×
15.10.2018
218.016.9271

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ДИВИНИЛА

Вид РИД

Изобретение

Аннотация: Изобретение раскрывает способ получения дивинила путем превращения кислородсодержащего органического вещества при повышенной температуре в присутствии катализатора, включающего оксид цинка ZnO, оксид калия KO, оксид магния MgO и γ-оксид алюминия γ-AlOхарактеризующийся тем, что в качестве органического вещества используют диметиловый эфир ДМЭ, или смесь ДМЭ с метанолом, или смеси ДМЭ с метанолом и водой с использованием разбавителя при мольном отношении разбавитель : кислородсодержащее органическое вещество = 0-10:1, применением в качестве разбавителя азота или синтез-газа или водяного пара, превращение проводят при температуре 370-420°C в присутствии предварительно активированного катализатора следующего состава, мас.%: Технический результат - расширение сырьевой базы для производства дивинила, использование диметилового эфира, производимого из альтернативных источников углеродсодержащего сырья, для нефтехимического синтеза. 2 з.п. ф-лы, 38 пр.

Изобретение относится к способам получения мономеров для производства синтетического каучука, в частности, дивинила, из диметилового эфира (ДМЭ) с использованием гетерогенных катализаторов, и может применяться в промышленности синтетического каучука.

Известны различные способы получения дивинила, в том числе:

- в качестве побочного продукта пиролиза прямогонного бензина при производстве этилена и пропилена;

- дегидрированием бутана или бутиленов;

- окислительным дегидрированием бутана или бутиленов;

- альдольной конденсацией ацетальдегида, получаемого из ацетилена;

- из ацетилена через бутиндиол;

- Остромысленского И.И. - дегидратацией и дегидрированием этанола;

- Лебедева С.В. - каталитическим разложением этанола.

Большинство предложенных способов предусматривает получение дивинила из продуктов переработки нефти или из этанола, производимого из пищевой или непищевой биомассы.

Развитие переработки природного газа приводит к существенному росту производства химических продуктов, в частности этилена, пропилена, бутиленов, метанола, диметилового эфира, ароматических углеводородов и т.д. Однако реакции, приводящие к количественному образованию дивинила из природного газа или продуктов его химической конверсии, неизвестны.

Известен способ получения С4 фракции углеводородов из ДМЭ, производимого из природного газа, угля или биомассы через синтез-газ, в котором используют цеолитный катализатор [1], однако в нем отсутствуют следы дивинила и образуются только бутены.

Известен способ получения дивинила из этанола [2], получаемого из растительного сырья или из ископаемого сырья по очень энергоемким технологиям, путем превращения этанола в присутствии оксидного катализатора, содержащего оксид цинка и γ-оксид алюминия, характеризующемуся тем, что катализатор дополнительно содержит оксид калия, диоксид кремния и оксид магния при следующем исходном составе, % мас.: ZnO - 25-35, SiO2 - 3-5, MgO - 3-5, K2O - 1, γ-Al2O3 - остальное. Это изобретение можно считать наиболее близким аналогом (или прототипом).

Задача изобретения состоит в разработке по ранее неизвестной реакции способа превращения ДМЭ, получаемого известными методами из любого углеродсодержащего сырья, в дивинил, что решит проблему дефицита дивинила, используемого для синтеза синтетических каучуков (бутадиен-стирольного, бутадиен-изопренового и полибутадиенового).

Решение поставленной задачи достигается тем, что в способе получения дивинила путем превращения кислородсодержащего органического вещества при повышенной температуре в присутствии катализатора, включающего оксид цинка ZnO, оксид калия K2O, оксид магния MgO и γ-оксид алюминия γ-Al2O3, в качестве кислородсодержащего органического вещества используют диметиловый эфир ДМЭ или смеси ДМЭ с метанолом или смеси ДМЭ с метанолом и водой с использованием разбавителя при мольном отношении разбавитель : кислородсодержащее органическое вещество = 0-10:1, применением в качестве разбавителя азота или синтез-газа или водяного пара, превращение проводят при температуре 370-420°C в присутствии предварительно активированного катализатора следующего состава, % мас.:

ZnO 20-24
MgO 4-6
K2O 0,15-0,30
γ-Al2O3 остальное.

