×
04.10.2018
218.016.8f0b

Результат интеллектуальной деятельности: Способ получения длинномерных цилиндрических стержней из материалов на основе Ti-Al-C

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, в частности к получению длинномерных цилиндрических стержней из материалов на основе Ti-Al-C. Может быть использовано для получения электродных материалов при электролизе цветных металлов. Способ включает предварительное перемешивание исходных компонентов смеси порошков титана, алюминия и сажи в молярном соотношении 3Ti-xAl-2C, где 1≤х≤2,5, и прессование исходной смеси в цилиндрическую заготовку. Осуществляют нагрев заготовки до температуры 50-300°C и инициируют реакцию самораспространяющегося высокотемпературного синтеза, после чего проводят пластическое деформирование синтезированного материала через формующую матрицу с углом конусной части матрицы 120-180° при скорости перемещения плунжера пресса 60-100 мм/с. Способ обеспечивает получение материалов с заданным составом, позволяет упростить технологический процесс и увеличить производительность. 2 з.п. ф-лы, 7 пр.

Область техники

Изобретение относится к области порошковой металлургии, в частности к получению длинномерных цилиндрических стержней из материалов на основе Ti-Al-C методом самораспространяющегося высокотемпературного синтеза (СВС) и последующего горячего пластического деформирования, и может быть использовано для получения электродных материалов при электролизе цветных металлов.

Уровень техники

Известен способ получения компактных материалов системы Ti2AlC из исходных компонентов Ti, Al и С методом горячего спекания. Сущность метода заключается в следующем. Производят подготовку смеси порошков Ti, Al и С, добавляя диспергатор стеарат натрия в смесь, выполняют сухое размалывание шарами до механического получения сплава и мелкого порошка TiAl, TiC. Загружают полученную смесь в графитовую оболочку и спекают под давлением в аргоне или вакууме (CN 1958514 (А), С04В 35/56, 05.09.2007). Недостатками данного способа являются: низкая производительность процесса за счет использования дополнительных операций по размалыванию исходных порошков и получению механического сплава; большие энергетические затраты на нагрев и спекание смеси; использование дополнительного диспергатора стеарата натрия, что снижает чистоту полученного продукта и как следствие снижает эксплуатационные характеристики жаростойких покрытий. При этом в способе также возникают трудности при изготовлении длинномерных стержней при соотношении их длины к диаметру более 2-3.

Известен способ получения материалов системы Ti3AlC2 методом самораспространяющегося высокотемпературного синтеза при сочетании с одноосным прессованием. Сущность способа заключается в предварительном перемешивании исходных компонентов титана, алюминия и сажи, масс. %: 73,7:15,2:11,1; 67,7:23,8:8,5; 64,6:27,3:8,1, прессовании полученной смеси в исходную цилиндрическую заготовку, помещение ее между прессовыми рамами, инициирование реакции самораспространяющегося высокотемпературного синтеза, одноосное прессование синтезируемого материала (Y. Khoptiar, I. Gotman, and E.Y. Gutmanas "Pressure-Assisted Combustion Synthesis of Dense Layered Ti3AlC2 and Mechanical Properties", J. Am.Ceram. Soc, 2005, Vol. 88, No.1, pp. 28-33). Недостатками данного способа являются следующие признаки. При данном способе необходим нагрев прессовых рам, между которых находится спрессованная заготовка синтезируемого материала, что увеличивает энергетические затраты процесса, а также технологическое время на нагрев прессовых рам перед синтезом материала, что приводит к снижению производительности процесса.

Наиболее близким по технической сущности к заявляемому изобретению является способ получения материалов на основе Ti-Al-C (RU 2479384 C1, С04В 35/56, С22С 1/03, 20.04.2013), который включает предварительное перемешивание исходных компонентов титана, алюминия и сажи, прессование полученной смеси в исходную цилиндрическую заготовку, инициирование реакции самораспространяющегося высокотемпературного синтеза, причем исходные компоненты титана, алюминия и сажи берут в соотношении, масс. %: 59,2-71,5 (Ti): 24,0-33,4 (Al): 4,5-7,4 (С) и после реакции горения производят горячее пластическое деформирование через формующую матрицу с диаметром выходного отверстия 1-20 мм при температуре 1350-1500°C и временем задержки 3-7 секунд. Недостатком указанного прототипа является сложность контролирования температуры при горении, при которой необходимо осуществить пластическое деформирование синтезированного материала.

Раскрытие изобретения

Техническим результатом предлагаемого способа является упрощение технологического процесса получения длинномерных стержней, увеличение производительности процесса, получение материалов с заданным составом.

