×
17.10.2018
218.016.9305

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ НЕФТИ ОТ ГЕТЕРОАТОМНЫХ КОМПОНЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области очистки нефтей и нефтепродуктов, от серо-, азот- и кислородсодержащих соединений путем контактирования с неорганическим сорбентом и обработки ультразвуком, и может быть использовано в подготовке нефти к транспортировке и/или в цикле подготовки сырой нефти к переработке или очистке нефтепродуктов перед использованием. Способ очистки нефти от гетероатомных компонентов включает использование сорбента в виде смеси порошков оксидов: NiO:CuO:CoO:CaO в соотношении 1,0:2,0:1,0:(0,5-0,7) массовых частей, которую перемешивают с нефтью в соотношении 1:5 при атмосферном давлении. Полученную смесь сорбента с нефтью подвергают воздействию ультразвука с частотой 22 кГц и интенсивностью 0,15 Вт/м при времени обработки не более 10 мин, фильтруют. Остатки нефти с сорбента смывают смесью растворителей гексан-бензол-этанол, с последующей его отгонкой при атмосферном давлении. Обработанную нефть направляют на переработку. Использованный сорбент промывают смесью растворителей бензол-диметилкетон для удаления сорбированных гетероатомных соединений. Технический результат: уменьшение содержания в нефти гетероатомных компонентов на 5,28-5,34%, снижение кинематической вязкости нефти до 50 мм/с. 1 з.п. ф-лы, 1 табл., 1 пр., 2 ил.

Изобретение относится к области очистки нефтей и нефтепродуктов, от серо-, азот- и кислородсодержащих соединений путем контактирования с неорганическим сорбентом и обработки ультразвуком, и может быть использовано в подготовке нефти к транспортировке и/или в цикле подготовки сырой нефти к переработке или очистке нефтепродуктов перед использованием.

Известен способ очистки нефтепродуктов (керосиновой и дизельной фракций) от серосодержащих соединений [RU 2171826 С1, МПК (2000.01) C10G 25/00, C10G 25/05, опубл. 10.08.2001] посредством адсорбции в центробежном поле (во вращающемся барабане) путем совместного вращения адсорбента и исходного нефтепродукта в роторе при массовом соотношении адсорбента и нефтепродукта, которое поддерживают в пределах (1,5-2,0):1. Число оборотов вращения ротора барабана составляет 2000-2500 об/мин. Время вращения ротора 30-40 минут. В качестве адсорбента используют: силикагель марки АСК или оксид алюминия марки К-6.

Этим способом возможна переработка только нефтепродуктов, а не самой нефти.

Известен способ очистки сероводород- и меркаптансодержащей нефти [RU 2510640 С1, МПК C10G 27/04 (2006.01), опубл. 10.04.2014], включающий физическую очистку нефти от сероводорода и меркаптанов за счет концентрирования удаляемых компонентов в газовой фазе с выведением жидкого остатка в качестве товарной нефти и химическую очистку удаленных компонентов. Причем, физическую очистку осуществляют путем отдувки нефти циркулирующим газом в колонном аппарате при температуре отдувки и давлении 0,05÷0,099 МПа абс. с получением товарной нефти и газа отдувки. Химическую очистку осуществляют путем прямого каталитического окисления сероводорода и меркаптанов в газе отдувки кислородом воздуха с последующей подачей по меньшей мере части продуктов окисления на отдувку в качестве циркулирущего газа и промывкой балансовой части продуктов окисления товарной нефтью с получением очищенного газа.

Способ является многостадийным и его применение для очистки нефти ограничивается составом удаляемых соединений, а именно, только соединениями серы.