К органическому веществу могут добавлять 0,5-1% масс. пероксида водорода в расчете на ДМЭ.

Предварительно активированный катализатор получают путем чередования обработки кислородом, продувки азотом и обработки водородом.

В предлагаемом изобретении используют катализатор на основе оксидов цинка и калия, нанесенных на γ-оксид алюминия с последующим модифицированием системы оксидом магния. При получении этого катализатора в качестве связующего для образования стабилизирующей шпинели в ходе синтеза наряду с нитратами цинка и калия используют нитрат алюминия. После сушки прекурсора и прокаливания до 350°C и снижения температуры до комнатной, прекурсор подвергают пропитке по влагоемкости водным раствором аммиака, затем вновь прокаливают до 400°C, охлаждают и пропитывают по влагоемкости водным раствором взвешенного количества нитрата магния. Перед испытанием катализатор активируют чередующимися потоками азота, воздуха и водорода при 450°C.

Открыта ранее неизвестная реакция превращения диметилового эфира в дивинил:

2СН3ОСН3→С4Н6+2H2O+Н2

Наряду с образованием дивинила наблюдается выход побочных продуктов (метана, этилена, оксидов углерода, метанола, альдегидов и эфиров).

Для диметилового эфира в присутствии оксидных катализаторов и воды характерна равновесная реакция превращения в метанол:

Более детальный химизм целевого процесса, вероятно, следующий:

Кроме того, на катализаторе возможно протекают реакции:

CH3OH→CO+2Н2,

CH3OH+CO+2Н2→С2Н5ОН+H2O,

CO+H2O→CO22,

CO2+3H2→CH3OH+H2O,

способствующие появлению в продуктах окиси и двуокиси углерода, этанола и влияющие на селективность в направлении образования целевых продуктов.

Следует иметь также в виду, что метанол, накапливаясь на первой стадии реакции, может превращаясь на последующих стадиях частично восполнять ДМЭ в реакционной системе.

В целом совокупность превращений на катализаторе с участием реакционной среды, приводящей к образованию дивинила и включающей наряду с ДМЭ метанол и синтез-газ, можно представить следующим образом, в соответствии с настоящим изобретением:

Схема не исключает возможность протекания реакций гомологизации метанола в этанол и межклассовой изомеризации ДМЭ в этанол.

Изученные образцы катализаторов подвергаются обработке кислородом, водородом, паром, пероксидом водорода для создания дополнительных функциональных групп, обладающих как Бренстедовскими, так и Льюисовскими кислотными и основными центрами. Перед сушкой прекурсоры могут обрабатывать в течение 10 мин 30%-ным водным раствором пероксида водорода с добавкой 2% масс (NH4)2CO3 при комнатной температуре.

Прекурсоры после сушки и ступенчатого прокаливания могут обрабатывать в токе кислорода при 380°C в течение 15 мин, продувать азотом 5 мин, затем обрабатывать в токе водорода 30 мин при 550°C. Расход газов 5 л/ч. Активность в результате такой обработки резко возрастает.

Активность увеличивается с увеличением числа циклов обработки кислородом и водородом.

Испытание каталитической активности проводили в кварцевом реакторе с загрузкой 5 мл катализатора при температурном профиле 370-420°C, объемной скорости по ДМЭ GHSV = 200-600 ч-1. Сырье для синтеза дивинила - ДМЭ, смесь ДМЭ и метанола, смесь ДМЭ, метанола и воды разбавляют азотом или синтез-газом или водяным паром, получая газовую смесь, при мольном отношении разбавитель : сырье в газовой смеси = 0-10:1.

