×
03.10.2018
218.016.8ccb

Результат интеллектуальной деятельности: Солнечный опреснитель с параболоцилиндрическими отражателями

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для дистилляции минерализованных, загрязненных или морских вод посредством использования только солнечной энергии для нагрева воды. Солнечный опреснитель содержит концентратор солнца на параболоцилиндрических отражателях, оснащенных консолями с отверстиями, в которых размещены испаряющие трубы, расположенные в фокусе отражателей, а система слежения за солнцем состоит из гидроцилиндра, шток которого механически соединен с его поршнем и через рычаги с консолями отражателей, герметичного бака, содержащего минеральное масло с рабочим телом и маслопроводом, соединяющим гидроцилиндр с баком, причем конденсатор со сборником дистиллята выполнен из прозрачного корпуса, частично погруженного в резервуар опресняемой воды, и содержит теплоаккумулирующий материал с дополнительной испарительной поверхностью, над которой размещен один конец паропровода, другой его конец соединен с выходами испаряющих труб, входы последних посредством трубопровода подключены к резервуару опресняемой воды. Испаряющие трубы заключены в прозрачные внешние оболочки, из которых выкачан воздух, а со стороны солнца на оболочках размещены зеркальные отражатели по всей их длине и в половину диаметров испаряющих труб. В верхней зоне корпуса конденсатора размещена конденсатная собирающая влагу сетка, закрепленная на сторонах корпуса. На дополнительной испарительной поверхности и на внутренней поверхности испаряющих труб размещена съемная термостойкая ткань. Изобретение обеспечивает упрощение конструкции и повышение надежности опреснителя и его производительности. 3 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для дистилляции минерализованных, загрязненных или морских вод (далее по тексту: морских вод) посредством использования только солнечной энергии для нагрева воды.

Известны многочисленные дистилляционные установки, использующие дополнительно электрическую энергию для привода различных механизмов в опреснителях, для создания необходимых температур в их испарителях или конденсаторах.

Известен, например, «Тонкопленочный параболоцилиндрический коллектор» [1], содержащий на опорах набор жестких ребер, пространственно разнесенных вдоль длины системы аккумулирования солнечной энергии и образующих параболическую кривизну на отражающих пленках, систему слежения за солнцем с жесткой сцепкой с ребрами и трубы в фокусе парабол с текучей средой, при этом система управления перемещает тросы системы слежения синхронно, с целью вращать систему аккумулирования солнечной энергии в направление на солнце так, чтобы солнечный свет, падающий на отражающую пленку, отражался на трубу с текучей средой, нагревая ее.

Задача настоящего изобретения состоит в эффективном аккумулировании солнечной энергии с наименьшими затратами и повышении точности слежения за солнцем. Недостатком данного устройства является отсутствие узлов получения пресной воды.

Известно также «Собирающее устройство для солнечной энергии» [2], содержащее отражающий элемент, имеющий в поперечном сечении изогнутую форму, выполненную с отражающей внутренней поверхностью, обращенной к солнцу, и установленный наклонно принимающий элемент, расположенный по линейной фокальной оси отражающего элемента, принимающий отраженную солнечную радиацию и соединенный с циркуляционной системой, содержащей жидкость, причем жидкостный объем ограничен подпружиненными сильфонами, принимающий элемент выполнен из нескольких тонкостенных параллельных труб, жидкость в циркуляционной системе представляет собой раствор имеющий точку кипения около 120 градусов Цельсия, а циркуляционная система снабжена тепловым аккумулятором с теплообменником и нагревательным элементом. Данное оригинальное устройство было бы целесообразно использовать для опреснения воды при температуре от 100 до 120 градусов, однако узлы конденсации и очистки опресненной воды не предусмотрены. Другим недостатком этого устройства является малый объем собираемой им солнечной энергии, зависящий от площади ее сбора, которая в данном варианте незначительна.