Известен способ очистки нефти и нефтепродуктов от соединений серы [RU 2394874 С1, МПК (2006.01) C10G 29/04, C10G 32/02, опубл. 20.07.2010], путем контактирования с осажденной медью на железной загрузке, отделения загрузки и последующего растворения выделенных соединений серы в растворителе и регенерации активности медного компонента загрузки и растворителя. Очистку производят в противотоке потока нефти или нефтепродуктов, подаваемого «снизу-вверх», и потока железной загрузки с осажденной медью, подаваемого «сверху-вниз». Образующуюся динамическую гетерогенную систему «жидкость-твердое» обрабатывают ультразвуком с частотой 10-25 кГц и мощностью 1-3 кВт. Массовое количество меди в загрузке к массовому количеству общей серы в нефти или нефтепродуктах варьируют в пределах: Сuв загрузке : Sобщая : (1,5-2,0):1,0. Этот способ выбран в качестве прототипа.

Данный способ может быть использован для очистки нефти с высоким содержанием серы (более 5% масс.) только от соединений серы.

Техническим результатом предлагаемого изобретения является создание способа очистки нефти не только от соединений серы, но и от других гетероатомных компонентов.

Предложенный способ очистки нефти от гетероатомных компонентов, также как в прототипе, включает обработку ультразвуком с частотой 22 кГц.

Согласно изобретению используют сорбент в виде смеси порошков оксидов: NiO:CuO:CoO:CaO в соотношении 1,0:2,0:1,0:(0,5-0,7) массовых частей, которую перемешивают с нефтью в соотношении 1:5 при атмосферном давлении. Полученную смесь сорбента с нефтью подвергают воздействию ультразвука интенсивностью 0,15 Вт/м2 при времени обработки не более 10 мин, затем фильтруют. Остатки нефти с сорбента смывают смесью растворителей гексан-бензол-этанол, с последующей его отгонкой при атмосферном давлении. Обработанную нефть направляют на переработку.

Использованный сорбент промывают смесью растворителей бензол-диметилкетон для удаления сорбированных гетероатомных компонентов.

В способе предусматривается физико-химическая очистка нефти для удаления гетероатомных соединений за счет использования неорганического сорбента сложного состава, включающего оксиды металлов и продукты их высокотемпературного взаимодействия.

Использование сорбента предложенного состава позволяет уменьшить содержание в нефти гетероатомных компонентов на 5,28÷5,34%. Кроме того, за счет уменьшения содержания гетероатомных компонентов происходит снижение кинематической вязкости нефти с 85 мм2/с до 50 мм2/с.

В таблице 1 представлены результаты очистки нефти от гетероатомных компонентов.

На фиг. 1 представлена термограмма используемого в способе сорбента до обработки нефтью, где кривая 1 отражает динамику изменения веса при нагревании, кривая 2 - разность температур между образцом и эталоном прибора (α-Al2O3), кривая 3 - тепловой поток при нагревании.

На фиг. 2 приведена термограмма используемого в способе сорбента после обработки нефтью, где кривая 1 отражает изменение веса образца при нагревании, кривая 2 - разность температур между образцом и эталоном прибора (α-Al2O3), кривая 3 - тепловой поток при нагревании.

Пример

Использовали готовые микронные порошки оксидов металлов NiO, CuO, СоО, СаО, полученные термическим разложением оксалатов в предельных углеводородах [RU 2468892 С1, опубл. 10.12.2012], которые смешали в пропорции 1,0:2,0:1,0:(0,5-0,7) массовых частей (таблица 1).

Образцы сорбента смешивали со сборной товарной нефтью в соотношении 1:5 (по массе) механическим путем и подвергали воздействию ультразвука с частотой 22 кГц и интенсивностью 0,15 Вт/м2 в ультразвуковой ванне ПСБ-4035-05 в течение времени не более 10 минут. Затем смесь отфильтровали с помощью бумажного фильтра. Обработанный сорбент после фильтрования промыли смесью растворителей гексан-бензол-этанол в соотношении 1:2:4 (по объему), отделив нефть. Затем для удаления гетероатомных соединений, сорбированных на сорбенте, промыли смесью растворителей бензол-диметилкетон в соотношении 1:2 (по объему).

После обработки сорбентом и фильтрования определяли содержание в нефти гетероатомных компонентов и ее вязкость.