В опытах с пероксидом водорода используют его 30%-ный водный раствор, подаваемый в смеси с метанолом или чистом виде через специальный насос перистальтического типа.

Расчет показателей процесса производят, исходя из того, что теоретический выход дивинила из вещества формулы C2H6O составляет 58,7% масс.

Пример расчета показателей:

При конверсии - 73% и

выходе дивинила на пропущенный ДМЭ 19%,

выход дивинила на разложенный ДМЭ составит

(19/73)*100=26%;

селективность (выход от теории) составит

(26/58,7)*100=44,3%.

Нижеследующие примеры иллюстрируют изобретение, но никоим образом не ограничивают его..

Пример 1. ДМЭ пропускают при температурном профиле 370-390°C через катализатор состава, % масс: ZnO - 20, MgO - 6, K2O - 0.15, γ-Al2O3 - 73.85 (остальное), при объемной скорости по ДМЭ GHSV = 100 ч-1. Выход дивинила на пропущенный ДМЭ составляет 2,15% при селективности 5% и конверсии 43,0%.

Пример 2. ДМЭ пропускают при температурном профиле 370-390°C через катализатор состава, % масс: ZnO - 20, MgO - 6, K2O - 0.15, γ-Al2O3 - 73.85 (остальное), при объемной скорости по ДМЭ GHSV = 150 ч-1. Выход дивинила на пропущенный ДМЭ составляет 2% при селективности 5% и конверсии 40,0%

Пример 3. ДМЭ пропускают при температурном профиле 370-390°C через катализатор состава, % масс: ZnO - 20, MgO - 6, K2O - 0.15, γ-Al2O3 - 73.85 (остальное), при объемной скорости по ДМЭ GHSV = 200 ч-1. Выход дивинила на пропущенный ДМЭ составляет 11,9% при селективности 34% и конверсии 35,0%.

Пример 4. ДМЭ пропускают при температурном профиле 370-390°C через катализатор состава, % масс: ZnO - 20, MgO - 6, K2O - 0.15, γ-Al2O3 - 73.85 (остальное), при объемной скорости по ДМЭ GHSV = 400 ч-1. Выход дивинила на пропущенный ДМЭ составляет 9,9% при селективности 33% и конверсии 30,0%.

Пример 5. ДМЭ пропускают при температурном профиле 370-390°C через катализатор состава, % масс: ZnO - 20, MgO - 6, K2O - 0.15, γ-Al2O3 - 73.85 (остальное), при объемной скорости по ДМЭ GHSV = 600 ч-1. Выход дивинила на пропущенный ДМЭ составляет 7,5% при селективности 30% и конверсии 25,0%.

Пример 6. ДМЭ пропускают в мольном отношении азот : ДМЭ = 10:1 при температуре 380-400°C через катализатор состава, % масс: ZnO - 24, MgO - 4, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 150 ч-1. Выход дивинила на пропущенный ДМЭ составляет 13,6% при селективности 36% и конверсии 37,9%.

Пример 7. ДМЭ пропускают в мольном отношении азот : ДМЭ = 7:1 при температуре 390-410°C через катализатор состава, % масс: ZnO - 23, MgO - 5, K2O - 0.2, γ-Al2O3 - 71.8 (остальное), при объемной скорости по ДМЭ GHSV = 100 ч-1. Пероксид водорода в 30%-ном водном растворе подают из расчета 0,7% масс относительно ДМЭ через испаритель в реактор. Выход дивинила на пропущенный ДМЭ составляет 14,6% при селективности 38% и конверсии 38,6%).

