×
21.10.2018
218.016.94ab

Результат интеллектуальной деятельности: Устройство для создания компактного кластера монодисперсных пузырьков

Вид РИД

Изобретение

Аннотация: Изобретение относится к аэрационным устройствам, предназначенным для введения газа в жидкую среду, в частности к устройствам для получения компактного кластера пузырьков одинакового размера. Устройство включает размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической емкости с газопроницаемой верхней крышкой, соединенный патрубком с источником сжатого газа. В верхней крышке коллектора в ее центре и по равноотстоящим концентрическим окружностям выполнены перфорации, в которых установлены трубки одинакового диаметра, высота которых одинакова для трубок, расположенных по каждой из окружностей, и линейно уменьшается с увеличением радиуса окружности. В качестве источника газа используется баллон со сжатым газом, соединенный через редуктор низкого давления, а также через редуктор высокого давления и электропневмоклапан с патрубком коллектора. Высота трубок, величина низкого и высокого давления, длительность импульса открытия электропневмоклапана определяются по заданным алгебраическим соотношениям. Изобретение обеспечивает получение компактного пузырькового кластера монодисперсных пузырьков заданного диаметра. 4 табл., 5 ил.

Изобретение относится к аэрационным устройствам, предназначенным для введения газа в жидкую среду, в частности к устройствам для получения компактного кластера пузырьков одинакового размера.

Поведение жидкости, содержащей пузырьки, существенно отличается от поведения гомогенных жидкостей при различных физических и физико-химических воздействиях. Эти отличия активно используются в промышленности - кипячение, теплообмен в двухфазных средах, кавитация, вспенивание, флотация. В ряде задач встает вопрос о генерировании пузырькового кластера заданных размеров, в частности при исследовании зажигания электрического разряда в жидкостях с помощью специально создаваемых кавитационных пузырьков [1], при исследовании поверхностно-активных веществ и акустических волн на динамику пузырьковых кластеров [2-4].

Известно устройство для аэрации и насыщения жидкости газом [5], содержащее коллектор, на котором установлены воздухораспределительные патрубки для ввода воздуха в жидкость. Патрубки равномерно расположены по окружности коллектора, снабженного подводящим патрубком. В патрубках выполнены горизонтальные прорези, которые размещены симметрично друг против друга и перекрыты полимерной или металлической тканой сеткой. Сетка закреплена с наружной стороны на патрубке. Торцы каждого патрубка закрыты заглушками. Сжатый воздух подается по подводящему патрубку в коллектор и распределяется по патрубкам. Из патрубков воздух проходит через прорези, перекрытые тканой сеткой, поступает в аэрируемую жидкость в виде воздушных пузырьков, соразмерных с шириной прорези.

Известно устройство для введения газа в жидкую среду [6]. Основная особенность данного устройства заключается в том, что оно содержит плавучий элемент с возможностью удержания указанного аэрационного устройства на плаву в жидкости. Аэрационный элемент выполнен в виде диффузора с возможностью создания из вводимого в него газа множества пузырьков диаметром (1÷7) мм.

Известно устройство для введения газа в жидкую среду [7]. Воздух из компрессора через линию подачи заполняет нижнюю полость между диском и основанием аэрационного устройства. Группа пузырьков создается в результате прохождения газа через пористый керамический диск и диффузор. Аэратор имеет сложную систему диафрагм и специальную защиту для уменьшения и полного исключения загрязнения пористой мембраны, а также от попадания жидкости в газодинамическую систему.

Указанные устройства предназначены для создания непрерывного потока пузырьков в жидкости.

Известен способ создания сферического кластера пузырьков в жидкости [8], основанный на введении через боковую стенку сосуда с помощью иглы одиночного пузырька газа диаметром (1÷2) мм и последующего его дробления на полидисперсные микропузырьки акустическим полем с частотой 625 Гц.

Известен способ создания кластера пузырьков в колбе с водным раствором серной кислоты [9]. Способ основан в двухчастотном акустическом воздействии на водный раствор серной кислоты с растворенным в нем газообразном аргоном. На геометрический центр колбы акустически воздействуют акустическим полем с частотами ƒ0=30.35 кГц и 11ƒ0, в результате чего образуется эллипсоидальный пузырьковый кластер из микропузырьков разных размеров.

