×
05.10.2018
218.016.8f54

СПОСОБ МОДИФИКАЦИИ КАТИОНООБМЕННЫХ СОРБЕНТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области получения полимер-неорганических сорбентов. Предложен способ, включающий насыщение катионообменного сорбента ионами железа (III) и последующую обработку сорбента в растворе хлорида натрия при повышенной температуре с формированием в структуре композита наноразмерных кристаллов оксигидрата железа β-модификации (акаганеита). Техническим результатом является получение сорбента, эффективного для удаления F и Cl из растворов сложного солевого состава. 1 з.п. ф-лы, 1 табл., 4 пр.
Реферат Свернуть Развернуть

Изобретение относится к области гидрометаллургии, в частности к способам получения сорбентов, пригодных для очистки технологических растворов от ионов галогенидов, которые могут быть использованы для удаления галогенидов из технологических растворов и сточных вод металлургического, химического и других производств, а также при проведении операций водоподготовки. Для получения сорбента с заданными технологическими характеристиками производили модификацию катионообменных смол нанокристаллами сорбционно-активных соединений железа, преимущественно β-FeO(OH) акаганеита.

Во множестве работ соединения железа рассмотрены как вещества, обладающие перспективными сорбционными свойствами. Известны способы удаления Cr, As, антимонитов, фосфатов, броматов, кремниевой кислоты, ионов Cd и F, с помощью акаганеита из водных растворов. [Jianhai Zhao, Wei Lin, Qigang Chang, Wenpu Li & Yanping Lai Adsorptive characteristics of akaganeite and its environmental applications: a review / Environmental Technology Reviews (2012) 114-126; F. Kolbe, H. Weiss, P. Morgenstern, R. Wennrich, W. Lorenz, K. Schurk, H. Stanjek, B. Daus Sorption of aqueous antimony and arsenic species onto akaganeite / Journal of Colloid and Interface Science 357 (2011) 460-465; Gaowa Naren, Hironori Ohashi, Yoshihiro Okaue, Takushi Yokoyama Adsorption kinetics of silicic acid on akaganeite / Journal of Colloid and Interface Science 399 (2013) 87-91; Jun Cai, Jia Liu, Zi Gao, Alexandra Navrotsky and Steven L. Suib Synthesis and Anion Exchange of Tunnel Structure Akaganeite / Chem. Mater. 2001, 13, 4595-4602] Среди преимуществ акаганеита зарубежными исследователями [Патент США US 8597519 В2. Hiroshi Hata, Kenji Haiki, Kazuhiko Nishina, Masatami Sakata Fluorine adsorbent/desorbent applicable in electrolytic solution for zinc electro-refining and method for removing fluorine using the fluorine adsorbent/desorbent] отмечается высокая по сравнению с другими неорганическими соединениями емкость по фторид-иону, а также химическая устойчивость в кислых средах, вплоть до pH 1.

Из уровня техники известен способ получения сорбента на основе гидроксида трехвалентного железа на частицах носителя из целлюлозных волокон, включающий приготовление исходной водной дисперсии, содержащей хлорид или сульфат трехвалентного железа и фибриллированные целлюлозные волокна, которые содержат (в мас. %) не менее 95% волокон с длиной не более 1,20 мм и не менее 55% волокон с длиной не более 0,60 мм и имеют сорбционную емкость по отношению к частицам гидроксида трехвалентного железа не менее 2500 масс.ч. на 100 масс.ч. волокон, обработку дисперсии гидроксидом натрия с образованием частиц гидроксида трехвалентного железа и их иммобилизацией на волокнах с получением композиционного сорбента, содержащего 2000-2500 масс.ч. гидроксида трехвалентного железа на 100 мас.ч. волокон, и отделение сорбента от жидкой фазы [Патент RU 2527240 С1. Мазитов Л.А., Финатов А.Н., Финатова И.Л. Способ получения сорбентов на основе гидроксида трехвалентного железа на носителе из целлюлозных волокон]. Недостатком способа является невозможность использования получаемого сорбента в проточном режиме.