Наиболее близким техническим решением является «Солнечный опреснитель» [3], содержащий корпус, установленный на опорном устройстве, размещенные в нем концентратор солнечного излучения и испарительную камеру, заполненную жидкостью, центральная часть последней установлена в фокусе концентратора, снабжена паропроводом со сборником дистиллята. Кроме того, имеется система слежения за солнцем, состоящая из баллонов с легкокипящей жидкостью, трубопроводов от них к гидроцилиндрам, перемещающим концентраторы на опорном устройстве. Данное устройство должно иметь достаточно высокий КПД, однако устройство весьма сложно в эксплуатации за счет сосредоточения узлов ориентации на солнце, узлов испарения и конденсации в одном корпусе, расположенном на шарнирной опоре. При погружении в водоем следует ожидать его неустойчивую работу даже при слабой волне, а в режиме использования на суше потребуются дополнительные регулируемые во времени разновысотные опоры.

Кроме того, данный опреснитель не предназначен для получения больших объемов дистиллированной воды и не решает проблему очистки и удаления накипи, шламов и других отходов, содержащихся в морской, минерализованной или технической опресняемой воде.

Задачей предполагаемого изобретения является устранение вышеуказанных недостатков и создание солнечного опреснителя с более высокой производительностью.

Технический результат предлагаемого изобретения заключается в следующем:

- увеличена производительность за счет пространственного разделения конструкций нагревателя, конденсатора и устройства слежения за солнцем, что позволяет создать большие поверхности для улавливания солнечной энергии и более эффективные приемы ее дальнейшего использования;

- упрощена конструкция опреснителя, использующего перемещение штока гидроцилиндра при расширении объема рабочих тел в герметичном баке, заполненным минеральным маслом;

- упрощена конструкция и увеличена производительность конденсатора с прозрачным корпусом, нижняя охлаждаемая часть которого размещена в опресняемой воде, а внутри конденсатора на теплоизолирующем слое размещен теплоаккумулирующий материал с дополнительной испаряющей поверхностью;

- увеличена производительность опреснителя за счет размещения испаряющих труб внутри прозрачных оболочек из которых выкачан воздух, а со стороны излучения солнца на оболочках размещены по их длине зеркальные отражатели в половину диаметров оболочек;

- увеличена производительность опреснителя за счет размещения в верхней зоне корпуса конденсатора дополнительной конденсатной сетки;

- увеличена долговечность (надежность) опреснителя путем размещения на испарительной поверхности теплоаккумулирующего материала в конденсаторе и на внутренней поверхности испаряющих труб съемной термостойкой ткани.

Технический результат достигается за счет того, что в солнечном опреснителе с концентратором солнечного излучения, испарительной камерой, заполненной жидкостью, установленной в фокусе концентратора, резервуаром опресняемой воды, трубопроводом, паропроводом, сборником дистиллята и системой слежения за солнцем, управляемой перемещением концентратора на солнце посредством штока гидроцилиндра, концентратор выполнен в виде параболоцилиндрических отражателей, оснащенных консолями с отверстиями, в которых размещены испаряющие трубы испарительной камеры, расположенные в фокусе отражателей, а система слежения состоит из гидроцилиндра, шток которого механически соединен через рычаги с консолями отражателей, герметичного бака, содержащего минеральное масло с рабочими телами и маслопроводом, соединяющим гидроцилиндр с баком. Конденсатор в данном опреснителе со сборником дистиллята выполнен из прозрачного корпуса, погруженного частично в резервуар опресняемой воды, и содержит теплоаккумулирующий материал с дополнительной испарительной поверхностью, над которой размещен один конец паропровода, другой его конец соединен с выходами испаряющих труб испарительной камеры, а входы последних посредством трубопровода подключены к резервуару опресняемой воды.

Кроме того, технический результат достигается также за счет того, что испаряющие трубы заключены в прозрачные внешние оболочки из которых выкачан воздух, а со стороны излучения солнца на оболочках по всей длине размещены зеркальные отражатели в половину их диаметров.

Технический результат достигается так же за счет того, что в верхней зоне конденсатора размещена конденсатная сетка, закрепленная на сторонах корпуса, а на испарительной поверхности теплоаккумулирующего материала в конденсаторе и на внутренней поверхности испарительных туб размещена съемная термостойкая ткань.