Элементный состав нефти определяли с использованием CHNS-анализатора «Vario EL Cube». Идентификацию гетероатомных соединений проводили с использованием ИК- и ЯМР 1Н - спектроскопии и хроматомасс-спектрометрии. ИК-спектры регистрировали с помощью FT-IR спектрометра «Nicolet 5700» в диапазоне 4000-400 см-1. Спектры ЯМР 1Н получали с использованием ЯМР-Фурье спектрометра «AVANCE AV 300» фирмы Bruker при 300 МГц в растворах CDCl3. Хроматомасс-спектрометрический анализ осуществляли с использованием магнитного хроматомасс-спектрометра DFS фирмы «Thermo Scientific» (Германия). Кинематическую вязкость нефти определяли вискозиметром Штабингера при 20°С.

Для количественной оценки работы сорбента часть сорбента до смешения с нефтью и после фильтрования нефти с адсорбированными веществами подвергали дифференциальному термическому анализу, который проводили с использованием термоанализатора SDT Q600.

Гетероатомные соединения в исследуемой нефти представлены сложной смесью ароматических гетероциклических компонентов. В составе сернистых соединений идентифицированы бензо-, дибензо- и нафтобензотиофены и их алкилпроизводные, среди которых преобладают дибензотиофеновые структуры. Среди азотистых соединений установлено присутствие карбазола и его алкилгомологов, алкилпроизводных пиридина, хинолина и тиофенохинолина.

Исходное содержание в нефти серосодержащих соединений составляло 1,42 мас. %, азотистых - 0,34 мас. %, кислородных - 2,30 мас. %. После обработки сорбентом содержание в нефти сернистых соединений составило 0,90 мас. % (уменьшилось на 20,00%), азотистых - 1,28 мас. % (уменьшилось на 15,00%), кислородных - 2,28 мас. % (практически не изменилось). После обработки сорбентом вязкость нефти снизилась в 1,7 раза (указана кинематическая вязкость с 85 мм2/с до 50 мм2/с).

Результаты дифференциального термического анализа, полученные для образцов сорбента до и после смешивания с нефтью, представлены на фиг. 1 и фиг. 2 соответственно. Из фиг. 2 видно, что после 600°С вес уменьшился на 5,3%, т.е. сорбция на сорбенте прошла более эффективно (в 1,7 раза) в сравнении с образцом сорбента до сорбции (фиг. 1).

Технический результат изобретения заключается также в снижении вязкости нефти в 1,7 раза, что приводит к повышению производительности при транспортировке нефти по трубопроводу. Кроме того, при реализации изобретения нарабатывается товарная продукция - органические гетероатомные соединения. В способе концентрат гетероатомных соединений, удаленных с поверхности сорбента, направляют также в качестве коммерческого продукта для использования в технологиях тонкого органического синтеза.


СПОСОБ ОЧИСТКИ НЕФТИ ОТ ГЕТЕРОАТОМНЫХ КОМПОНЕНТОВ
СПОСОБ ОЧИСТКИ НЕФТИ ОТ ГЕТЕРОАТОМНЫХ КОМПОНЕНТОВ
Источник поступления информации: Роспатент

Showing 121-130 of 255 items.
19.01.2018
№218.016.0487

Интегральный микромеханический гироскоп

Изобретение относится к гироскопическим приборам, а именно к датчикам угловой скорости, основанным на Кориолисовых силах, и может быть использовано для измерения угловой скорости. Интегральный микромеханический гироскоп, выполненный из полупроводникового материала, содержит рамку, закрепленную...
Тип: Изобретение
Номер охранного документа: 0002630542
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0559

Устройство пожаротушения

Изобретение относится к противопожарной технике, а именно к тушению пожаров при возгораниях на больших площадях, и может быть использовано для локализации и ликвидации крупных лесных пожаров, а также при подавлении возгораний промышленных и общественных объектов. Устройство пожаротушения...
Тип: Изобретение
Номер охранного документа: 0002630653
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0817