Известен способ получения сорбента, содержащего оксигидрат металла, включающий его осаждение в виде гидрогеля путем взаимодействия соли металла с щелочью в присутствии органического вещества, его выдержку и фильтрацию с последующей сушкой и гранулированием готового продукта, отличающийся тем, что во взаимодействие с щелочью вступает растворимая в воде соль трехвалентного железа, реакцию между исходными веществами ведут в слабощелочной среде, затем добавляют калий двухромовокислый в молярном соотношении хрома и железа 0,1:0,125:1, в качестве органического вещества добавляют нитрилметил фосфоновую кислоту при молярном соотношении с железом 0,01:0,07:1, а после добавления НТФ доводят до pH до 3,5-4,5 с последующим вымыванием бихромата калия раствором аммиака [Патент РФ 2082494. Сухарев Ю.И., Сухарева И.Ю., Лепп Я.Н. Способ получения сорбента]. Недостатком данного способа является продолжительный процесс синтеза (до 7 суток).

Известен способ получения сорбента для очистки природных и сточных вод, включающий смешивание измельченной опоки с дополнительными компонентами и формование, отличающийся тем, что на смешение подают 1 кг опоки, измельченной до размера 0,001 мм в поперечнике, 0,2 кг тонкоизмельченного катионита КУ-2×8, 0,2 кг тонкоизмельченного анионита АВ-17, 1 кг портландцемента 500, и 1,5 кг 10%-ного раствора хлорида натрия, компоненты смешивают до получения тестообразной массы, массу пропускают через шнековый измельчитель, полученные колбаски высушивают, обрабатывают острым паром при 180°С до полного схватывания и выдерживают в проточной воде до отрицательной реакции на хлорид-ионы [Патент РФ RU 2399412 С2. Алыков Н.М., Никитина Ю.Е. Способ получения сорбента для очистки природных и сточных вод]. Недостатком способа является низкая емкость получаемого сорбента.

Известен способ получения полимер-неорганического сорбента [US 20050156136 A1. Arup SenGupta, Luis Cumbal Method of manufacture and use of hybrid anion exchanger for selective removal of contaminating ligands from fluids] на основе анионообменных смол, с использованием оксигидрата железа в качестве модификатора. Полимерные аниониты используются в качестве материалов-носителей, в которых гидратированные оксиды Fe (III) (ОГЖ), необратимо диспергируются в зернах ионообменника. Поскольку аниониты имеют положительно заряженные четвертичные аммониевые функциональные группы, анионные лиганды, такие как арсенаты, хроматы, оксалаты, фосфаты, фталаты могут проникать в гелевую фазу и выходить из нее и не подвергаются эффекту исключения Доннана. Следовательно, анионообменник с нанесенными на него микрочастицами ОГЖ обладают значительно большей способностью удалять мышьяк и другие лиганды по сравнению с катионообменными носителями. Загрузка частиц ОГЖ осуществляется путем предварительного насыщения анионообменной смолы с помощью окисляющего аниона, такого как MnO4- или ОСl, с последующим пропусканием через смолу раствора сульфата железа.

Наиболее близким по технической сути является способ получения полимер-неорганических композитных сорбентов, включающий обработку пористой полимерной матрицы, способной поглощать органические растворители или набухать в упомянутых растворителях, концентрированным раствором соли металла в полярном растворителе, выбранном из ряда спиртов, кетонов и диметоксиметана, или в водно-спиртовом растворе, и последующее превращение содержащейся в обработанной полимерной матрице соли металла под действием водного раствора щелочи или фосфорной кислоты в нерастворимое соединение из ряда гидроксидов, оксидов или фосфатов соответствующего металла, обладающих сорбционными свойствами. [Патент RU 2527217 С1. Пастухов А.В., Никитин Н.В., Даванков В.А. Способ получения полимер-неорганических композитных сорбентов (прототип)]

К недостаткам описанного способа относятся большое количество операций, продолжительное время синтеза и применение органических растворителей с целью достижения высокого содержания внедряемого активного вещества. Формируемые в результате реагентной обработки соединения железа (гидроксиды и фосфаты) не обладают заметной емкостью по фтору и хлору.

