выдержкой 3 часа и последующего горячего изостатического прессования аргоном давлением 98–198 МПа при температуре 1600–1700 °С с выдержкой 3 часа.

Недостатком способа является высокая температура завершающего этапа синтеза керамики (1600 °С и более), большая длительность этапа спекания (6 часов и более с учётом процесса нагрева), необходимость использования дорогостоящего оборудования горячего изостатического пресса, а также наличие этапа введения спекающей добавки, что усложняет весь процесс изготовления.

Известен способ получения магнитооптической керамики на основе Dy2O3 и других оксидов редкоземельных элементов, защищённый патентом US №8641995 B2 [Magneto-optic nanocrystalline oxides and methods of forming the same, дата приоритета 30.08.2011], с использованием спекания порошков в искровой плазме. Исходный коммерческий порошок помещают в пресс-форму, прикладывают давление 71 МПа в течение 1 минуты, сбрасывают давление до 0 МПа, выдерживают заготовку 1 минуту, осуществляют нагрев со скоростью 60 К/мин одновременно с ростом давления со скоростью 35.3 МПа/мин до значения 106 МПа, производят нагрев со скоростью 200 К/мин до достижения температуры 1100 °С, повышают давление до 141 МПа за 1 минуту, выдерживают заготовку 4 минуты, охлаждают спечённый образец со скоростью 130 °С/мин, получают керамику Dy2O3 с размером зёрен менее 0.1 мкм и коэффициентом экстинкции не более 10.1 см-1 на длине волны 0.6328 мкм.

Недостатком данного способа является низкое оптическое качество получаемого поликристаллического материала.

Наиболее близким к заявляемому изобретению по технической сущности и достигаемому результату, выбранным в качестве прототипа, является способ получения оптически прозрачной керамики на основе Yb3+:Lu2O3 [V.S. Kijko, R.N. Maksimov, V.A. Shitov, S.L. Demakov, A.S. Yurovskikh. Sintering of transparent Yb-doped Lu2O3 ceramics using nanopowder produced by laser ablation method. // Journal of Alloys and Compounds 643 (2015) 207-211] с размером зёрен 0.2 мкм и коэффициентом пропускания 75.6% на длине волны 1.08 мкм при толщине образца 1 мм, что равносильно коэффициенту экстинкции 0.74 см-1. Создание образцов керамик реализуют с использованием следующей технологической цепи: получают исходный нанопорошок Yb3+:Lu2O3 методом лазерной абляции твёрдой мишени, прокаливают нанопорошок на воздухе при температуре 1100 °С в течение 1 часа, помещают прокаленный нанопорошок в графитовую пресс-форму диаметром 20 мм и спекают в искровой плазме с плавным нарастанием нагрузки до конечного значения 15 кН в течение нагрева. Нагрев осуществляют со скоростью 135 К/мин до 1100 °С, затем со скоростью 10 К/мин до 1450 °С и выдерживают при конечной температуре 40 минут. Полученный образец обжигают в атмосферной печи при температуре 1400 °С в течение 2 часов, затем шлифуют и полируют поверхности до зеркального блеска.

Недостатком данного способа является низкое оптическое качество получаемого поликристаллического материала.

В основе настоящего изобретения лежит задача разработки эффективного способа получения оптически прозрачной керамики на основе оксида лютеция, обладающей одновременно низким коэффициентом экстинкции и субмикрозернистой структурой. Поставленная задача решается приложением максимально допустимой для используемой пресс-формы нагрузки перед нагревом при спекании в искровой плазме, благодаря чему увеличивается исходная плотность порошкового тела и, как следствие, уменьшается количество углерода, проникающего внутрь образца и вызывающего формирование центров рассеяния излучения.

Технический результат заключается в снижении коэффициента экстинкции керамики на основе оксида лютеция, спечённой в искровой плазме, более чем в 2 раза.

Предлагаемый способ может быть осуществлён следующим образом. Получают нанопорошок оксида лютеция, предпочтительно методом лазерной абляции твёрдой мишени, изложенном в патенте RU №2353573 C2 [Способ получения нанопорошков и устройство для его реализации, дата приоритета 15.12.2010]. Навеску 5 г полученного нанопорошка оксида лютеция прокаливают на воздухе при температуре 1100 °С. Прокаленный нанопорошок помещают в графитовую пресс-форму диаметром 20 мм, прикладывают нагрузку 15 кН, фиксируют значение нагрузки, осуществляют нагрев со скоростью 135 К/мин до 1100 °С, затем со скоростью 10 К/мин до 1450 °С и выдерживают образец при конечной температуре и нагрузке 40 минут. Полученный образец обжигают в атмосферной печи при температуре 1400 °С в течение 2 часов, затем шлифуют и полируют поверхности до зеркального блеска. Получают оптически прозрачную керамику оксида лютеция диаметром 20 мм и толщиной 1 мм, обладающую коэффициентом экстинкции 0.3 см-1 на длине волны 1.06 мкм по результатам измерений на спектрометре Shimadzu UV-1700 (Япония, Shimadzu Corp.) и средним размером зёрен 0.5 мкм по фотографиям, полученным с помощью сканирующего электронного микроскопа AURIGA CrossBeam (Германия, Carl Zeiss).