Пример 8. ДМЭ пропускают в мольном отношении азот : ДМЭ = 7:1 при температуре 390-410°C через катализатор состава, % масс: ZnO - 23, MgO - 5, K2O - 0.2, γ-Al2O3 - 71.8 (остальное), при объемной скорости по ДМЭ GHSV = 100 ч-1. Пероксид водорода в 30%-ном водном растворе подают из расчета 1,0% масс относительно ДМЭ через испаритель в реактор. Выход дивинила на пропущенный ДМЭ составляет 15,4% при селективности 37% и конверсии 41,5%).

Пример 9. Метанол при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0,25, γ-Al2O3 - (71.75) остальное, при объемной скорости по метанолу GHSV = 200 ч-1. Выход дивинила на пропущенный ДМЭ составляет 0,3% при селективности по дивинилу 1% и конверсии - 30%.

Пример 10. Метанол пропускают в мольном отношении азот : метанол = 5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0,25, γ-Al2O3 - (71.75) остальное, при объемной скорости по метанолу GHSV = 200 ч-1. Выход дивинила на пропущенный ДМЭ составляет 0,5% при селективности по дивинилу 5% и конверсии - 10%.

Пример 11. Метанол пропускают в мольном отношении азот : метанол = 10:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0,25, γ-Al2O3 - (71.75) остальное, при объемной скорости по метанолу GHSV = 200 ч-1. Выход дивинила на пропущенный ДМЭ составляет 2% при селективности по дивинилу 10% и конверсии - 20%.

Пример 12 ДМЭ пропускают в мольном отношении метанол : ДМЭ = 0,3:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 200 ч-1. Выход дивинила на пропущенный ДМЭ составляет 3% при селективности по дивинилу 10% и конверсии ДМЭ - 30%.

Пример 13 ДМЭ пропускают в мольном отношении метанол : ДМЭ = 0,5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 200 ч-1. Выход дивинила на пропущенный ДМЭ составляет 3% при селективности по дивинилу 11% и конверсии ДМЭ - 27%.

Пример 14 ДМЭ пропускают в мольном отношении метанол : ДМЭ = 1:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 200 ч-1. Выход дивинила на пропущенный ДМЭ составляет 1,8% при селективности по дивинилу 7% и конверсии ДМЭ - 26%.

Пример 15 ДМЭ пропускают в мольном отношении метанол : ДМЭ = 1:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 200 ч-1. Метанол содержит пероксид водорода из расчета 0,05% масс относительно ДМЭ Выход дивинила на пропущенный ДМЭ составляет 2,8% при селективности по дивинилу 10% и конверсии ДМЭ - 28%.

Пример 16. ДМЭ пропускают в мольном отношении метанол : ДМЭ = 5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0:25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 200 ч-1. Метанол содержит пероксид водорода из расчета 0,05% масс относительно ДМЭ. Выход дивинила на пропущенный ДМЭ составляет 4,5% при селективности по дивинилу 15% и конверсии ДМЭ - 30%.

Пример 17. ДМЭ пропускают в мольном отношении метанол : ДМЭ = 5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 200 ч-1. Метанол содержит пероксид водорода из расчета 0,5% масс относительно ДМЭ. Выход дивинила на пропущенный ДМЭ составляет 11% при селективности по дивинилу 30% и конверсии ДМЭ - 48%.

Пример 18. ДМЭ пропускают в мольном отношении метанол : ДМЭ = 10:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0,25, γ-Al2O3 - (71.75) остальное, при объемной скорости по ДМЭ GHSV = 200 ч-1. Метанол содержит пероксид водорода из расчета 1,0% масс относительно ДМЭ. Выход дивинила на пропущенный ДМЭ составляет 21% при селективности по дивинилу 50% и конверсии - 71.5%.

Пример 19. ДМЭ пропускают в мольном отношении вода : ДМЭ = 3:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Выход дивинила на пропущенный ДМЭ составляет 2% при селективности по дивинилу 10% и конверсии - 20%.

Пример 20. ДМЭ пропускают в мольном отношении вода : ДМЭ = 5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Выход дивинила на пропущенный ДМЭ составляет 2% при селективности по дивинилу 11% и конверсии - 18%.