Технический результат достигается тем, что в способе получения длинномерных цилиндрических стержней из материалов на основе Ti-Al-C, включающем предварительное перемешивание исходных компонентов смеси порошков титана, алюминия и сажи, прессование исходной cмеси в цилиндрическую заготовку, инициирование реакции самораспространяющегося высокотемпературного синтеза (СВС) и пластическое деформирование синтезированного материала через формующую матрицу, новым является то, что исходные порошки титана, алюминия и сажи берут в молярном соотношении: 3Ti-xAl-2C, где количество алюминия соответствует 1≤х≤2,5, при этом перед инициированием реакции СВС заготовку нагревают до температуры 50-300°C, а пластическое деформирование осуществляют через формующую матрицу с углом конусной части 120-180°, при скорости перемещения плунжера пресса 60-100 мм/с.

Способ характеризуется частными случаями его реализации.

Так, деформирование синтезированного материала осуществляют в кварцевый калибр, диаметр которого меньше отверстия матрицы на 0,5-2 мм, перед установкой в пресс-форму исходной цилиндрической заготовки, на матрицу могут устанавливать заглушку из алюминиевого или медного сплава толщиной 0,1-1 мм.

Сущность изобретения заключается в следующем.

Смешивают исходные порошковые компоненты титана, алюминия, сажи в молярном соотношении 3Ti-xAl-2C, где количество алюминия соответствует 1<=х<=2,5. При х<1 доля пластичной фазы при горении исходных компонентов мала, из-за чего формование продуктов горения

затруднительно, либо невозможно. При х>2,5 снижается температура и скорость горения выбранного состава, что, как следствие, приводит к потере пластичности продуктов горения и закупорке выходного отверстия матрицы. При соотношении 1<=х<=2,5 материал обладает наилучшей способностью к формованию и получению готовых изделий. Из полученной смеси порошков формуют заготовку диаметром 30 мм, высотой 45-50 мм и относительной плотностью 0,5-0,7. Перед установкой в пресс-форму исходной цилиндрической заготовки, на матрицу могут устанавливать заглушку из алюминиевого или медного сплава толщиной 0,1-1 мм. При толщине менее 0,1 мм заглушка сгорает при синтезе, при толщине более 1 мм ухудшает экструзию синтезированного материала. Заглушку целесообразно использовать для минимизирования дефектной части экструдированного стержня и при их длине менее 100 мм. Полученную заготовку нагревают в печи до 50-300°C. Без предварительного нагрева исходной заготовки до 50°C синтезируемый материал не способен пластически деформироваться и закупоривает матрицу, что выводит ее из рабочего состояния. При нагреве более 300°C происходит самовоспламенение исходной заготовки в печи. В пресс-форму помещают кварцевый калибр, который улучает качество получаемого стержня. При этом диаметр калибра меньше отверстия матрицы на 0,5-2 мм для дополнительного обжатия экструдируемого материала. При этом соотношении менее 0,5 дополнительного обжатия не происходит, а при соотношении более 2 мм - качество выдавленного стержня снижается. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью реакцию горения в режиме СВС и синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с углом конусной части 120-180°, при скорости перемещения плунжера пресса 60-100 мм/с. В результате получают длинномерные стержни из материалов на основе МАХ-фазы системы Ti-Al-C длиной до 160 мм. При угле конусной части матрицы менее 120° - качество выдавленного стержня неудовлетворительное. При скорости перемещения плунжера пресса менее 60 мм/с материал за счет быстрого остывания не успевает полностью экструдироваться через формующую матрицу, а при скоростях более 100 мм/с материал не консолидируется.

Приведенная схема процесса СВС-экструзии для данного стехиометрического состава 3Ti-xAl-2C позволяет производить выдавливание образцов при температуре, соответствующей температуре горения, без использования дополнительных датчиков температуры и дополнительной теплоизоляции, что снимает необходимость в контролировании и регулировании температуры выдавливания.

Также данная схема при указанном стехиометрическом составе позволяет увеличить выход годного продукта на 30-35% по сравнению с прототипом по причине более высокой полноты выдавливания бездефектного образца.

Варьированием количества исходных компонентов титана, алюминия и сажи в исходной заготовке, а также технологического режима процесса получения, возможно изготавливать длинномерные стержни с заданной структурой.

Сущность предлагаемого способа подтверждается следующими примерами.

Пример 1.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):l(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 50 мм и массой 50 г, нагревают в печи до 150°C. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 3 секунды при скорости перемещения плунжера пресса 60 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 8 мм и углом конусной части 180°. В результате получен цилиндрический стержень диаметром 8 мм и длиной 130 мм. Фазовый состав полученного стержня соответствует масс %.: 90(Ti3AlC2), 10(TiC).

