×
15.10.2018
218.016.921d

Результат интеллектуальной деятельности: Бронематериал энергогасящего слоя защитной конструкции

Вид РИД

Изобретение

Аннотация: Изобретение относится к самоотверждающимся композициям, которые обладают способностью поглощать энергию и могут использоваться для изготовления средств индивидуальной бронезащиты. Предложена композиция, включающая полидиметилсилоксан с концевыми 3-аминопропил-диалкоксисилильными группами или его смесь с полидиметилсилоксаном с концевыми силанольными группами и соединение бора, причем массовое соотношение полидиметилсилоксана(ов) и соединения бора составляет от 2561 до 5:1. Композиция может дополнительно включать трис(метилдиэтоксисилокси)железо. Массовое соотношение полидиметилсилоксанов с концевыми 3-аминопропилдиалкоксисилильными группами и концевыми силанольными группами составляет от 1:1 до 1:2,3. Технический результат – предложенная энергопоглощающая композиция может использоваться для пропитки арамидных тканей при изготовлении средств индивидуальной бронезащиты. 3 з.п. ф-лы, 2 ил., 6 пр.

Настоящее изобретение относится к кремнийорганическим энергопоглощающим композициям.

Наиболее эффективно изобретение может использоваться для изготовления средств индивидуальной защиты, в том числе для защиты от высокоскоростного нагружения.

Из уровня техники известно, что арамидные ткани используют для изготовления текстильных бронепакетов, средств индивидуальной бронезащиты и, в частности, для бронежилетов (RU 2155313, RU 2042915, RU 2126856, RU 2175035, RU 225651, Бучнев, И.И., Мазнина, Ю.А. Вопросы оборонной техники. Серия 16: технические средства противодействия терроризму. 2016, №1-2, 79-86, Легкие баллистические материалы./ Под ред. А. Бхатнагара. Москва: Техносфера, 2011. - 392 с. ISBN 978-5-94836-163-5). Бронезащитные свойства текстильных бронепакетов или бронежилетов из арамидных тканей определяются устойчивостью самих тканей к воздействию средств поражения, а также числом слоев баллистических тканей в тканевых пакетах.

Обеспечение высокого класса защиты от воздействия средств поражения требует наличия определенного числа слоев ткани в тканевом пакете, что увеличивает массу изделия и ограничивает подвижность человека в защитной одежде на его основе. Одним из вариантов повышения эргономичности бронежилета является использование энергопоглощающих полимерных составов для пропитки слоев арамидной ткани, что способствует сохранению баллистических характеристик тканевого пакета при уменьшении количества слоев ткани (Majumdar, A., Butola, В.S., & Srivastava, А. (2013). Optimal designing of soft body armour materials using shear thickening fluid. Materials & Design, 46, 191-198; Decker, M.J., Halbach, C.J., Nam, С.H., Wagner, N.J., & Wetzel, E.D. (2007). Stab resistance of shear thickening fluid (STF)-treated fabrics. Composites Science and Technology, 67(3), 565-578).

Известно, что арамидные ткани характеризуются гигроскопичностью, что приводит к значительному ухудшению их защитных свойств. Для улучшения эксплуатационных баллистических характеристик изделий из арамидных тканей в намокшем состоянии проводят предварительную обработку ткани погружением в раствор, содержащий 0,2-5 мас. % перфторполиэфирной или перфторлауриновой кислоты, с последующими сушкой и термообработкой при 100-120°C в течение 1-4 часов (Патент РФ RU 2430327).

В качестве ближайшего аналога выбран гибкий материал с энергопоглощающими свойствами (патент США US 8129293), пропитанный силиконовой композицией, имеющей остаточные силанольные группы и включающей продукт реакции полидиорганосилоксана и соединения бора (оксида бора, борной кислоты, прекурсора борной кислоты, бората и частично гидролизованного бората) и титановый катализатор для отверждения. Силиконовая композиция для пропитки арамидных тканей представляет собой раствор 60 частей смеси, содержащей полидиметилсилоксан с концевыми силанольными группами, соединение бора и тетраизопропилат титана в качестве катализатора конденсации силанольных групп, в 40 частях изопропанола. Сушку пропитанного материала проводят в течение 20 минут при температуре 80-100°C. Для повышения износостойкости этих материалов при стирке проводят модификацию силиконовой композиции или метилтриметоксисиланом, или диорганосилоксаном, содержащим как диметилсилокси-, так и метил(3-амино)пропилсилокси-звенья, или силоксановой смолой, содержащей н-октильную группу у атома кремния. В качестве пластификатора добавляют линейный полидиметилсилоксан с концевыми триметилсилильными группами. Данная композиция для пропитки является наиболее близкой по составу к заявляемой композиции. Недостатком данной композиции является необходимость использования катализатора для отверждения полидиметилсилоксана.