Недостатками данных способов являются невозможность получения кластера из монодисперсных пузырьков миллиметровых размеров, а также сложность реализующих эти способы установок.

Наиболее близким по технической сущности к заявляемому изобретению является аэратор для генерации пузырьков [10]. Сжатый воздух через подводящий патрубок поступает в коллектор (аэрирующий элемент) цилиндрической формы, помещенный в окружающую жидкость. Верхняя крышка коллектора выполнена из пористого газопроницаемого пластика с системой полусферических углублений на ее внешней поверхности. Сжатый воздух через проницаемую крышку поступает в углубления в виде микропузырьков, которые расширяясь, образуют крупные пузырьки и поступают в жидкость. Размер образующихся пузырьков определяется размером углублений в крышке коллектора.

Данное устройство не позволяет получить компактный пузырьковый кластер контролируемой формы.

Техническим результатом настоящего изобретения является обеспечение получения компактного пузырькового кластера монодисперсных пузырьков заданного диаметра.

Технический результат изобретения достигается тем, что разработано устройство для создания компактного кластера монодисперсных пузырьков, включающее размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической емкости с газопроницаемой верхней крышкой, соединенный патрубком с источником сжатого газа. В верхней крышке коллектора в ее центре и по равноотстоящим концентрическим окружностям выполнены перфорации, в которых установлены трубки одинакового диаметра, высота которых одинакова для трубок, расположенных по каждой из окружностей, и линейно уменьшается с увеличением радиуса окружности. В качестве источника газа используется баллон со сжатым газом, соединенный через редуктор низкого давления, а также через редуктор высокого давления и электропневмоклапан с патрубком коллектора. Высота трубок, величина низкого и высокого давления, длительность импульса открытия электропневмоклапана определяются соотношениями

,

pmin=pатм+0.8ρg(H-h0)

,

,

где hi - высота трубки, расположенной на радиусе ri (i=1, 2, …, к);

h0 - высота центральной трубки;

R - радиус верхней крышки коллектора;

pmin - величина низкого давления газа;

pатм - атмосферное давление;

ρ - плотность жидкости;

g - ускорение свободного падения;

Н - высота столба жидкости в резервуаре над верхней крышкой коллектора;

pmax _ величина высокого давления газа;

hк - высота трубки, расположенной на периферийной окружности радиусом rк (rк<R);

τ - длительность импульса открытия электропневмоклапана;

D - требуемый диаметр образующегося пузырька;

ϕ - коэффициент расхода;

d - внутренний диаметр трубки;

ρg - плотность газа.

Достижение положительного эффекта изобретения обеспечивается следующими факторами.

1. Выполнение перфораций в верхней крышке коллектора в ее центре и по равноотстоящим концентрическим окружностям позволяет обеспечить получение осесимметричного пузырькового кластера.

2. Использование трубок одинакового диаметра, установленных в перфорациях, обеспечивает образование монодисперсных пузырьков.

3. Использование трубок одинаковой высоты, расположенных по каждой из концентрических окружностей, обеспечивает одновременное образование «кольца» пузырьков для каждой из окружностей.

4. Линейное уменьшение высоты трубок, расположенных на окружностях, с увеличением радиуса окружности обеспечивает последовательное образование каждого «кольца» пузырьков с одинаковым запаздыванием по времени по мере удаления от центра крышки коллектора. Это позволяет получить компактный кластер с равномерным пространственным распределением пузырьков.

5. Использование в качестве источника газа баллона со сжатым газом позволяет обеспечить строго стационарный уровень давления при подаче газа в коллектор (в отличие, например, от компрессора, создающего неизбежные пульсации давления).

6. Использование редуктора низкого давления обеспечивает предварительный наддув коллектора, что предотвращает затекание жидкости из резервуара в коллектор.

7. Использование редуктора высокого давления и электропневмоклапана обеспечивает импульсную подачу дополнительного газа в коллектор из баллона при импульсном включении электропневмоклапана. Под действием дополнительного импульсного давления происходит однократный ввод газа в жидкость через трубки с образованием компактного кластера пузырьков.