На чертеже, Фиг. 1, изображен «Солнечный опреснитель с параболоцилиндрическими отражателями», общий вид, поясняющий принцип его работы, а на Фиг. 2 представлен в разрезе чертеж испаряющей трубы опреснителя, оснащенной дополнительными узлами.

Солнечный опреснитель содержит испарительную камеру, состоящую из нескольких параболоцилиндрических отражателей 1, закрепленных на консолях 2 с отверстиями 3 в которых свободно размещены в фокусе отражателей съемные испаряющие трубы 4, соединенные с подающим воду трубопроводом 5 и отводящим пар или пароводяную смесь паротрубопроводом 6, причем консоли оснащены рычагами 7 поворота отражателей и шарнирно соединены с общей тягой 8 этих рычагов.

Наклоном отражателей на направление солнца управляет система слежения 9, состоящая из штока 10, соединенного с тягой рычагов и с поршнем 11, заключенным в гидравлический цилиндр 12, соединенный с герметичным баком 13, маслопроводом 14, причем бак заполнен рабочими телами 15 с большим температурным коэффициентом расширения и свойством аккумулирования тепла, например, гранулами пластмассы и кристаллогидратами неорганических солей в качестве теплоаккумулирующего материала, например, MgCl2*6H2O, имеющего температуру плавления 116 градусов Цельсия [16], с. 60, а так же -минеральным маслом 16.

Конденсатор 17 пара состоит из прозрачного корпуса 18, в верхней части которого размещена конденсатная собирающая влагу сетка 19 или волокнистый туманоулавливающий фильтр [7], выполняющий задачу увеличения конденсационной поверхности, желобов 20 для отбора пресной воды и отводящих ее патрубков 21, слоя 22 теплоизоляции в основании корпуса, на котором размещен теплоаккумулирующий материал 23 с дополнительной испаряющей поверхностью 24 в зоне выхода (конца) паротрубопровода, причем основание корпуса может размещаться в резервуаре 25 или непосредственно в бассейне с соленой водой на опорах 26.

Для химической очистки растворами дополнительной испарительной поверхности в конденсаторе может использоваться дополнительный заливной патрубок 27, а для механической очистки используется съемное тканевое покрытие 28 из эластичного материала, укладываемое на испарительную поверхность в конденсаторе и во внутрь испаряющих труб (Фиг. 2), которое удаляется вместе со шламом через размыкаемую по линии А-А верхнюю часть корпуса и по необходимости в процессе загрязнения съемных испаряющих труб. В качестве такого покрытия может использоваться керамический текстиль [8].

Вокруг испаряющих труб (Фиг. 2) устанавливается прозрачная внешняя оболочка 29, из которой выкачан воздух, а со стороны излучения солнца на оболочках размещены отражатели (зеркальная пленка) 30 по всей длине оболочек и в половину диаметров испаряющих труб.

Регулирование объема поступающей воды на испарение осуществляется вентилем 31.

«Солнечный опреснитель с параболоцилиндрическими отражателями» работает следующим образом (Фиг. 1). Корпус 18 конденсатора 17 расположен на опорах 26 непосредственно в водоеме (река, море) или в резервуаре 25, откуда через вентиль 31 соленая (загрязненная) вода по трубопроводу 5 поступает в съемные испаряющие трубы 4, находящие в фокусе параболоцилиндрических отражателей 1.

При движении солнца по небосводу интенсивность его излучения в течение дня изменяется и воздействует на герметичный бак 13, внутри которого находятся рабочие тела 15 с большим коэффициентом температурного расширения и свойством аккумулирования тепловой энергии, а также минеральное масло 16. Рабочие тела 15 при увеличении солнечной инсоляции нагреваются, увеличиваются в объеме и выдавливают масло 16 через маслопровод 14 в гидравлический цилиндр 12, поршень 11 которого передвигается и через свой шток 10, соединенный с общей тягой 8 воздействует на рычаги 7 поворота консолей 2 отражателей 1, устанавливая последние по направлению на солнце.

