×
15.10.2018
218.016.9247

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С ОТКРЫТОЙ ПОРИСТОСТЬЮ ДЛЯ ВОССТАНОВЛЕНИЯ КОСТНОЙ ТКАНИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины, а именно к способу получения биодеградируемых композиционных материалов с открытой пористостью для восстановления костной ткани, включающему пропитку пористого керамического каркаса полимером, который отличается тем, что смесь гидроксиапатита с хлоридом натрия, добавленным в количестве 10-50 масс.%, прессуют с последующим спеканием при температуре 700-800 °С в течение 5 ч, выдерживают в дистиллированной воде до растворения хлорида натрия с получением пористого керамического каркаса с открытой пористостью, который далее высушивают и пропитывают раствором сополимера лактида и гликолида молекулярной массой 10-100 кДа при одновременном воздействии ультразвуком. 1 з.п. ф-лы, 4 пр.

Изобретение относится к способам получения биодеградируемых пористых полимерных композиционных материалов на основе гидроксиапатита (ГА) и сополимера лактида и гликолида (СЛГ), которые могут быть использованы для пластической реконструкции повреждённых плоских и смешанных костей.

Известен способ изготовления имплантатов, в котором материалы получают послойным электроплазменным напылением титана и гидроксиапатита на металлическую основу (патент RU 2529262; МПК A61L27/30, A61F2/02, C23C18/42; опубл. 27.09.2014). Недостатком способа является применение дорогостоящего специфического оборудования. Кроме того, такие материалы требуют замены и повторной операции, а из-за своей металлической основы способны вызывать аллергические реакции.

Известен способ получения пористых полимерных биодеградируемых изделий для регенерации костной ткани, в котором композиты из смеси полилактида и гидроксиапатита получают методом вакуумирования раствора в форме (патент RU 2327709; МПК C08G63/08, C08L101/16, A61L27/58; опубл. 27.06.2008). Способ позволяет добиться высокой пористости материала, однако для получения раствора используются высокотоксичные фторсодержащие растворители. Это усложняет процесс получения, т.к. требуется контроль удаления растворителя.

Наиболее близким по техническому решению и достигаемому эффекту является способ получения пористой керамики для лечения дефектов костной ткани из фосфатов кальция, в котором пористую керамику получают пропитыванием полиэтиленовой матрицы керамическим шликером ГА с последующим отжигом матрицы и спеканием керамики. В результате получается пористая гидроксиапатитная керамика с варьируемой пористостью (патент RU 2578435; МПК A61L27/10, A61L27/02, A61F2/28; опубл. 27.03.2016). Способ принят за прототип.

Использование чистой керамики не обеспечивает требуемой прочности и резорбируемости. Так же существенным недостатком является использование полиэтиленовых матриц, что значительно усложняет процесс получения материала.

Задача настоящего изобретения заключается в разработке способа получения биодеградируемых керамических материалов со сквозной объемной пористостью не ниже 30% на основе ГА, СЛГ и порообразующего агента (хлорида натрия). Основное преимущество метода заключается в упрощении создания и регулирования пористости c использованием простого порообразователя – хлорида натрия и стандартного лабораторного оборудования. Пропитка СЛГ позволяет улучшить механические характеристики, а так же повышает резорбируемость материала.

Поставленная задача решается за счет того, что пористую керамику получают прессованием гидроксиапатита и порообразующего агента хлорида натрия в количестве 10-50 масс.%, которые спекают при температуре 700 °С в течение 5 ч. с последующим растворением хлорида натрия и образованием открытой объемной пористости 30-45%, после чего пористую керамику пропитывают раствором сополимера лактида и гликолида молекулярной массой 10-100 кДа при одновременном воздействии ультразвуком, что позволяет добиться более равномерной пропитки.

Технический результат достигается за счет получения биосовместимого материала на основе покрытой СЛГ под действием ультразвука керамики на основе ГА с использованием нетоксичного вымываемого порообразователя, регулируя количество которого, можно контролировать пористость материала.

Костно-протезный материал накладывают на дефектную часть кости, заполняя её. Материал постепенно абсорбируется живым организмом и со временем полностью заменяется новой костной тканью. Процесс восстановления начинается с момента прикрепления клеток-остеобластов к поверхности протезного материала. При этом существенно, чтобы материал обладал высокой биосовместимостью и биорезорбируемостью. Подходящими свойствами обладают ГА и СЛГ в качестве основных компонентов. Получаемый материал имеет сквозные макроразмерные поры 50-300 мкм и общую объемную пористость более 30%, достаточную для пролиферации тканей.

Процесс получения материала включает три этапа:

Этап 1. Формирование каркаса смешением ГА и хлорида натрия в количестве от 10 до 50 масс.% до образования гомогенной смеси с последующим прессованием (P = 200 Бар). Сформированный каркас прокаливают в муфельной печи при температуре 700°С в течение 5 часов.

Этап 2. Формирование открытой пористости. Полученные на первом этапе каркасы выдерживают в дистиллированной воде 1 сутки с постоянной сменой воды через каждые 6 часов, после чего пористую гидроксиапатитную керамику высушивают в вакууме до полного удаления влаги.