Задачей данного изобретения является создание самоотверждающейся энергопоглощающей кремнийорганической композиции, которая может использоваться для пропитки арамидных тканей.

Далее изобретение может быть охарактеризовано с помощью данных, приведенных на фигурах:

на фигуре 1 приведена зависимость напряжения от времени для композициий состава по примеру 1 (1) и по примеру 2 (2). Исходная деформация 100%; на фигуре 2 приведена зависимость тангенса угла механических потерь от частоты для композиций по примеру 1 (1), 2 (2), 3 (3), 4 (4).

Поставленная задача решается с помощью создания композиции, включающей полидиметилсилоксан с концевыми 3-аминопропил-диалкоксисилильными группами и/или полидиметилсилоксан с концевыми силанольными группами, и соединение бора, которое выбирают из группы, включающей борную кислоту, эфиры борной кислоты, трибутоксибор. Композиция может дополнительно содержать трис(метилдиэтоксисилокси)железо. Массовое соотношение полидиметилсилоксанов с концевыми 3-аминопропилдиалкоксисилильными группами и концевыми силанольными группами изменяется от 100:0 до 30:70 соответственно. Массовое соотношение полидиметилсилоксанов и соединения бора в композиции изменяется в пределах от 25:1 до 5:1, полидиметилсилоксанов и трис(метилдиэтоксисилокси)железа - в пределах от 125:1 до 90:1.

В отличие от наиболее близкого аналога, заявляемая композиция не требует использования катализатора для отверждения компонентов, так как концевые 3-аминопропилдиалкоксисилильные группы гидролизуются на воздухе с образованием силанольных и силоксановых связей, при этом аминогруппа катализирует процессы гидролиза и конденсации, что способствует сшивке компонентов композиции. Известно, что в случае получения композиции, включающей трис(метилдиэтоксисилокси)железо, скорость процессов отверждения возрастает в силу его гидролитической неустойчивости (патент РФ RU 2293746).

Подтверждением образования химической сетки межмолекулярных связей в заявляемых композициях является величина остаточного напряжения. На фиг. 1 представлена зависимость напряжения от времени при деформации 100% для композиций, описанных в примерах 1 и 2. Для образца, полученного по примеру 2, величина остаточного напряжения составляет 200-250 Па, в то время как для композиции, полученной по примеру 1, остаточное напряжение стремится к 0. Этот факт свидетельствует о наличии химической сшивки в композициях, в которых используют полидиметилсилоксан, модифицированный по концам 3-аминопропилдиалкоксисилильными группами (пример 2).

Заявляемые композиции обладают энергопоглощающими свойствами, что подтверждается частотной зависимостью тангенса угла механических потерь tgδ (фиг. 2). Известно, что материал способен поглощать (или рассеивать) энергию внешнего механического воздействия, если tgδ>0,1 (Черкасов В.Д., Юркин Ю.В., Авдонин В.В. // Инженерно-строительный журнал, 2013, №8, с. 7-13). Для всех заявляемых композиций, полученных по примерам 1-3, в интервале частот 0,1-100 Гц значения tg5 превышают 0,1. В диапазоне частот от 0,1 до 100 Гц величина tgδ для композиций на основе полидиметилсилоксана с концевыми 3-аминопропилдиалкоксисилильными группами (примеры 2 и 3) больше, чем в композиции на основе немодифицированного полидиметилсилоксана (пример 1). При повышении частоты уменьшается скорость снижения tgδ композиций по примерам 2 и 3 по сравнению с образцом по примеру 1, что указывает на их лучшие энергоабсорбирующие свойства.

Для композиций, включающих трис(метилдиэтоксисилокси)железо и смесь полидиметилсилоксановых каучуков и борной кислоты (пример 4), тангенс угла механических потерь меньше, чем tgδ для композиций, содержащих модифицированный полидиметилсилоксановый каучук (примеры 2 и 3). Тем не менее, с ростом частоты tgδ возрастает, а при частоте, близкой к 100 Гц, приближается к значениям tgδ для других композиций.