Пример 2.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):1(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 50 мм и массой 50 г, нагревают в печи до 50°C. Перед установкой нагретой заготовки в пресс-форму на матрицу устанавливают заглушку из алюминиевого сплава толщиной 0,1 мм. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 2,8 секунды при скорости перемещения плунжера пресса 80 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 10 мм при использовании направляющего калибра диаметром 8 мм (диаметр калибра меньше диаметра матрицы на 2 мм) и углом конусной части 120°. В результате получен цилиндрический стержень диаметром 8 мм и длиной 120 мм. Фазовый состав полученного стержня соответствует масс %.: 85(Ti3AlC2), 15(TiC).

Пример 3.

В условиях примера 1, формуют из смешанных порошков заготовку диаметром 30 мм, высотой 45 мм и массой 50 г, нагревают в печи до 50°C. Перед установкой нагретой заготовки в пресс-форму на матрицу устанавливают заглушку из медного сплава толщиной 0,5 мм. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 1 секунды при скорости перемещения плунжера пресса 100 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 10 мм и углом конусной части 160° при использовании направляющего кварцевого калибра диаметром 8 мм (диаметр калибра меньше диаметра матрицы на 2 мм). В результате получен цилиндрический стержень диаметром 8 мм и длиной 90 мм. Фазовый состав полученного стержня соответствует масс %.: 80(Ti3AlC2), 20(TiC).

Пример 4.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):1,5(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 50 мм и массой 50 г, нагревают в печи до 300°C. Перед установкой нагретой заготовки в пресс-форму на матрицу устанавливают заглушку из алюминиевого или медного сплав толщиной 1 мм. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 4 секунды при скорости перемещения плунжера пресса 100 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 10 мм, кварцевым направляющем калибром диаметром 8 мм (диаметр калибра меньше диаметра матрицы на 2 мм) и углом конусной части 180°. В результате получен цилиндрический стержень диаметром 8 мм и длиной 90 мм. Фазовый состав полученного стержня соответствует масс %.: 86(Ti3AlC2), 9 (TiC), 5(TiAl3).

Пример 5.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):2(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 43 мм и массой 50 г, нагревают в печи до 300°C. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 4,9 секунды при скорости перемещения плунжера пресса 100 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 10 мм, кварцевым направляющем калибром диаметром 8 мм (диаметр калибра меньше диаметра матрицы на 2 мм) и углом конусной части 180°. В результате получен цилиндрический стержень диаметром 8 мм и длиной 150 мм. Фазовый состав полученного стержня соответствует масс %.: 53 (Ti3AlC2), 40(TiC), 7(TiAl3).

Пример 6.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):2,3(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 48 мм и массой 50 г, нагревают в печи до 300°C. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 8 секунды при скорости перемещения плунжера пресса 100 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 12 мм, кварцевым направляющем калибром диаметром 11 мм (диаметр калибра меньше диаметра матрицы на 1 мм) и углом конусной части 180°. В результате получен цилиндрический стержень диаметром 11 мм и длиной 115 мм. Фазовый состав полученного стержня соответствует масс %.: 46 (Ti3AlC2), 42(TiC), 12 (TiAl3).

Пример 7.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):2,5(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 50 мм и массой 50 г, нагревают в печи до 300°C. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 4,1 секунды при скорости перемещения плунжера пресса 100 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 9,5 мм, кварцевым направляющем калибром диаметром 8 мм (диаметр калибра меньше диаметра матрицы на 0,5 мм) и углом конусной части 180°. В результате получен цилиндрический стержень диаметром 8 мм и длиной 200 мм. Фазовый состав полученного стержня соответствует масс %.: 49 (Ti3AlC2), 36(TiC), 15(TiAl3).

Таким образом, предлагаемая совокупность признаков изобретения позволяет получать длинномерные цилиндрические стержни из материалов на основе Ti-Al-C без контролирования температуры, при которой необходимо пластически деформировать синтезированный материал через формующую матрицу, что позволяет упростить технологический процесс получения длинномерных стержней, и соответственно увеличить производительность заявляемого способа. Полученные материалы могут быть использованы в качестве электродных материалов при электролизе цветных металлов.

Источник поступления информации: Роспатент

Showing 111-120 of 230 items.
25.08.2017
№217.015.d04d

Способ футеровки катода электролизера для получения первичного алюминия

Изобретение относится к способу футеровки катодных устройства электролизеров для получения алюминия. Способ включает засыпку и выравнивание теплоизоляционного слоя в кожух катодного устройства, засыпку, выравнивание и уплотнение огнеупорного слоя, установку подовых и бортовых блоков с...
Тип: Изобретение
Номер охранного документа: 0002621197
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d052

Способ получения сплава на основе алюминия и устройство для осуществления способа

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения сплава алюминий-скандий в условиях промышленного производства. Способ получения сплава на основе алюминия, содержащего 1-3 мас.% скандия, включает приготовление и расплавление смеси, содержащей...
Тип: Изобретение
Номер охранного документа: 0002621207
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d0d4