Пример 21. ДМЭ пропускают в мольном отношении вода : ДМЭ = 10:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Выход дивинила на пропущенный ДМЭ составляет 2,3% при селективности по дивинилу 13% и конверсии - 16%.

Пример 22. ДМЭ пропускают в мольном отношении вода : ДМЭ = 0,5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Вода содержит пероксид водорода из расчета 0,5% масс относительно ДМЭ. Выход дивинила на пропущенный ДМЭ составляет 4,4% при селективности по дивинилу 20% и конверсии - 22%.

Пример 23. ДМЭ пропускают в мольном отношении вода : ДМЭ = 0,5:1 при температурном профиле по слою катализатора 390-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0,25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Вода содержит пероксид водорода из расчета 0,7% масс относительно ДМЭ. Выход дивинила на пропущенный ДМЭ составляет 3,5% при селективности по дивинилу 16% и конверсии - 22%.

Пример 24 ДМЭ пропускают в мольном отношении метанол : вода : ДМЭ = 1:0,5:1 при температурном профиле по слою катализатора 390-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0,25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Выход дивинила на пропущенный ДМЭ составляет 1,6% при селективности по дивинилу 4,5% и конверсии - 35%.

Пример 25 ДМЭ пропускают в мольном отношении метанол : вода : ДМЭ : азот = 1:0,5:1:10 при температурном профиле по слою катализатора 390-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0,25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Выход дивинила на пропущенный ДМЭ составляет 2,4% при селективности по дивинилу 9% и конверсии - 27%.

Пример 26 ДМЭ пропускают в мольном отношении метанол : вода : ДМЭ : азот = 1,5:0,5:1:10 при температурном профиле по слою катализатора 390-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0ю25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Выход дивинила на пропущенный ДМЭ составляет 1% при селективности по дивинилу 4% и конверсии - 25%.

Пример 27 ДМЭ пропускают в мольном отношении метанол : вода : ДМЭ = 1,5:0,5:1 при температурном профиле по слою катализатора 390-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0,25, γ-Al2O3 -71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Выход дивинила на пропущенный ДМЭ составляет 0,4% при селективности по дивинилу 4% и конверсии - 20%.

Пример 28. ДМЭ пропускают в мольном отношении синтез газ : ДМЭ = 5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Выход дивинила на пропущенный ДМЭ составляет 6,2% при селективности по дивинилу 20% и конверсии - 31%.

Пример 29. ДМЭ пропускают в мольном отношении синтез газ : ДМЭ = 5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Синтез газ (CO+Н2) содержит пероксид водорода из расчета 0,5% масс относительно ДМЭ. Выход дивинила на пропущенный ДМЭ составляет 16% при селективности по дивинилу 29% и конверсии - 41%.

Пример 30. ДМЭ пропускают в мольном отношении синтез газ : ДМЭ = 10:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Выход дивинила на пропущенный ДМЭ составляет 7,7% при селективности по дивинилу 22% и конверсии - 35%.

Пример 31. ДМЭ пропускают в мольном отношении синтез газ : ДМЭ = 10:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Синтез газ содержит пероксид водорода из расчета 0,5% масс относительно ДМЭ. Выход дивинила на пропущенный ДМЭ составляет 12, 2% при селективности по дивинилу 27% и конверсии - 45%.

Пример 32. ДМЭ пропускают в мольном отношении синтез газ : метанол : вода : ДМЭ = 10:1,5:0,5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Выход дивинила на пропущенный ДМЭ составляет 1,2% при селективности по дивинилу 10% и конверсии - 12%.

Пример 33. ДМЭ пропускают в мольном отношении синтез газ : метанол : вода : ДМЭ = 20:1,5:0,5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Выход дивинила на пропущенный ДМЭ составляет 1,6% при селективности по дивинилу 13% и конверсии - 12%.