8. Для определения высоты трубок hi, расположенных на окружности радиусом ri, рассмотрим подобные треугольники ABC и AB1C1 (Фиг. 1). Из условия подобия следует:

Из Фиг. 1 следует:

Подставляя (2) в (1), получим:

,

откуда следует соотношение:

Соотношение (3) обеспечивает линейное уменьшение высоты трубок от h0 до hк с увеличением радиуса окружности ri.

9. При давлении в коллекторе, равном величине минимального давления газа pmin, газ не должен поступать в жидкость через трубки. Это обеспечивается при условии:

где ph=ρgh - гидростатическое давление;

h - высота столба жидкости над выходным торцом трубки.

Наименьшее гидростатическое давление реализуется для центральной трубки высотой h0, для которой h=H-h0.

Из (4) следует:

При отработке устройства было экспериментально получено уточнение условия (5):

При выполнении соотношения (6) газ не поступает в жидкость через центральную трубку, а также через трубки, расположенные по концентрическим окружностям, поскольку для них гидростатическое давление больше, чем для центральной трубки.

10. При давлении в коллекторе, равном величине максимального давления газа pmax, газ должен поступать через трубки в жидкость. Это обеспечивается при условии:

Наибольшее гидростатическое давление реализуется для периферийных трубок высотой hк, для которых h=H-hк.

Из (7) следует:

При отработке устройства было экспериментально получено уточнение условия (8):

При выполнении соотношения (9) пузырьки газа поступают в жидкость через трубки, расположенные на периферийной окружности радиусом rк, а также через остальные трубки, поскольку для них гидростатическое давление меньше, чем для периферийных трубок.

11. Для определения длительность импульса τ открытия электропневмоклапана рассмотрим уравнение расхода газа через трубку [11]:

где Q - объемный расход газа;

S=πd2/4 - площадь поперечного сечения трубки;

Δp=0.2ρg(H-hк) - перепад давления на трубке.

Объем газа, поступающего в жидкость за период времени τ, определяется формулой:

При вводе порции газа объемом Vg образуется пузырек, объем которого равен объему введенного газа:

Из (11), (12) следует соотношение для определения τ:

Пример реализации

Сущность изобретения поясняется схемой (Фиг. 2, 3), на которой приведено устройство для создания компактного кластера монодисперсных пузырьков. Устройство включает размещенный в нижней части резервуара 1 с жидкостью 2 коллектор 3 с газопроницаемой верхней крышкой 4, соединенный патрубком 5 с источником сжатого газа. Резервуар 1 выполнен в виде кюветы с плоскопараллельными стенками из оптического стекла размером 0.3×0.3×0.6 м для обеспечения возможности визуализации процесса всплытия кластера пузырьков.

В верхней крышке 4 коллектора 3 выполнены в ее центре и по равноотстоящим концентрическим окружностям перфорации, в которых установлены центральная 6 и периферийные 7 трубки одинакового диаметра, высота которых одинакова для трубок, расположенных на каждой из окружностей, и линейно уменьшается с увеличением радиуса окружности. В качестве трубок используются инъекционные медицинские иглы. Общий вид коллектора 3 с установленной центральной трубкой 6 приведен на фотографии (Фиг. 4).

В качестве источника газа используется баллон 8 со сжатым газом, соединенный через редуктор низкого давления 9, а также через редуктор высокого давления 11 и электропневмоклапан 13 с патрубком 5 коллектора 3.

Работа устройства осуществляется следующим образом. С помощью редуктора 9 устанавливается постоянное давление pmin, контролируемое манометром 10, препятствующее затеканию жидкости 2 через трубки 6, 7 в коллектор 3. С помощью редуктора высокого давления 11 и электропневмоклапана 13 импульсно подается сжатый газ под давлением pmax через патрубок 5 в коллектор 3. Газ из коллектора 3 через трубки 6, 7 в виде пузырьков поступает в окружающую жидкость 2. После отрыва пузырьков от трубок 6, 7 в жидкости 2 образуется компактный кластер пузырьков сферической формы, всплывающий вверх.

В качестве примера реализации рассмотрим результаты получения компактного кластера монодисперсных пузырьков воздуха в глицерине при комнатной температуре. Необходимые для расчетов параметры устройства приведены в таблице 1.