Способ мокрой очистки отходящих газов электролизных корпусов производства алюминия

Изобретение относится к цветной металлургии и может быть использовано для очистки отходящих газов электролизных корпусов производства алюминия от остатков фтористого водорода и соединений серы с получением в качестве товарного продукта сульфата натрия. Способ мокрой очистки отходящих газов...
Тип: Изобретение
Номер охранного документа: 0002621334
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.dc92

Анодное устройство алюминиевого электролизера

Изобретение относится к анодному устройству алюминиевого электролизера с обожженными анодами и может быть применено с целью оптимизации ширины корпуса электролиза при поперечном расположении электролизеров. Анодное устройство содержит балку-коллектор с вертикальными опорными стойками,...
Тип: Изобретение
Номер охранного документа: 0002624275
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dd34

Устройство для сбора и эвакуации газов из алюминиевого электролизера

Изобретение относится к устройству для сбора и эвакуации анодных газов из-под укрытия электролизера с обожженными анодами для получения алюминия. Устройство для сбора и эвакуации анодных газов из-под укрытия электролизера с обожженными анодами через газосборные окна посредством газоотводящих...
Тип: Изобретение
Номер охранного документа: 0002624559
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e36f

Устройство для дозированной подачи сырья в алюминиевый электролизер

Изобретение относится к устройству для дозированной подачи сырья в алюминиевый электролизер. Устройство содержит бункер дозируемого материала, камеру дозирования с впускным и выпускным отверстиями и фланцем, шток с приводом, установленный в защитном кожухе с кольцевым ребром, которое соединено...
Тип: Изобретение
Номер охранного документа: 0002626261
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e89d

Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства

Изобретение может быть использовано в химической технологии. Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства включает обработку фторсодержащих растворов гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция,...
Тип: Изобретение
Номер охранного документа: 0002627431
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.e8a6

Способ получения карбида кремния

Изобретение относится к неорганической химии и касается технологии получения карбида кремния восстановлением в электрических печах сопротивления. Способ включает дозирование кремнеземсодержащих материалов и углеродистых восстановителей, загрузку их в электрическую печь сопротивления и ведение...
Тип: Изобретение
Номер охранного документа: 0002627428
Дата охранного документа: 08.08.2017
29.12.2017
№217.015.f6d7

Способ совмещенного непрерывного литья, прокатки и прессования металлической заготовки и устройство для его реализации

Изобретение относится к металлургии и может быть использовано для получения профилей, катанки, секторных жил. Устройство содержит роторный кристаллизатор 3, формирующий непрерывную литую заготовку 4, валок 7 с ручьем и валок 8 с выступом, образующие рабочий калибр, матрицу 9 на выходе из...
Тип: Изобретение
Номер охранного документа: 0002639203
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f72e

Способ литья изделий из алюминиевых сплавов

Изобретение относится к области металлургии алюминия, в частности к технологии внепечного модифицирования, и может быть использовано для получения слитков из алюминиевых сплавов повышенного качества для изготовления изделий авиакосмической и автомобильной промышленности. Способ литья изделий...
Тип: Изобретение
Номер охранного документа: 0002639105
Дата охранного документа: 19.12.2017
Showing 51-53 of 53 items.
16.05.2023
№223.018.6099

Способ измерения давления газа внутри замкнутого объёма (полого шара)

Изобретение относится к области порошковой металлургии, в частности к аддитивным технологиям и селективному лазерному спеканию при получении изделий из металлических и керамических порошков. Изобретение может быть использовано для измерения давления газа внутри закрытых пор в порошковых...
Тип: Изобретение
Номер охранного документа: 0002740341
Дата охранного документа: 13.01.2021
27.05.2023
№223.018.7078

Способ получения градиентных материалов на основе мах-фаз системы ti-al-c

Изобретение относится к области технологии самораспространяющегося высокотемпературного синтеза (СВС), в частности, к получению изделий методом СВС-штамповки. Изобретение может быть использовано для получения градиентных материалов на основе МАХ-фаз системы Ti-Al-C, применяемых в авиационной,...
Тип: Изобретение
Номер охранного документа: 0002786628
Дата охранного документа: 22.12.2022
17.06.2023
№223.018.7e8d

Катодное устройство алюминиевого электролизера

Изобретение относится к металлургии алюминия электролизом расплавленных солей, в частности к катодному устройству электролизера, и касается конструкции верхнего пояса продольных и торцевых стенок катодного кожуха. Катодное устройство электролизера для производства алюминия содержит...
Тип: Изобретение
Номер охранного документа: 0002770602
Дата охранного документа: 18.04.2022
+ добавить свой РИД