После прохождения солнцем верхней точки на небосводе в полуденное время, за счет тепловой инерции энергии, накопленной аккумулирующим материалом, система слежения продолжает по инерции перемещать наклон параболоцилиндрических отражателей вслед за движением солнца. В вечерние часы, когда интенсивность солнца ослабевает, происходит обратный процесс: рабочее тело 15 уменьшается в объеме, освобождая объем для масла 16, поршень 11 смещается в направление к дну цилиндра, увлекая через шток 10 и общую тягу 8 рычаги 7 консолей 2, которые наклоняют отражатели 1 в исходное положение.

В зависимости от величины солнечной инсоляции в испаряющих трубах 4, находящихся все время благодаря системе слежения за солнцем 9 в фокусе отражателей 1, может формироваться либо паровая фаза, либо пароводяная смесь, которые подаются в конденсатор 17 по паропроводу 6. В случае поступления по паропроводу 6 во внутрь прозрачного корпуса 18 пара, последний поднимается в его верхнюю часть, конденсируется на конденсатной собирающей влагу сетке 19 и на холодных стенках корпуса, стекает и накапливается в желобах 20, откуда отводится по патрубкам 21 в сборник дистиллята (не показан на чертеже).

Разделение на верхнюю и нижнюю части корпуса может производиться, например, по линии А-А, при этом нижняя часть корпуса 18 может быть выполнена из другого более прочного материала.

Поскольку нижняя часть корпуса 18 погружена в воду, стенки его верхней конденсационной части всегда находятся в охлажденном состоянии.

Солнечные лучи, проходя через прозрачную верхнюю часть корпуса 18, нагревают и накапливают внутри корпуса тепловую энергию в теплоаккумулирующем материале 23. В случае слабой солнечной инсоляции в испаряющих трубах 4 может образовываться не сухой пар, а пароводяная смесь. В этом случае пароводяная смесь, поступающая в корпус 18 по паропроводу 6, разделяется в корпусе на пар и воду. Пар, как и в предыдущем случае поднимается к верху корпуса на конденсацию, а вода, падающая на дополнительную испарительную поверхность 24 теплоаккумулирующего материала 23 также испаряется и поступает на конденсацию, что увеличивает производительность установки, работающей при разных погодных условиях.

Производительность опреснителя так же будет увеличена (Фиг. 2) при заключении испарительных труб 4 во внешнюю прозрачную (например, стеклянную) оболочку 29, из которой выкачан воздух. Солнечные лучи, отражаясь от параболоцилиндрических отражателей 1 с большей тепловой энергией концентрируются на трубах 4, поскольку воздух плохой проводник тепла. Кроме того, на оболочках 29 со стороны солнца размещены зеркальные (пленочные) отражатели 30, которые возвращают во внутрь оболочек часть вторичного теплового излучения от отражателей, которое могло уходить наружу оболочек.

Накипь, шлам, осадок, в том числе полезных солей и металлов, содержащихся в морской и технической воде, накапливается как в съемных испаряющих трубах 4, так и на дополнительной испарительной поверхности 24, осаждаясь на покрытии 28.

Испаряющие трубы 4 могут быть съемными и после их длительной эксплуатации необходимо очищать химическим или механическим способом. Дополнительную испарительную поверхность 24 возможно промывать химическими растворами, подаваемыми и удаляемыми через дополнительный патрубок 27. Для исключения осадка на внутренней поверхности испаряющих труб 4 (Фиг. 2), также на дополнительной испарительной поверхности 24 (Фиг. 1) предлагается размещать дополнительное эластичное съемное покрытие 28 [8]. После накоплении на покрытии 28 слоя осадка, оно удаляется через съемную верхнюю часть корпуса и устанавливается новое чистое покрытие 28. Аналогично удаляется покрытие 28 (Фиг. 2) из съемных испаряющих труб 4 во время их профилактического обслуживания.

Предлагаемый «Солнечный опреснитель с параболоцилиндрическими отражателями» имеет высокую производительность, не потребляет внешней дополнительной электрической энергии, конструктивно прост и может быть выполнен как в малоразмерном варианте, например, для одного хозяйства, так и в крупногабаритном исполнении для нужд автономного поселения. Учитывая изложенное, следует ожидать его масштабного внедрения.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Пруеимм Мелвин Л. (US). Тонкопленочный параболоцилиндрический солнечный коллектор. Евразийский патент 013199 В1. МПК F24J 2/38 (аналог).