Параметры воздуха приведены в таблице 2.

Основные физические характеристики глицерина при температуре 20°С приведены в таблице 3 [12].

1. Рассчитывается высота трубок, расположенных на окружности радиусом ri по формуле (3):

.

Результаты расчетов приведены в таблице 4.

2. Определяется величина низкого давления газа по формуле (6):

pmin=pатм+0.8ρg(H-h0)=101308+0.8⋅1260⋅9.80665⋅(0.5-0.03)=105954 Па.

3. Определяется величина высокого давления газа по формуле (9):

pmax=pатм+1.2ρg(H-hк)=101308+1.2⋅1260⋅9.80665⋅(0.5-0.0075)=108611 Па.

4. Определяется длительность импульса τ открытия электропневмоклапана по формуле (13):

При расчете τ значение коэффициента расхода ϕ=0.5 определяется в соответствии с [13].

Для рассчитанных параметров устройства (pmin=105954 Па, рmах=108611 Па, τ=0.055 с) была проведена серия экспериментов. Видеокадры всплытия компактного кластера монодисперсных пузырьков, полученные в двух перпендикулярных плоскостях, приведены на Фиг. 5. Полученный экспериментально диаметр пузырьков D≈5⋅10-3 м.

Таким образом, из приведенного примера следует, что при реализации заявленного изобретения достигается положительный результат - получение компактного пузырькового кластера монодисперсных пузырьков заданного диаметра.

ЛИТЕРАТУРА

1. Дрожжин А.П., Коробейников С.М., Тесленко B.C. Инициирование пробоя в жидкости с помощью кавитационных пузырьков // Научный вестник НГТУ. - 2003. - №2. - С. 1-11.

2. Левич В.Г. Физико-химическая гидродинамика. - М.: Физматгиз, 1959. - 699 с.

3. Гуськов О.Б. О движении кластера сферических частиц в идеальной жидкость // Прикладная математика и механика. - 2014. - Т. 78, №2. - С. 186-193.

4. Архипов В.А., Васенин И.М., Усанина А.С.Динамика всплытия пузырька в присутствии поверхносто-активных веществ // Известие РАН. Механика жидкости и газа. - 2016. - №2. - С. 142-151.

5. Патент РФ №2153925, МПК B01F 3/04, C02F 3/20. Аэратор / М.М. Борисенко, А.В. Серов, В.А. Смыслов, А.Г. Чуринов - Опубл. 10.08.2000.

6. Патент РФ №2491116, МПК B01F 3/04, B01F 13/00, C02F 3/20. Аэрационное устройство для введения пузырьков газа в жидкую среду / МАГЕН Ханок (IL) - Опубл. 27.08.2013.

7. Patent WO №2016003926, IPC B01F 3/04262, C02F 1/74, C02F 3/20, B01F 2003/04177, B01F 2003/04326, C02F 2103/42, Y02W 10/15. Aeration device for aquatic environments / Sheaffer II John R. - Publication date 07. 01.2016.

8. Naohiro Sugita, Keita Ando, Toshihiko Sugiura. Experiment and modeling of translational dynamics of an oscillating bubble cluster in a stationary sound field // Ultrasonics. 2017, Vol. 77. - P. 160-167.

9. J.M., Dellavale D., Bonetto F.J. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL) // Ultrasonics Sonochemistry. 2015, Vol. 22. - P. 59-69.

10. Patent US №3970731, IPC B01F 3/04, C02F 3/20. Bubble-generating aerator / Erkki Olavi Oksman. - Publication date 20.07.1976.

11. Цейтлин В.Г. Расходоизмерительная техника. - М.: Изд-во стандартов, 1977.- 240 с.

12. Неволин Ф.В. Химия и технология производства глицерина. - М.: Химия, 1954. - 401 с.

13. Кремлевский П.П. Расходомеры и счетчики количества. Справочник. - 4-е изд., перераб. и доп.. - Л.: Машиностроение, 1989. - 701 с.