Технический результат заявляемого изобретения заключается в создании новой кремнийорганической композиции, обладающей энергопоглощающими свойствами, позволяющей расширить ассортимент композиций данного типа.

Заявляемая композиция может найти применение для создания гибких энергопоглощающих средств индивидуальной защиты, например, для пропитки арамидных тканей при производстве бронежилетов.

Преимуществом заявляемых композиций является их способность к отверждению без применения катализатора.

Реологические характеристики композиций (напряжение релаксации, модуль накопления G', модуль потерь G'') были измерены на реометре Anton Paar - MCR 302 (Австрия) в режиме постоянной скорости сдвига, измерительный узел плоскость-плоскость. Тангенс угла механических потерь определяли как отношение модулей G''/G'.

Изобретение иллюстрируется приведенными ниже примерами и фигурами.

Для приготовления заявляемых композиций используют силоксановые каучуки, например, марки СКТН А или марки СКТН Е, а также предварительно модифицированные 3-аминопропил-диэтоксисилильными группами полидиметилсилоксановые каучуки. Композиции готовят механическим смешиванием компонентов при комнатной температуре и атмосферном давлении.

Пример 1. Для получения 1 кг композиции смешивают 0,8 кг полидиметилсилоксана марки СКТН Е с концевыми силанольными группами и 0,2 кг борной кислоты.

Пример 2. Для получения 1 кг композиции смешивают 0,3 кг полидиметилсилоксана марки СКТН А, предварительно модифицированного по концам цепи 3-аминопропилдиэтоксисилильными группами, 0,7 кг полидиметилсилоксана с концевыми силанольными группами марки СКТН Е и 0,2 кг борной кислоты.

Пример 3. Для получения 1 кг композиции смешивают 0,4 кг полидиметилсилоксана марки СКТН А, предварительно модифицированного по концам цепи 3-аминопропилдиэтоксисилильными группами, 0,45 кг полидиметилсилоксана с концевыми силанольными группами марки СКТН Е и 0,2 кг борной кислоты.

Пример 4. Для получения 1 кг композиции смешивают 0,24 кг полидиметилсилоксана с концевыми силанольными группами марки СКТН А, 0,55 кг полидиметилсилоксана с концевыми силанольными группами марки СКТН Е, 0,2 кг борной кислоты и 0,01 кг трис(метилдиэтоксисилокси)железа.

Пример 5. Для получения 1 кг композиции смешивают 0,67 кг полидиметилсилоксана марки СКТН Е, предварительно модифицированного по концам цепи 3-аминопропилдиэтоксисилильными группами, 0,29 кг полидиметилсилоксана с концевыми силанольными группами марки СКТН А и 0,04 кг бутоксибора.

Пример 6. Для получения 1 кг композиции смешивают 0,8 кг полидиметилсилоксана марки СКТН Е, предварительно модифицированного по концам цепи 3-аминопропилдиэтоксисилильными группами, и 0,2 кг борной кислоты.

Модификацию полидиметилсилоксанов проводят по следующей методике.

Жидкий силоксановый каучук, например, СКТН А, (100 мас. ч.) обрабатывают 2 мас. ч. γ-аминопропилтриэтоксисилана (АГМ-9). Смесь выдерживают при температуре 100°C в течение 13-16 час. По окончании термообработки отгоняют этанол и непрореагировавший γ-аминопропилтриэтоксисилан в вакууме на роторном испарителе при остаточном давлении от 100 до 20 мБар при постепенном повышении температуры от 40 до 85°C.


Бронематериал энергогасящего слоя защитной конструкции
Источник поступления информации: Роспатент

Showing 41-50 of 174 items.
06.12.2018
№218.016.a444

Стендовый жидкостный ракетный двигатель с непрерывной спиновой детонацией

Изобретение относится к области испытаний, в частности стендовых испытаний режимов работы ЖРД, работающих в режиме непрерывной детонации на топливной смеси, состоящей из газообразного кислорода и керосина. Изобретение представляет собой стендовый ЖРД с кольцевой камерой детонационного горения,...
Тип: Изобретение
Номер охранного документа: 0002674117
Дата охранного документа: 04.12.2018
07.12.2018
№218.016.a463