Заявляемые пределы рабочих параметров обусловлены следующими причинами. При температуре спекания ниже 1400 °С получают керамику с высокой пористостью, увеличивающей коэффициент экстинкции, при температуре выше 1500 °С резко возрастает размер зерна, что ухудшает термомеханические характеристики. При выдержке на максимальной температуре более 1 часа происходит неконтролируемое загрязнение керамики углеродом, в результате чего возрастает коэффициент экстинкции. В таблице приведены зависимости коэффициента экстинкции и среднего размера кристаллитов керамики Lu2O3 от температуры и времени выдержки искрового плазменного спекания.

Таблица 1

№ п/п Температура искрового плазменного спекания, °С Время выдержки при искровом плазменном спекании, мин Коэффициент экстинкции, см-1 Средний размер зерна, мкм
1 1350 40 >>1 0.2
2 1450 40 0.3 0.5
3 1450 80 0.97 0.7
4 1450 120 1.63 1.4
5 1550 40 >>1 8.5

Таким образом, предлагаемый способ отличается от прототипа режимом приложения нагрузки, в котором максимально допустимая для используемой пресс-формы нагрузка прикладывается перед нагревом. За счёт этого удаётся резко повысить оптическое совершенство керамики на основе оксида лютеция и сохранить её субмикрозернистую структуру.

Способ получения оптически прозрачной керамики на основе оксида лютеция, заключающийся в спекании прокаленного пресс-порошка в искровой плазме, отличающийся тем, что максимально допустимая для используемой пресс-формы нагрузка прикладывается перед нагревом.
Источник поступления информации: Роспатент

Showing 21-27 of 27 items.
09.06.2018
№218.016.5bf6

Батарея трубчатых твердооксидных элементов с тонкослойным электролитом электрохимического устройства и узел соединения трубчатых твердооксидных элементов в батарею (варианты)

Изобретение относится к высокотемпературным электрохимическим устройствам на основе твердооксидных элементов (ТОЭ) - элементов с твердым электролитом, точнее к конструкции батареи трубчатых ТОЭ и узлов соединения (УС) ТОЭ в батарею. Техническим результатом является создание батареи, в которой...
Тип: Изобретение
Номер охранного документа: 0002655671
Дата охранного документа: 29.05.2018
19.07.2018
№218.016.7251

Плоский спиральный индуктор сильного магнитного поля (варианты)

Изобретение относится к электротехнике и может быть использовано в индукторах устройств для магнитно-импульсной обработки материалов (МИОМ), такой как прессование порошков, штамповка листовых заготовок и т.д., использующих ток высокой частоты и большой амплитуды для генерации сильного...
Тип: Изобретение
Номер охранного документа: 0002661496
Дата охранного документа: 17.07.2018
26.07.2018
№218.016.7576

Высокоактивная многослойная тонкопленочная керамическая структура активной части элементов твердооксидных устройств

Высокоактивная многослойная тонкопленочная керамическая структура активной части элементов твердооксидных устройств для высокоэффективной генерации тока, генерации водорода электролизом воды, генерации кислорода и азота твердооксидными кислородными насосами, конверсии топливных газов с...
Тип: Изобретение
Номер охранного документа: 0002662227
Дата охранного документа: 25.07.2018
12.04.2019
№219.017.0be5

Способ допирования mgo-nalo керамик ионами железа

Изобретение относится к области квантовой электроники и может использоваться для синтеза активной среды при создании мощных лазеров, генерирующих в среднем ИК-диапазоне длин волн. Техническим результатом изобретения является повышение однородности распределения, концентрации и толщины активного...
Тип: Изобретение
Номер охранного документа: 0002684540
Дата охранного документа: 09.04.2019
13.06.2019
№219.017.8132

Способ изготовления высокоплотных объемных керамических элементов с использованием электрофоретического осаждения наночастиц (варианты)

Изобретение относится к области получения керамических материалов и может быть использовано для изготовления высокоплотной, в том числе оптической, керамики. В способе изготовления высокоплотных объемных керамических элементов с использованием электрофоретического осаждения (ЭФО) наночастиц...
Тип: Изобретение
Номер охранного документа: 0002691181
Дата охранного документа: 11.06.2019
28.06.2019
№219.017.9975