Изобретение направлено на получение сорбента, использующего преимущества нанокристаллического оксигидрата железа.

Задачей изобретения является разработка способа получения композитного сорбента, способного к поглощению ионов фтора и хлора.

Техническим результатом, достигаемым при реализации изобретения, является получение композитного сорбента на основе катионообменного ионита, в котором наряду с сульфгидрильными и карбоксильными группами присутствуют нанокристаллические структуры типа β-FeO(OH).

Технический результат достигается за счет формирования в фазе катионита нанокристаллических структур типа акаганеита.

Выдержка при температуре 85-95°С обеспечивает максимальную степень гидролиза железа (III). Образующиеся в результате гидроксиды железа претерпевают фазовые превращения при выдержке в хлоридсодержащем растворе в течение 18-24 ч. Время, требуемое для осуществления фазовых превращений уменьшается с повышением температуры [Прокопенко В.А., Лавриненко Е.Н., Мамуня С.В., Буданкова С.Н., Влияние значений pH среды на формирование структур в системе Fe0-H2O-O2 / Наноструктурное материаловедение, 2008, №1, с. 59-72]. Свойства сорбентов, синтезированных при разных условиях приведены в таблице 1.

Применение акаганеита в качестве активного сорбирующего вещества позволяет получить сорбент, способный поглощать F- и Cl-, а также ионы некоторых металлов. Использование в качестве носителя катионообменной смолы позволяет применять полученный сорбент в кислых средах, вплоть до pH 1,5 без опасности загрязнения раствора железом, а также решает проблему фильтрации пульпы, содержащей ультрадисперсные частицы и гидратные гели. Вместе с тем распределение акаганеита внутри зерен ионита обеспечивает большую площадь контакта сорбционно-активного агента с раствором.

Заявляемый способ модификации катионообменного органического сорбента включает термическую обработку предварительно насыщенного железом катионита в растворе хлорида натрия при температуре 85-95°С, в течение 18-24-х часов, обеспечивающую формирование закрепленных в полимерной матрице нанокристаллов акаганеита, обладающего сорбционными свойствами по отношению к ионам фтора. Соотношение хлорида натрия к количеству железа в исходном растворе предпочтительно составляет 1:7

То есть поставленная задача решается за счет насыщения катионообменных ионитов ионами железа (III) с последующей термической обработкой в присутствии ионов хлора, в результате которой происходит формирование сорбционно-активного соединения железа в фазе ионита.

Железо поглощается ионитом по ионообменному механизму, что предполагает использование катионитов и не требует применения полярных растворителей на этапе насыщения смолы металлом.

Таким образом, по сравнению с прототипом предлагаемый способ получения полимерных композитных сорбентов имеет существенные отличия.

Сущность изобретения поясняется следующими примерами.

Пример 1

Получение композитного сорбента на основе сильнокислотного катионита гелевого типа. Катионит марки КУ-2×8, массой 1 г в Н+ форме приводили в контакт с 10 см3 раствора Fe2(SO4)3, с концентрацией железа 5,5 г/дм3, время контакта 24 ч. После насыщения катионита железом ионит отделяли и промывали дистиллированной водой. Затем, насыщенный ионит помещали в раствор NaCl, концентрацией 5 г/дм3, таким образом достигая отношения хлорида в растворе 1:7 по отношению к количеству железа в ионите, объемом 10 см3 и выдерживали при температуре 85°С в течение 24 ч. После чего модифицированный ионит отмывали от хлоридного раствора до отрицательной реакции на Сl-.

Содержание железа в композитном сорбенте составило 7,4%. При сорбции фтора из раствора с концентрацией [F-] - 46,2 мг/дм3, в результате концентрация была снижена до 23,7 мг/дм3, емкость полученного сорбента составила 1,125 мг/г.