Устройство для создания компактного кластера монодисперсных пузырьков
Устройство для создания компактного кластера монодисперсных пузырьков
Устройство для создания компактного кластера монодисперсных пузырьков
Устройство для создания компактного кластера монодисперсных пузырьков
Устройство для создания компактного кластера монодисперсных пузырьков
Устройство для создания компактного кластера монодисперсных пузырьков
Устройство для создания компактного кластера монодисперсных пузырьков
Устройство для создания компактного кластера монодисперсных пузырьков
Устройство для создания компактного кластера монодисперсных пузырьков
Источник поступления информации: Роспатент

Showing 21-29 of 29 items.
02.10.2019
№219.017.d13f

Способ определения коэффициента сопротивления сферической частицы при вдуве газа с ее поверхности

Использование: для определения коэффициента сопротивления сферической частицы при вдуве газа с ее поверхности. Сущность изобретения заключается в том, что осуществляют измерение силы сопротивления частицы при воздействии на нее газового потока, при этом полую сферическую частицу с пористой...
Тип: Изобретение
Номер охранного документа: 0002700728
Дата охранного документа: 19.09.2019
24.10.2019
№219.017.d96d

Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения облака твердых частиц в вязкой жидкости. Способ исследования осаждения сферического облака полидисперсных твердых частиц в...
Тип: Изобретение
Номер охранного документа: 0002703935
Дата охранного документа: 22.10.2019
15.11.2019
№219.017.e288

Установка для исследования динамики разрушения сферического макрообъема жидкости при свободном падении в воздухе

Изобретение относится к установке для исследования физических процессов, в частности для исследования динамики разрушения сферического макрообъема жидкости при свободном падении в воздухе. Установка включает тонкостенную эластичную оболочку, наполненную жидкостью, устройство для прокалывания...
Тип: Изобретение
Номер охранного документа: 0002705965
Дата охранного документа: 12.11.2019
12.12.2019
№219.017.ec7b

Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа

Изобретение относится к абсорбционно-десорбционной технике сепарации многокомпонентных газовых смесей, а именно, к устройствам сепарации гелия из природного газа. Устройство состоит из корпуса абсорбера с патрубком подвода исходного природного газа, верхним патрубком вывода насыщенного гелием...
Тип: Изобретение
Номер охранного документа: 0002708606
Дата охранного документа: 09.12.2019
13.12.2019
№219.017.ed48

Способ электронно-лучевой сварки кольцевого соединения тонкостенной обечайки с цилиндрической крышкой, выполненных из высокопрочных алюминиевых сплавов

Изобретение относится к способу электронно-лучевой сварки кольцевого соединения тонкостенных конструкций из высокопрочных алюминиевых сплавов и может быть использовано для изготовления легких конструкций с высокими требованиями по прочности и герметичности. В периферийной части верхней...
Тип: Изобретение
Номер охранного документа: 0002708724
Дата охранного документа: 11.12.2019
20.04.2020
№220.018.1626

Устройство для определения скорости испарения капли

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения капель жидкости при нагреве внешним тепловым потоком. Устройство включает ультразвуковой левитатор, фиксирующий каплю в...
Тип: Изобретение
Номер охранного документа: 0002719264
Дата охранного документа: 17.04.2020
04.05.2020
№220.018.1b84

Способ литья в кокиль для получения плоских отливок из алюминиевых и магниевых сплавов

Изобретение относится к области литейного производства и может быть использовано для получения образцов плоских отливок из алюминиевых и магниевых сплавов. Способ включает нанесение защитного покрытия на внутренние стенки кокиля, сборку кокиля, заливку металла в кокиль, охлаждение металла,...
Тип: Изобретение
Номер охранного документа: 0002720331
Дата охранного документа: 28.04.2020
24.06.2020
№220.018.2a2c

Способ определения скорости испарения группы капель

Изобретение относится к области разработки способов для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения группы капель жидкости при нагреве внешним тепловым потоком. Способ определения скорости испарения группы капель включает измерение...
Тип: Изобретение
Номер охранного документа: 0002724140
Дата охранного документа: 22.06.2020
24.07.2020
№220.018.3641

Линейный шаговый пьезоэлектрический двигатель

Изобретение относится к электротехнике и может быть использовано как исполнительный элемент для прецизионных перемещений в оптико-механических приборах, в технологическом оборудовании для микроэлектроники, в системах автоматического наведения, в механических сканирующих устройствах и...
Тип: Изобретение
Номер охранного документа: 0002727610
Дата охранного документа: 22.07.2020
Showing 31-40 of 79 items.
25.08.2017
№217.015.ce5a