Микро-планарный твердооксидный элемент (мп тоэ), батарея на основе мп тоэ (варианты)

Изобретение относится к области электротехники, а именно к конструкциям микропланарных твердооксидных топливных элементов (МП ТОЭ) и батарей на их основе. МПТОЭ имеет мембрану из тонкослойного твердого электролита с анодом и катодом на противоположных поверхностях (активная часть) и...
Тип: Изобретение
Номер охранного документа: 0002692688
Дата охранного документа: 26.06.2019
14.12.2019
№219.017.edb6

Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда

Изобретение относится к фармацевтике и может быть использовано для производства системы-носителя для направленной доставки лекарств при диагностике или терапии. Предложена система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда на основе нанопорошка,...
Тип: Изобретение
Номер охранного документа: 0002708894
Дата охранного документа: 12.12.2019
Showing 1-8 of 8 items.
10.09.2013
№216.012.68b2

Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча

Изобретение относится к оптике и может быть использовано для измерения показателя преломления твердых веществ. Устройство содержит источник излучения, образец в виде плоскопараллельной пластины, устройство регистрации величины смещения светового луча, а также дополнительный оптический элемент с...
Тип: Изобретение
Номер охранного документа: 0002492449
Дата охранного документа: 10.09.2013
10.09.2014
№216.012.f23e

Способ профилактики длительной лимфореи после подключично-подмышечно-подлопаточной лимфаденэктомии

Изобретение относится к медицине, а именно к хирургии. Пересекают малую грудную мышцу у места прикрепления к 3-5 ребрам. Отсепаровывают, осушают, по периферии наносят латексный тканевый клей слоем толщиной 0,1 мм. Мышечный лоскут укладывают на сосуды подключично-подмышечной области. Удерживают...
Тип: Изобретение
Номер охранного документа: 0002527836
Дата охранного документа: 10.09.2014
20.04.2016
№216.015.34b6

Способ генерации пучков быстрых электронов в газонаполненном промежутке и устройство для его реализации (варианты)

Изобретение относится к области сильноточной электроники. Технический результат - повышение плотности и величины тока пучка быстрых электронов. Способ генерации сильноточных плотных пучков быстрых электронов в газонаполненном диоде включает генерацию убегающих электронов в области с...
Тип: Изобретение
Номер охранного документа: 0002581618
Дата охранного документа: 20.04.2016
10.06.2016
№216.015.486d

Способ определения моноклинной метастабильной фазы оксида иттрия по сдвигу полос оптического поглощения ионов nd или других редкоземельных элементов в нанокристаллитах

Изобретение относится к оптике и может быть использовано при определении фазового состава нанопорошков из оксида иттрия. В способе определения моноклинной метастабильной фазы оксида иттрия по сдвигу полос оптического поглощения ионов Nd или других редкоземельных элементов в нанокристаллитах для...
Тип: Изобретение
Номер охранного документа: 0002587107
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.6e74

Способ управления активностью катализатора процесса дегидрирования высших н-парафинов

Изобретение относится к органической химии, а именно к процессам дегидрирования с образованием неароматических соединений, содержащих двойные углерод-углеродные связи, каталитическим способом, и может быть использовано при производстве сырья, используемого в технологии производства линейных...
Тип: Изобретение
Номер охранного документа: 0002596870
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.bab2

Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров

Изобретение относится к рефрактометрам. Оптическое устройство для измерения показателя преломления прозрачных твердых веществ образцов с толщиной 0,2-1 мм. и размером 5-12 мм, содержит: блок со сменными лазерными диодами, излучающими в диапазоне длин волн 400-1100 нм, устройство для...
Тип: Изобретение
Номер охранного документа: 0002615662
Дата охранного документа: 06.04.2017
15.03.2019
№219.016.e08a

Способ генерации сильноточных пучков быстрых электронов в газонаполненном ускорительном промежутке

Изобретение относится к сильноточной электронике. Технический результат заключается в повышении надежности и увеличении срока службы. Согласно изобретению способ генерации сильноточных пучков быстрых электронов в газонаполненном ускорительном промежутке включает в себя ускорение эмитируемых с...
Тип: Изобретение
Номер охранного документа: 0002317660
Дата охранного документа: 20.02.2008
12.04.2019
№219.017.0be5

Способ допирования mgo-nalo керамик ионами железа

Изобретение относится к области квантовой электроники и может использоваться для синтеза активной среды при создании мощных лазеров, генерирующих в среднем ИК-диапазоне длин волн. Техническим результатом изобретения является повышение однородности распределения, концентрации и толщины активного...
Тип: Изобретение
Номер охранного документа: 0002684540
Дата охранного документа: 09.04.2019
+ добавить свой РИД