Пример 2

Получение композитного сорбента на основе сильнокислотного катионита гелевого типа. Катионит марки КУ-2×8, массой 1 г в Н+ форме приводили в контакт с 10 см3 раствора FeCl3, с концентрацией железа 5,5 г/дм3, время контакта 24 ч. После насыщения катионита железом ионит отделяли и промывали дистиллированной водой. Затем, насыщенный ионит помещали в раствор NaCl, концентрацией 5 г/дм3, таким образом достигая отношения хлорида в растворе 1:7 по отношению к количеству железа в ионите, объемом 10 см3 и выдерживали при температуре 95°С в течение 18 ч. После чего модифицированный ионит отмывали от хлоридного раствора до отрицательной реакции на Сl-.

Содержание железа в композитном сорбенте составило 8,3%. При сорбции фтора из раствора с концентрацией [F-] - 46,2 мг/дм3, в результате концентрация была снижена до 23,6 мг/дм3, емкость полученного сорбента составила 1,12 мг/г.

Пример 3

Получение композитного сорбента на основе сильнокислотного катионита гелевого типа. Катионит марки КУ-23, массой 1 г в Н+ форме приводили в контакт с 10 см3 раствора Fe2(SO4)3, с концентрацией железа 5,5 г/дм3, время контакта 24 ч. После насыщения катионита железом ионит отделяли и промывали дистиллированной водой. Затем, насыщенный ионит помещали в раствор NaCl, концентрацией 5 г/дм3, таким образом достигая отношения хлорида в растворе 1:7 по отношению к количеству железа в ионите, объемом 10 см3 и выдерживали при температуре 85°С в течение 24 ч. После чего модифицированный ионит отмывали от хлоридного раствора до отрицательной реакции на Сl-.

Содержание железа в композитном сорбенте составило 6,77%. При сорбции фтора из раствора с концентрацией [F-]=46,2 мг/дм3, в результате концентрация была снижена до 34,2 мг/дм3, емкость полученного сорбента составила 0,6 мг/г.

Пример 4

Получение композитного сорбента на основе сильнокислотного катионита гелевого типа. Катионит марки КУ-23, массой 1 г в Н+ форме приводили в контакт с 10 см3 раствора FeCl3, с концентрацией железа 5,5 г/дм3, время контакта - 24 ч. После насыщения катионита железом ионит отделяли и промывали дистиллированной водой. Затем, насыщенный ионит помещали в раствор NaCl, концентрацией 5 г/дм3, таким образом достигая отношения хлорида в растворе 1:7 по отношению к количеству железа в ионите, объемом 10 см3 и выдерживали при температуре 95°С в течение 18 ч. После чего модифицированный ионит отмывали от хлоридного раствора до отрицательной реакции на Сl-.

Содержание железа в композитном сорбенте составило 4,93%. Полученный образец использовали для сорбции фтора из раствора с концентрацией [F-]=46,2 мг/дм3, в результате концентрация фтора была снижена до 26,1 мг/дм3, емкость сорбента составила 0,995 мг/г.

Источник поступления информации: Роспатент

Showing 1-10 of 25 items.
26.08.2017
№217.015.ee66

Генератор гидроэлектроэнергии

Изобретение относится к гидроэнергетике, в частности к гидроэнергетическим установкам, и может быть использовано для круглогодичного получения гидроэлектроэнергии в различных естественных и искусственных водоемах, имеющих нулевую скорость потока воды, а также для повышения эффективности их...
Тип: Изобретение
Номер охранного документа: 0002628942
Дата охранного документа: 23.08.2017
04.04.2018
№218.016.35dd

Способ получения сорбента для извлечения урана из подземной воды

Изобретение относится к извлечению урана из подземных вод. Способ включает синтез сорбционной композиции из механоактивированного шунгита, прокаленного фосфогипса и модифицирующего раствора в соотношении 1:1:1. Синтез ведут гранулированием и модифицированием сорбционной композиции на одной...
Тип: Изобретение
Номер охранного документа: 0002646297
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.4668