Стенд для изучения характеристик горения и сжигания витающей капли органоводоугольного топлива

Изобретение относится к экспериментальному оборудованию, а именно к исследованию процессов тепломассопереноса, фазовых превращений и химического реагирования при зажигании одиночных капель различных по компонентному составу органоводоугольных топлив в газовой среде окислителя. Стенд для...
Тип: Изобретение
Номер охранного документа: 0002631614
Дата охранного документа: 25.09.2017
19.01.2018
№218.016.0866

Электроимпульсное буровое долото

Изобретение относится к электроимпульсному буровому долоту. Техническим результатом является повышение эффективности бурения. Электроимпульсное буровое долото содержит коаксиально расположенные и разделенные высоковольтным сплошным изолятором заземленную и высоковольтную коронки, причем...
Тип: Изобретение
Номер охранного документа: 0002631749
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.0885

Способ защиты параллельных линий

Использование: в области электротехники. Технический результат: повышение надежности защиты параллельных линий. Способ защиты параллельных линий заключается в измерении мгновенных значений токов i и i в одноименных фазах первой и второй линий при нарастании токов и сравнении их с заданной...
Тип: Изобретение
Номер охранного документа: 0002631679
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.12d9

Способ изготовления мишени из гидроксиапатита для ионно-плазменного напыления покрытий

Изобретение относится к способу изготовления мишени из гидроксиапатита для ионно-плазменного напыления покрытий и может быть использовано для напыления кальций-фосфатных покрытий на поверхность медицинских имплантатов. Способ включает использование порошка синтетического гидроксиапатита...
Тип: Изобретение
Номер охранного документа: 0002634394
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.1c09

Устройство для управления двухфазным асинхронным двигателем в режиме пульсирующего движения

Изобретение относится к электротехнике, в частности к электроприводам переменного тока периодического движения, и может быть использовано при создании вибрационных электроприводов сканирования, техники измерения, контроля и управления, а также в автоматизированных электроприводах механизмов с...
Тип: Изобретение
Номер охранного документа: 0002640352
Дата охранного документа: 28.12.2017
20.01.2018
№218.016.1c13

Способ защиты с приемной стороны двух параллельных линий с односторонним питанием

Использование – в области электротехники. Технический результат - повышение надежности защиты с приемной стороны двух параллельных линий с односторонним питанием. Согласно способу защиты с приемной стороны двух параллельных линий с односторонним питанием измеряют мгновенные значения тока i и i...
Тип: Изобретение
Номер охранного документа: 0002640353
Дата охранного документа: 28.12.2017
20.01.2018
№218.016.1c95

Способ шароструйного бурения скважин

Изобретение относится к шароструйному бурению скважин и может быть использовано для бурения геологоразведочных, технологических, геотермальных и других скважин в твердых горных породах. Способ шароструйного бурения скважин заключается в спуске на забой породоразрушающих шаров, подаче...
Тип: Изобретение
Номер охранного документа: 0002640445
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1cf2

Буровой раствор

Изобретение относится к составам для бурения скважин. Технический результат – расширение арсенала средств, получение бурового раствора со следующими свойствами: плотность 1,16-1,17 г/см, вязкость 43 сР, условная вязкость 43 с/л. Буровой раствор содержит, мас.%: фторангидрит 16,7-24,4;...
Тип: Изобретение
Номер охранного документа: 0002640449
Дата охранного документа: 09.01.2018
Showing 11-11 of 11 items.
21.04.2023
№223.018.5002

Устройство для исследования процесса горения нанопорошков металлов или их смесей

Изобретение относится к области неразрушающего контроля и диагностики оптическими методами и касается устройства для исследования процесса горения нанопорошков металлов или их смесей. Устройство содержит инициирующий лазер, две цифровые камеры и лазерный усилитель яркости, на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002746308
Дата охранного документа: 12.04.2021
+ добавить свой РИД