Пример 34. ДМЭ пропускают в мольном отношении синтез газ : метанол : вода : ДМЭ = 20:1,5:0,5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Вода содержит пероксид водорода из расчета 1,0% масс относительно ДМЭ. Выход дивинила на пропущенный ДМЭ составляет 5,25% при селективности по дивинилу 15% и конверсии - 35%.

Пример 35. ДМЭ пропускают в мольном отношении азот : синтез газ : метанол : вода : ДМЭ = 10:20:1,5:0,5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1 Выход дивинила на пропущенный ДМЭ составляет 7,5% при селективности по дивинилу 25% и конверсии - 30%.

Пример 36. ДМЭ пропускают в мольном отношении азот : синтез газ : метанол : вода : ДМЭ = 20:20:1,5:0,5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1 Выход дивинила на пропущенный ДМЭ составляет 4,3% при селективности по дивинилу 29% и конверсии - 15%.

Пример 37. ДМЭ пропускают в мольном отношении азот : синтез газ : метанол : ДМЭ = 20:20:1,5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1 Выход дивинила на пропущенный ДМЭ составляет 9% при селективности по дивинилу 30% и конверсии - 25%.

Пример 38. ДМЭ пропускают в мольном отношении азот : синтез газ : метанол : ДМЭ = 20:20:1,5:1 при температурном профиле по слою катализатора 400-410°C через катализатор состава, % масс: ZnO - 22, MgO - 6, K2O - 0.25, γ-Al2O3 - 71.75 (остальное), при объемной скорости по ДМЭ GHSV = 250 ч-1. Метанол содержит пероксид водорода из расчета 0,05% масс относительно ДМЭ Выход дивинила на пропущенный ДМЭ составляет 10,5% при селективности по дивинилу 35% и конверсии - 30%.

Таким образом, изобретение позволяет расширить сырьевую базу для производства дивинила и использовать для синтеза диметиловый эфир и метанол, получаемые известными способами из любого альтернативного углеродсодержащего сырья (газ, уголь, твердые отходы и т.д.) и решает проблему дефицита дивинила, применяемого для получения синтетических каучуков и других продуктов.

Литература

1. Хаджиев С.Н., Колесниченко Н.В., Гориянова Т.И. Бирюкова Е.Н. Кулумбеков Р.В. Катализатор и способ получения олефинов из диметилового эфира в его присутствии. Патент РФ №2445158, 20.03.2012 г.

2. Третьяков В.Ф., Хаджиев С.Н., Талышинский P.M., Максимов А.Л., Илолов A.M. Способ получения дивинила (варианты). Патент РФ №2459788, 27.08. 2012 г.

Источник поступления информации: Роспатент

Showing 121-130 of 141 items.
18.03.2020
№220.018.0cbc

Способ получения полимерной пленки

Изобретение относится к способу получения полимерных гидрофобных пленок и может применяться для получения специальных покрытий для предотвращения коррозии металлических поверхностей, антиобледенительных покрытий для элементов строительных конструкций, самоочищающихся деталей транспортных...
Тип: Изобретение
Номер охранного документа: 0002716795
Дата охранного документа: 16.03.2020
21.03.2020
№220.018.0e74

Способ получения основы для пластырей и гелей (варианты)

Изобретение относится к медицинской и химико-фармацевтической промышленности, а именно к вариантам способа получения основы для пластырей или гелей, которые могут быть использованы в лечебно-профилактических учреждениях, в домашних условиях для наружного применения в качестве лечебного средства...
Тип: Изобретение
Номер охранного документа: 0002717086
Дата охранного документа: 18.03.2020
28.03.2020
№220.018.1108

Способ получения сверхчистого водорода паровым риформингом этанола

Изобретение относится к области создания катализаторов и реакторов для химической и нефтехимической промышленности, а именно к процессам дегидрирования и парового риформинга низших алифатических спиртов с целью получения высокочистого водорода, пригодного для использования в топливных...
Тип: Изобретение
Номер охранного документа: 0002717819
Дата охранного документа: 25.03.2020
21.06.2020
№220.018.28c2