Устройство для импульсной деформации длинномерных трубчатых изделий

Изобретение относится к обработке металлов давлением, а именно к устройствам для магнитоимпульсной обработки металлов давлением. Устройство содержит приспособление для прижимного соединения и разъединения торцевых частей полувитков блока разъемного индуктора. При этом указанное приспособление...
Тип: Изобретение
Номер охранного документа: 0002674184
Дата охранного документа: 05.12.2018
09.12.2018
№218.016.a50b

Радиофотонный передающий тракт для передачи мощных широкополосных сигналов и эффективного возбуждения антенн

Изобретение относится к радиофотонике, в том числе к технике передачи мощных широкополосных радиосигналов по волоконно-оптическим линиям связи к антеннам и антенным решеткам. Техническим результатом является повышение КПД, максимально достижимой мощности, широкополосности (расширение мгновенной...
Тип: Изобретение
Номер охранного документа: 0002674074
Дата охранного документа: 07.12.2018
20.12.2018
№218.016.a95b

Радиофотонный широкополосный приемный тракт на основе ммшг-модулятора с подавлением собственных шумов лазера

Изобретение относится к радиофотонике, в том числе к технике приема слабых широкополосных радиосигналов, например, от антенн и антенных решеток. Заявленный радиофотонный широкополосный приемный тракт на основе ММШГ-модулятора с подавлением собственных шумов лазера содержит лазер, оптическую...
Тип: Изобретение
Номер охранного документа: 0002675410
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a963

Способ изготовления фотодетекторов мощного оптоволоконного свч модуля

Изобретение может быть использовано для создания мощных СВЧ фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ изготовления фотодетекторов мощного оптоволоконного СВЧ модуля включает создание на полупроводниковой подложке...
Тип: Изобретение
Номер охранного документа: 0002675408
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a99f

Конструкция высокопрочных датчиков

Изобретение относится к области авиационной техники, диагностики технического состояния конструкций из полимерных композиционных, металлических и гибридных материалов с использованием волоконно-оптических акустических средств встроенного контроля. Конструкция высокопрочного датчика деформации...
Тип: Изобретение
Номер охранного документа: 0002675411
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a9dd

Фотодетекторный свч модуль

Изобретение относится к области радиотехники, а именно к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и активных фазированных антенных решеток (АФАР) для связи, радиолокации, радионавигации и радиоэлектронной борьбы. Фотодетекторный СВЧ модуль включает...
Тип: Изобретение
Номер охранного документа: 0002675409
Дата охранного документа: 19.12.2018
26.12.2018
№218.016.ab9c

Фильтрующий пакет, способ получения мембраны для него и способ изготовления противоаэрозольного фильтра противогаза

Изобретение относится к области получения противоаэрозольных фильтров из волокнистых фильтрующих материалов. Фильтрующий слой изготовлен из полиакрилонитрильных нановолокон. Нановолокна получены методом электроформования по технологии Nanospider из раствора полиакрилонитрила с концентрацией...
Тип: Изобретение
Номер охранного документа: 0002675924
Дата охранного документа: 25.12.2018
27.12.2018
№218.016.ac66

Способ получения фильтрующего материала и фильтрующий материал

Изобретение относится к области получения высокоэффективных волокнистых фильтрующих материалов. Фильтрующий материал представляет собой трехслойную композицию, в которой один из слоев выполнен из полимерных (полиакрилонитрильных) нановолокон, полученных методом электроформования, и размещен...
Тип: Изобретение
Номер охранного документа: 0002676066
Дата охранного документа: 25.12.2018
29.12.2018
№218.016.ac71

Мощный импульсный свч фотодетектор

Изобретение относится к области разработки и изготовления мощных фоточувствительных полупроводниковых приборов на основе GaAs, в частности к импульсным полупроводниковым сверхвысокочастотным (СВЧ) фотодетекторам. Мощный импульсный СВЧ фотодетектор лазерного излучения на основе гетероструктуры...
Тип: Изобретение
Номер охранного документа: 0002676228
Дата охранного документа: 26.12.2018
Showing 1-1 of 1 item.
07.09.2018
№218.016.83a8

Бронематериал фронтального слоя бронепанели

Изобретение относится к области материалов многослойных бронепанелей, использующихся для индивидуальной защиты и для защиты вооружения, военной и специальной техники. Композиционный бронематериал включает карбид бора и армирующие волокна. При этом материал дополнительно содержит полимерное...
Тип: Изобретение
Номер охранного документа: 0002666195
Дата охранного документа: 06.09.2018
+ добавить свой РИД