Способ прокатки трапециевидных профилей

Изобретение относится к прокатному производству и может быть использовано для получения трапециевидных профилей, служащих, в частности, заготовками для волочения коллекторных полос, используемых в производстве электрических машин постоянного тока. Способ включает прокатку прямоугольной...
Тип: Изобретение
Номер охранного документа: 0002650464
Дата охранного документа: 13.04.2018
18.05.2018
№218.016.50fe

Система оценки педагогической квалификации преподавателя вуза

Изобретение относится к области образовательной деятельности в системе высшего образования и предназначено для сертификации преподавателей вузов по основным характеристикам их педагогической квалификации. Технический результат полезной модели заключается в повышении достоверности оценки...
Тип: Изобретение
Номер охранного документа: 0002653287
Дата охранного документа: 07.05.2018
04.07.2018
№218.016.6ac8

Способ профилирования заднего конца цилиндрической трубной заготовки для прокатки в трехвалковых станах винтовой прокатки

Настоящее изобретение относится к обработке металлов давлением и может быть использовано при прокатке трубных заготовок в трехвалковых станах винтовой прокатки. Способ позволяет спрофилировать на заднем конце трубной заготовки усеченный конус перед прокаткой в трехвалковом стане винтовой...
Тип: Изобретение
Номер охранного документа: 0002659559
Дата охранного документа: 02.07.2018
09.08.2018
№218.016.7908

Термолюминофор

Изобретение относится к области низкотемпературной дозиметрии рентгеновского, а также смешанного электронного и гамма-излучения с использованием термолюминесцентных датчиков – термолюминофоров. Предложен термолюминофор на основе фторида натрия, который дополнительно содержит фторид лития и...
Тип: Изобретение
Номер охранного документа: 0002663296
Дата охранного документа: 03.08.2018
09.08.2018
№218.016.7936

Способ и устройство определения поверхностного натяжения и/или плотности металлических расплавов

Группа изобретений относится к технической физике, в частности к определению параметров металлических расплавов путем фотометрии силуэта лежащей на подложке эллипсовидной капли образца расплава, и может быть использована в лабораторных исследованиях, на металлургических предприятиях, в вузах....
Тип: Изобретение
Номер охранного документа: 0002663321
Дата охранного документа: 03.08.2018
11.10.2018
№218.016.90c4

Термолюминофор

Изобретение относится к области низкотемпературной термолюминесцентной дозиметрии рентгеновского и гамма-излучения. Термолюминофор для низкотемпературной ТСЛ-дозиметрии на основе алона AlON, синтезированного из химически чистого α-AlO и нитрида алюминия, содержащего ряд примесей, при этом имеет...
Тип: Изобретение
Номер охранного документа: 0002668942
Дата охранного документа: 05.10.2018
11.10.2018
№218.016.90d7

Устройство бесконтактного определения вязкости образцов металлических расплавов

Изобретение относится к технической физике, а именно к устройствам для определения, контроля и измерения физических параметров веществ, и предназначено для бесконтактного измерения кинематической вязкости образцов высокотемпературных металлических расплавов, выполненных, например, на основе...
Тип: Изобретение
Номер охранного документа: 0002668958
Дата охранного документа: 05.10.2018
01.11.2018
№218.016.9861

Способ коррекции постгеморрагической анемии

Изобретение относится к экспериментальной медицине и может быть использовано для ускорения восстановления количества эритроцитов и гемоглобина у крыс после кровопотери, являющейся моделью постгеморрагической анемии. Для этого животным вводят внутримышечно MoFe - нанокластерный...
Тип: Изобретение
Номер охранного документа: 0002671077
Дата охранного документа: 29.10.2018
Showing 1-10 of 11 items.
20.08.2014
№216.012.ec7e

Устройство для выщелачивания

Изобретение относится к химии и гидрометаллургии, в частности к устройству для выщелачивания металлов и их соединений. Устройство содержит конический реактор с крышкой, нижним патрубком ввода и верхним патрубком вывода реакционной смеси. В нем имеется узел принудительной циркуляции, состоящий...
Тип: Изобретение
Номер охранного документа: 0002526350
Дата охранного документа: 20.08.2014
10.12.2014
№216.013.0f09