Способ получения клея-расплава

Изобретение относится к области клеящих материалов и, более конкретно, к способам получения полимерных клеев-расплавов, предназначенных для формирования адгезионных соединений между различными материалами, в том числе металлами, характеризующихся высокой прочностью образованной связи в...
Тип: Изобретение
Номер охранного документа: 0002724047
Дата охранного документа: 19.06.2020
24.06.2020
№220.018.2998

Нанокомпозитный магнитный материал на основе полидифениламина и наночастиц co-fe и способ его получения

Изобретение относится к области создания новых структурированных гибридных нанокомпозитных магнитных материалов на основе электроактивных полимеров. Гибридный нанокомпозитный магнитный материал включает полимерную матрицу - полидифениламин (ПДФА) и диспергированные в ней металлические...
Тип: Изобретение
Номер охранного документа: 0002724251
Дата охранного документа: 22.06.2020
24.06.2020
№220.018.29d1

Способ получения углеродсодержащего адсорбента для удаления ароматических соединений (варианты)

Варианты изобретения относятся к способу получения углеродсодержащего адсорбента на основе углеродных остатков риформинга лигнина. Адсорбент предложен для адсорбции ароматических соединений из сточных вод. Углеродсодержащий адсорбент получают из остатка углекислотного риформинга лигнина в...
Тип: Изобретение
Номер охранного документа: 0002724252
Дата охранного документа: 22.06.2020
12.07.2020
№220.018.31f0

Растворитель для поликетона и способ переработки поликетона с его применением

Изобретение относится к области физической химии высокомолекулярных соединений, конкретно к составу растворителя для переработки алифатического поликетона, и может быть использовано для получения полимерных пленок, мембран, волокон и других полезных изделий для применения в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002726252
Дата охранного документа: 10.07.2020
29.07.2020
№220.018.38c0

Способ оценки активности цеолитного катализатора алкилирования изобутана бутиленами

Изобретение относится к области физико-химического анализа и может применяться для выбора катализатора алкилирования изобутана бутиленами. Предложен cпособ оценки активности цеолитного катализатора алкилирования изобутана бутиленами, включающий определение его текстурных характеристик методом...
Тип: Изобретение
Номер охранного документа: 0002727937
Дата охранного документа: 27.07.2020
02.08.2020
№220.018.3ba0

Устройство для обработки цеолита путем ионного обмена и способ получения катализатора с применением этого устройства

Изобретение относится к области получения цеолитных катализаторов и может быть использовано в катализе, в частности катализе процессов алкилирования изобутана бутиленами. Предложено устройство для обработки цеолита путем ионного обмена, включающее автоклав, выполненный в виде цилиндрического...
Тип: Изобретение
Номер охранного документа: 0002728554
Дата охранного документа: 30.07.2020
12.04.2023
№223.018.444b

Растворитель и способ переработки поликетона и/или полиамида с его использованием (варианты)

Настоящее изобретение относится к растворителю для полиамида и/или поликетона, а также к способу переработки полимера путем растворения его в растворителе. Изобретение может быть использовано для получения полимерных пленок, мембран, волокон и других изделий для применения в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002738836
Дата охранного документа: 17.12.2020
Showing 111-119 of 119 items.
12.04.2023
№223.018.442a

Способ получения алюмосиликатного цеолита со структурой mtw (типа zsm-12)

Изобретение относится к способу получения алюмосиликатного цеолита со структурой MTW типа ZSM-12. Способ включает смешивание растворов, содержащих соединение алюминия, соединение кремния, темплат, выбранный из солей N1,N4-бис(2-гидроксиэтил)-N1,N1,N4,N4-тетраметилбутан-1,4-диаммония,...
Тип: Изобретение
Номер охранного документа: 0002735849
Дата охранного документа: 09.11.2020
12.04.2023
№223.018.45dd