2. Холгер Меллер (FI). Собирающее устройство для солнечной энергии. Патент РФ №2107232. МПК F24J 2/44. Патентообладатель Хелиотхерм (FI) (аналог).

3. Ашурлы З.И.О., Гаджиев М. Г. и др. Солнечный опреснитель. Патент РФ №2044692. МПК C02F 1/14 (прототип).

4. Долинский О.А. и др. Солнечный опреснитель. Авторское свидетельство СССР №1611873. МПК С02Р 1/14(аналог).

5. Дикий Н.А. и др. Солнечный опреснитель. Авторское свидетельство СССР №1370387. МПК F24J 2/32 (аналог).

6. Слесаренко В.Н., Панасенко А.А. Способ опреснения морских вод и устройство для его осуществления. Патент РФ №2453352. МПК B01D 1/22 (аналог).

7. Туманоуловители волокнистые. Типы и основные параметры. ГОСТ Р 50821-95.

8. Ткани керамические. Эксклюзивный текстиль.[электронный ресурс] http://rus-kit.Rosbizinfo.ru; рус - кит.рф.

9. Рахматулин И.Р. Гелиоопреснительная установка с устройством слежения. Патент РФ на полезную модель №144634. МПК C02F 1/14 (аналог).

10. Кирпичникова И.М., Соломин Е.В. и др. Гелиоопреснительная установка. Патент РФ на полезную модель №127063. МПК C02F 1/4 (аналог).

11. Огребков Д.С, Безруких П.П. Солнечный модуль с концентратором. Варианты. Патент РФ на изобретение №2204769. МПК F24J 2/14 (аналог).

12. Патент Германии DE 4406365 (аналог).

13. Патент США №4196717 А, 1977 (аналог).

14. Патент США №4363703 А, 1988 (аналог).

15. Патент Японии №10080688 А, 1988 (аналог).

16. Левенберг В.Д., Ткач М.Р., Гольстрем В.А. Аккумулирование тепла. К., Техника. 1991, 112 с.


Солнечный опреснитель с параболоцилиндрическими отражателями
Солнечный опреснитель с параболоцилиндрическими отражателями
Солнечный опреснитель с параболоцилиндрическими отражателями
Источник поступления информации: Роспатент

Showing 31-40 of 207 items.
25.08.2017
№217.015.b13a

Быстровозводимое каркасное здание

Изобретение относится к области строительства, в частности к быстровозводимым каркасным зданиям. Технический результат изобретения заключается в повышении прочности конструкции. Быстровозводимое каркасное здание содержит фундамент, стены, межэтажные перекрытия. Стены здания состоят из двух...
Тип: Изобретение
Номер охранного документа: 0002613060
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b162

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора используют ионит...
Тип: Изобретение
Номер охранного документа: 0002613238
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b171

Литая латунь

Изобретение относится к области металлургии, в частности к составу многокомпонентных деформируемых медных сплавов, содержащих Zn, Mn, Al, Si, Ni, Cr и предназначенных для получения литых заготовок, подвергающихся пластической обработке для изготовления деталей, работающих в условиях повышенного...
Тип: Изобретение
Номер охранного документа: 0002613234
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b181

Навигационная система зондирования атмосферы

Изобретение относится к радиотехнике и может быть использовано в системах радиозондирования атмосферы на основе использования сигналов глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат - повышение точности и надежности определения пространственных координат...
Тип: Изобретение
Номер охранного документа: 0002613153
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b207

Порошковая проволока для нанесения покрытий, стойких к абразивному износу и высокотемпературной коррозии

Изобретение относится к области металлургии, а именно к порошковым проволокам для нанесения покрытий, и может быть использовано для защиты поверхности деталей, работающих в условиях воздействия частиц абразива и высоких температур. Порошковая проволока состоит из стальной оболочки и сердечника,...
Тип: Изобретение
Номер охранного документа: 0002613118
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b44e