Этап 3. Пропитка каркасов полимером. Сополимер растворяют в хлороформе для получения растворов полимера с разной молекулярной массой (10-100 кДа) и погружают каркасы в растворы СЛГ с их одновременной обработкой ультразвуком. Подобная обработка ультразвуком необходима для более полного удаления пузырьков воздуха из пористого каркаса с целью получения однородного покрытия и такая обработка позволяет существенно сокращает время пропитки.

Одними из вариантов реализаций способа могут быть следующие.

Пример 1. Гидроксиапатит смешивают в мельнице с хлоридом натрия в массовом соотношении 90:10 в течение 1 минуты, полученную смесь помещают в пресс-форму, прессуют при давлении 200 Бар и спекают 5 ч при 700 - 800 °С. Полученный каркас выдерживают 1 сутки в дистиллированной воде со сменой жидкости каждые 6 часов, после чего высушивают 3 ч при 100 °С. Готовят раствор СЛГ с молекулярной массой 10 кДа в хлороформе (концентрация = 1 г/мл). Высушенный каркас помещают в раствор с одновременной обработкой его ультразвуком (40 кГц) в течение 30 мин. при комнатной температуре. Через 30 минут материал извлекают из раствора и сушат в вакууме при 30 °С. Средний размер пор в полученном материале составляет 80 мкм; объёмная пористость – 39 %.

Пример 2. Гидроксиапатит смешивают в мельнице с хлоридом натрия в массовом соотношении 90:10 в течение 1 минуты, полученную смесь помещают в пресс-форму, прессуют при давлении 200 Бар и спекают 5 ч при 700 °С. Полученный каркас выдерживают 1 сутки в дистиллированной воде со сменой жидкости каждые 6 часов, после чего высушивают 3 ч при 100 °С. Готовят раствор СЛГ с молекулярной массой 100 кДа в хлороформе (концентрация = 1 г/мл). Высушенный каркас помещают в раствор с одновременной обработкой его ультразвуком (40 кГц) в течение 30 мин. при комнатной температуре. Через 30 минут материал извлекают из раствора и сушат в вакууме при 30 °С. Средний размер пор в полученном материале составляет 50 мкм; объёмная пористость – 30 %.

Пример 3. Гидроксиапатит смешивают в мельнице с хлоридом натрия в массовом соотношении 50:50 в течение 1 минуты, полученную смесь помещают в пресс-форму, прессуют при давлении 200 Бар и спекают 5 ч при 700 °С. Полученный каркас выдерживают 1 сутки в дистиллированной воде со сменой жидкости каждые 6 часов, после чего высушивают 3 ч при 100 °С. Готовят раствор СЛГ с молекулярной массой 10 кДа в хлороформе (концентрация = 1 г/мл). Высушенный каркас помещают в раствор с одновременной обработкой его ультразвуком (40 кГц) в течение 30 мин при комнатной температуре. Через 30 мин материал извлекают из раствора и сушат в вакууме при 30 °С. Средний размер пор в полученном материале составляет 200 мкм; объёмная пористость – 45 %.

Пример 4. Гидроксиапатит смешивают в мельнице с хлоридом натрия в массовом соотношении 90:10 в течение 1 минуты, полученную смесь помещают в пресс-форму, прессуют при давлении 200 Бар и спекают 5 ч при 700-800 °С. Полученный каркас выдерживают 1 сутки в дистиллированной воде со сменой жидкости каждые 6 часов, после чего высушивают 3 ч при 100 °С. Готовят раствор СЛГ с молекулярной массой 100 кДа в хлороформе с концентрацией 1 г/мл. Каркас помещают на 30 - 40 мин в раствор при комнатной температуре с одновременной обработкой его ультразвуком 40 кГц. Через 30-40 минут материал извлекают из раствора и сушат в вакууме при 30 °С. Средний размер пор в полученном материале составляет 155 мкм; объёмная пористость – 40 %.

Техническим результатом изобретения является получение пористого керамического материала на основе ГА с порообразователем NaCl, пропитанного СЛГ с размером пор 50-200 мкм и открытой пористостью 30-45%, которую можно контролировать, варьируя количество хлорида натрия.

Источник поступления информации: Роспатент

Showing 41-50 of 173 items.
13.01.2017
№217.015.8589

Способ повышения устойчивости растений рапса к интенсивному хлоридному засолению

Изобретение относится к области биотехнологии. Изобретение представляет собой способ повышения устойчивости растений рапса к интенсивному хлоридному засолению, включающий обработку растений раствором биологически активного вещества, где через 5 недель культивирования в стандартных условиях на...
Тип: Изобретение
Номер охранного документа: 0002603091
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8dfb

Комбинированный способ обработки сплавов ванадия

Изобретение относится к обработке ванадиевых сплавов, легированных элементами IVB группы, содержащих элементы замещения Cr, W и элементы внедрения С, О, N в количестве не менее 0,04 мас.%. Способ включает гомогенизирующий отжиг заготовки сплава, многократную термомеханическую обработку,...
Тип: Изобретение
Номер охранного документа: 0002605015
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9134