Способ получения титано-алюмо-силикатного цеолита типа zsm-12

Изобретение относится к способу получения титано-алюмо-силикатного цеолита типа (Ti/Al)-ZSM-12, который характеризуется тем, что смешивают водный раствор с рН = 8,5-9,5, содержащий соединение алюминия, соединение титана и темплат, который доводят сухой щелочью или водным раствором щелочи до рН...
Тип: Изобретение
Номер охранного документа: 0002740476
Дата охранного документа: 14.01.2021
12.04.2023
№223.018.45e1

Микроволновой способ получения цеолита типа zsm-12 со структурой mtw

Изобретение раскрывает микроволноврй способ получения цеолита типа ZSM-12 со структурой MTW с кислотностью от 650 до 1000 мкмоль/г, выходом по массе продукта от 12 до 20 г и общим размером пор от 0.15 до 0.25 см/г итогового продукта, в отличие от цеолита, синтезированного традиционным...
Тип: Изобретение
Номер охранного документа: 0002740452
Дата охранного документа: 14.01.2021
12.04.2023
№223.018.464c

Способ получения компонента высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2-винилнорборнана (варианты)

Изобретение относится к новому двухстадийному способу синтеза компонентов высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2,2`-бис(норборнанила), который может быть использован в качестве высокоэнергоемого топлива, в частности ракетного и для дальней авиации....
Тип: Изобретение
Номер охранного документа: 0002739190
Дата охранного документа: 21.12.2020
12.04.2023
№223.018.4656

Способ получения компонента высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе метилзамещенного 2, 2'- бис (норборнанила) (варианты)

Изобретение относится к новому двухстадийному способу синтеза компонентов высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе метилзамещенного 2,2`-бис(норборнанила), который может быть использован в качестве высокоэнергоемкого топлива, в частности ракетного и для...
Тип: Изобретение
Номер охранного документа: 0002739242
Дата охранного документа: 22.12.2020
15.05.2023
№223.018.5821

Способ получения кокса с пониженным содержанием серы (варианты)

Изобретение относится к области нефтепереработки и коксохимии, в частности, к области получения нефтяного кокса с пониженным содержанием серы путем предварительного окисления сернистых соединений, содержащихся в сырье для коксования, до соответствующих сульфонов и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002768163
Дата охранного документа: 23.03.2022
21.05.2023
№223.018.6aa6

Способ получения микропористого трехфазного композита

Изобретение относится к области получения цеолитов на основе композитов, а именно - к способу получения микропористого трехфазного композита ZSM-5/ZSM-11/ZSM-12, впервые применяя в качестве темплата четвертичную аммониевую соль - хлорид моноэтанол-N,N,N-триметиламмония. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002795599
Дата охранного документа: 05.05.2023
21.05.2023
№223.018.6aa7

Способ получения микропористого трехфазного композита

Изобретение относится к области получения цеолитов на основе композитов, а именно - к способу получения микропористого трехфазного композита ZSM-5/ZSM-11/ZSM-12, впервые применяя в качестве темплата четвертичную аммониевую соль - хлорид моноэтанол-N,N,N-триметиламмония. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002795599
Дата охранного документа: 05.05.2023
17.06.2023
№223.018.7eb2

Дициклопропанированный 5-винил-2-норборнен и способ его получения

Изобретение относится к органическому синтезу и более конкретно к способу получения дициклопропанированного 5-винил-2-норборнена, включающему растворение 5-винил-2-норборнена в органическом растворителе, добавление соли палладия (II), охлаждение полученного раствора до (-15)-(-20)°С, добавление...
Тип: Изобретение
Номер охранного документа: 0002775004
Дата охранного документа: 27.06.2022
+ добавить свой РИД