Способ аффинажа серебра

Изобретение относится к металлургии благородных металлов, в частности к способу аффинажа серебра. Способ включает химическое растворение исходного сырья, очистку раствора от примесей и получение чистого серебра из очищенного раствора. Серебро осаждают из раствора в виде хлорида. Затем хлорид...
Тип: Изобретение
Номер охранного документа: 0002535266
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.183c

Устройство для выщелачивания благородных металлов

Изобретение относится к металлургии. Устройство для выщелачивания благородных металлов включает конический реактор с крышкой, патрубками ввода и вывода реакционной смеси, узел для принудительной циркуляции, состоящий из насоса и соединительных труб. Узел принудительной циркуляции снабжен...
Тип: Изобретение
Номер охранного документа: 0002537632
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2637

Способ извлечения золота из теллуристых руд и концентратов

Изобретение относится к области металлургии цветных и благородных металлов, в частности к способу извлечения золота из теллуристых руд и концентратов. Исходное сырье обрабатывают раствором, содержащим 1-10 г/л сульфита натрия, 0,1-1 мг/л растворенного кислорода, при рН=10-11. После обработки...
Тип: Изобретение
Номер охранного документа: 0002541236
Дата охранного документа: 10.02.2015
10.05.2015
№216.013.487d

Способ переработки медеэлектролитного шлама

Изобретение относится к области металлургии цветных и благородных металлов, в частности к переработке шламов электролитического рафинирования меди. Способ переработки медеэлектролитного шлама включает обезмеживание, обогащение и выщелачивание селена из обезмеженного шлама или продуктов его...
Тип: Изобретение
Номер охранного документа: 0002550064
Дата охранного документа: 10.05.2015
20.11.2015
№216.013.8fd9

Способ извлечения серебра из серебросодержащих рентгеновских фотопленок

Изобретение относится к металлургии цветных металлов, а именно к способу извлечения серебра из пленок. Способ включает измельчение пленки, обработку измельченной пленки в деструктирующем растворе, содержащем панкреатин, разделение пленки, раствора и серебросодержащего осадка. При этом...
Тип: Изобретение
Номер охранного документа: 0002568441
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a150

Способ переработки электронного лома, преимущественно электронных плат

Изобретение относится к переработке радиоэлектронного лома, в частности электронных плат. Исходное сырье измельчают, обогащают методами электрической и магнитной сепарации, из полученных концентратов извлекают благородные металлы, хвосты обогащения распульповывают в воде при отношении Ж:Т не...
Тип: Изобретение
Номер охранного документа: 0002572938
Дата охранного документа: 20.01.2016
26.08.2017
№217.015.de1b

Способ цианистого выщелачивания золота и серебра

Изобретение относится к гидрометаллургии и может быть использовано при выщелачивании металлов из руд, концентратов и хвостов обогащения. Способ может быть использован в процессах переработки сырья благородных металлов, в частности, при цианистом выщелачивании золота и серебра из руд и...
Тип: Изобретение
Номер охранного документа: 0002624751
Дата охранного документа: 06.07.2017
29.12.2017
№217.015.fb00

Способ извлечения благородных металлов из растворов

Способ осаждения благородных металлов может быть использован в технологиях переработки сырья драгоценных металлов, в частности после стадии цианистого выщелачивания золота и серебра из руд и концентратов. Показатели осаждения благородных металлов улучшаются за счет сочетания процессов...
Тип: Изобретение
Номер охранного документа: 0002640212
Дата охранного документа: 27.12.2017
04.04.2018
№218.016.31c1

Способ извлечения благородных металлов из цианистых растворов

Изобретение относится к металлургии благородных металлов, в частности к извлечению благородных металлов из растворов. Способ включает контактирование цианистых растворов с осаждающим компонентом, в качестве которого используют порошки цинка или алюминия, нанесенные на фильтровальную бумагу....
Тип: Изобретение
Номер охранного документа: 0002645168
Дата охранного документа: 16.02.2018
+ добавить свой РИД