Ракетный двигатель активно-реактивного снаряда

Изобретение относится к артиллерийской технике, в частности к ракетным двигателям снарядов, запускаемых из ствола орудия или миномета. Ракетный двигатель активно-реактивного снаряда содержит камеру сгорания с зарядом твердого топлива, сопло, инициатор и сопловую заглушку. В критическом сечении...
Тип: Изобретение
Номер охранного документа: 0002620613
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d02c

Способ получения упрочненного нанокомпозиционного материала на основе магния

Изобретение относится к получению упрочненного нанокомпозиционного материала, который может быть использован в авиастроении и в автомобильной промышленности. Готовят лигатуру в виде компактированных стержней из равномерно перемешанной смеси порошка магния и нанопорошка нитрида алюминия с...
Тип: Изобретение
Номер охранного документа: 0002621198
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.e0ff

Устройство для смешивания жидкостей и порошков с жидкостью

Изобретение относится к металлургии, строительной, лакокрасочной и другим отраслям промышленности. Устройство для смешивания жидкостей и порошков с жидкостью в резервуаре содержит стержень с закрепленным на одном конце рабочим органом с возможностью его вращения и продольного колебательного...
Тип: Изобретение
Номер охранного документа: 0002625471
Дата охранного документа: 14.07.2017
29.12.2017
№217.015.fd04

Стенд для исследования деформации капель аэродинамическими силами

Изобретение относится к исследованию деформации капель аэродинамическими силами и может быть использовано в лабораторных установках для исследования физических и химических процессов. Стенд для исследования деформации капель аэродинамическими силами включает вертикально расположенную капельницу...
Тип: Изобретение
Номер охранного документа: 0002638376
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.099d

Способ получения дисперсно-упрочненного нанокомпозитного материала на основе алюминия

Изобретение относится к получению дисперсно-упрочненного нанокомпозитного материала на основе алюминия. Способ включает введение лигатуры в расплав матрицы на основе алюминия при одновременном воздействии на расплав ультразвукового поля. Лигатуру готовят в виде компактированных стержней из...
Тип: Изобретение
Номер охранного документа: 0002631996
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.09ae

Способ получения упрочненных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к получению легких сплавов на основе алюминия с повышенной прочностью. Способ заключается во введении в расплав алюминия лигатуры, содержащей модифицирующую добавку, при одновременном воздействии на расплав ультразвукового поля, причем...
Тип: Изобретение
Номер охранного документа: 0002631995
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.102a

Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки

Изобретение относится к контрольно-измерительной технике, в частности к оптико-электронным устройствам измерения параметров дисперсных сред. Заявленное устройство содержит лазерный источник зондирующего излучения, фотоэлектрический приемник излучения и оптический сканер в виде вращающегося...
Тип: Изобретение
Номер охранного документа: 0002633648
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1040

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе включает подачу порошка металлического горючего в камеру сгорания, его воспламенение и горение в потоке воздуха из воздухозаборника. Порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе,...
Тип: Изобретение
Номер охранного документа: 0002633730
Дата охранного документа: 17.10.2017
10.05.2018
№218.016.3b60

Способ повышения дальности полета активно-реактивного снаряда

Изобретение относится к области ракетной техники, в частности к ракетным двигателям активно-реактивных снарядов, запускаемых из ствола артиллерийского орудия, и заключается в способе повышения дальности полета активно-реактивного снаряда. На траектории полета снаряда зажигают заряд твердого...
Тип: Изобретение
Номер охранного документа: 0002647256
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.49d4

Устройство для распыления порошков

Изобретение относится к технике распыления порошков в воздушной и газовой. Устройство для распыления порошков включает цилиндрический корпус, содержащий порошок, газогенератор с зарядом твердого топлива, систему аэрации порошка и сопло для истечения газопорошковой смеси. Газогенератор,...
Тип: Изобретение
Номер охранного документа: 0002651433
Дата охранного документа: 19.04.2018
+ добавить свой РИД