Способ получения культуры изолированных корней silene linicola к1601 - продуцента экдистероидов

Изобретение относится к биотехнологии и может быть использовано в фармацевтической и пищевой промышленности. Способ предусматривает бактериальную трансформацию экспланта корня ювенильного растения Silene linicola агробактериальным штаммом R-1601 A. Rhizogenes. Трансформированные корни от...
Тип: Изобретение
Номер охранного документа: 0002605912
Дата охранного документа: 27.12.2016
24.08.2017
№217.015.94a4

Способ получения покрытия с высокой воспроизводимостью оптических свойств

Изобретение относится к технологии пленкообразующих растворов (ПОР) и касается способа получения, позволяющего формировать на их основе тонкопленочные покрытия, состоящие из диоксида титана, немодифицированного и модифицированного оксидами кремния и/или d-металла (Ni, Co, Mn, Fe) с высокой...
Тип: Изобретение
Номер охранного документа: 0002608412
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.97a3

Способ определения продуктов химического гидролиза дезоксирибонуклеиновой кислоты

Изобретение относится к аналитической химии, а именно к способам определения продуктов химического гидролиза дезоксирибонуклеиновой кислоты (ДНК). Способ определения продуктов химического гидролиза дезоксирибонуклеиновой кислоты (ДНК) включает хроматографическое определение продуктов гидролиза....
Тип: Изобретение
Номер охранного документа: 0002609431
Дата охранного документа: 01.02.2017
25.08.2017
№217.015.981e

Способ определения концентрации донорного фона в структурах cdxhg1-xte

Способ определения концентрации донорного фона в CdHgTe принадлежит к характеризации материалов и структур оптоэлектроники, точнее к твердым растворам CdHgTe – основному материалу для изготовления фотодиодов инфракрасного диапазона спектра. Технический результат – создание метода определения...
Тип: Изобретение
Номер охранного документа: 0002609222
Дата охранного документа: 31.01.2017
25.08.2017
№217.015.9ad9

Способ определения аскорбиновой кислоты и дофамина в воде при совместном присутствии с использованием модифицированных электродов

Изобретение относится к области электрохимического анализа и предназначено для проведения качественного и количественного определения аскорбиновой кислоты и дофамина вольтамперометрическим методом в широком спектре объектов (пищевые продукты, фармацевтические препараты, объекты окружающей...
Тип: Изобретение
Номер охранного документа: 0002610220
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9b62

Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля

Изобретение относится к химической промышленности, в частности к способу выделения гликолевой кислоты, которая широко применяется в косметологии, нефтегазовой, кожевенной отраслях промышленности, а также используется в синтезе биоразлагаемых полимеров и сополимеров, например, является исходным...
Тип: Изобретение
Номер охранного документа: 0002610257
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bbd

Способ получения 4(5)-нитроимидазола

Изобретение относится к области органической химии, а именно к способу получения 4(5)-нитроимидазола, заключающемуся в нитровании имидазола натрием азотнокислым в присутствии серной кислоты при нагревании, с последующим охлаждением, нейтрализацией реакционной смеси, выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002610267
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bf4

Импульсный лавинный s-диод

Изобретение относится к импульсной технике, в частности к импульсным лавинным полупроводниковым диодам, полученным легированием GaAs хромом или железом, и предназначено для использования в системах силовой импульсной электроники. Техническим результатом являются устранение влияния инжекции...
Тип: Изобретение
Номер охранного документа: 0002609916
Дата охранного документа: 07.02.2017
Showing 21-23 of 23 items.
02.11.2019
№219.017.dd9a

Способ получения трехслойного материала сталь х17н2 - v-4,9ti-4,8cr - сталь х17н2

Изобретение относится к области металлургии, а именно к способам получения сплавов на основе ванадия, и может быть использовано для получения высококачественных композиций на его основе с титаном и хромом, предназначенных для атомной энергетики. Способ получения трехслойного материала сталь...
Тип: Изобретение
Номер охранного документа: 0002704945
Дата охранного документа: 31.10.2019
19.11.2019
№219.017.e3ae

Способ получения адсорбента для осушки содержащих влагу газов

Изобретение относится к способу получения адсорбента для осушки содержащих влагу газов. Для получения адсорбента продукт центробежной термической активации гидраргиллита (ЦТА ГГ) в щелочном растворе, сушат, размалывают, пептизируют и пластифицируют в растворе азотной кислоты, формуют полученную...
Тип: Изобретение
Номер охранного документа: 0002706304
Дата охранного документа: 15.11.2019
03.06.2023
№223.018.761a

Способ получения фотокаталитического покрытия на основе диоксида титана

Изобретение относится к области химического синтеза титансодержащих пленкообразующих растворов. Формируемые из раствора покрытия обладают фотокаталитическими свойствами и могут быть использованы в качестве светочувствительных, самоочищающихся, фильтрующих и перераспределяющих излучение...
Тип: Изобретение
Номер охранного документа: 0002772590
Дата охранного документа: 23.05.2022
+ добавить свой РИД