Способ неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев методом рентгеноструктурного анализа

Использование: для неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев. Сущность изобретения заключается в том, что выбирают место контроля и строят градуировочную кривую для каждого вида полуфабрикатов, получают дифракционный спектр...
Тип: Изобретение
Номер охранного документа: 0002614023
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b452

Способ количественного определения триазавирина методом вольтамперометрии (варианты)

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002614022
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b568

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Устройство содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор...
Тип: Изобретение
Номер охранного документа: 0002614181
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b57e

Способ определения статического давления в некалиброванной камере высокого давления

Изобретение относится к измерительной технике и может быть использовано для определения величин давления (в том числе высоких и сверхвысоких) и интервалов давлений в камерах синтеза материалов, а также при проведении исследований конденсированных фаз в условиях высоких давлений. Для...
Тип: Изобретение
Номер охранного документа: 0002614197
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b595

Способ определения антиоксидантной активности с использованием метода электронно-парамагнитной резонансной спектроскопии

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности (АОА). Сущность заявляемого способа заключается в том, что определение АОА проводят по разности количества парамагнитных частиц...
Тип: Изобретение
Номер охранного документа: 0002614365
Дата охранного документа: 24.03.2017
Showing 31-40 of 46 items.
19.07.2018
№218.016.7249

Способ и устройство разогрева двигателей внутреннего сгорания

Изобретение относится к запуску двигателей внутреннего сгорания. Способ подогрева двигателя внутреннего сгорания с жидкостным охлаждением, при котором во время работы двигателя теплоаккумулирующее вещество теплоаккумулятора нагревают от тепла выхлопных газов до температуры превышающей...
Тип: Изобретение
Номер охранного документа: 0002661561
Дата охранного документа: 17.07.2018
27.10.2018
№218.016.9750

Мобильный гелиоопреснитель

Изобретение относится к устройствам для дистилляции морских, загрязненных или минерализованных вод посредством использования только солнечной энергии. В корпусе опреснителя установлено последовательно несколько пар металлических листов с образованием зон конденсации, между листами в каждой паре...
Тип: Изобретение
Номер охранного документа: 0002670928
Дата охранного документа: 25.10.2018
21.03.2019
№219.016.eb72

Устройство для пассивного отвода избыточной тепловой энергии из внутреннего объема защитной оболочки объекта (варианты)

Изобретение относится к устройству для пассивного отбора избыточной тепловой энергии от промышленных объектов, АЭС и ТЭЦ без использования внешних источников энергии и оборудования. В кольцевом двухфазном термосифоне, заполненном рабочей жидкостью, испарительный теплообменник размещен в...
Тип: Изобретение
Номер охранного документа: 0002682331
Дата охранного документа: 19.03.2019
23.03.2019
№219.016.ec8c

Система регулируемого аварийного отвода энерговыделений активной зоны реактора аэс

Изобретение относится к атомной энергетике, а именно к системам аварийного отвода энерговыделений активной зоны ядерного реактора с жидкометаллическим теплоносителем. Система регулируемого аварийного отвода энерговыделений активной зоны реактора АЭС содержит автономный контур воздушного...
Тип: Изобретение
Номер охранного документа: 0002682722
Дата охранного документа: 21.03.2019
31.05.2019
№219.017.7195

Устройство для производства воды из воздуха

Устройство предназначено для получения пресной воды из атмосферного воздуха. Устройство для производства воды из воздуха содержит источник сжатого воздуха, подключенный через регулирующий вентиль к входу вихревой трубы Ранка-Хирша. С «горячего» и «холодного» выходов вихревой трубы потоки...
Тип: Изобретение
Номер охранного документа: 0002689592
Дата охранного документа: 28.05.2019
09.06.2019
№219.017.7fb4

Роторный ветрогидродвигатель

Изобретение относится к роторным энергоустановкам, использующим кинетическую энергию ветра или потока воды для преобразования ее в механическую энергию. Роторный ветрогидродвигатель содержит вал, соединенный с дисками, между которыми установлены на периферии на своих осях лопасти с возможностью...
Тип: Изобретение
Номер охранного документа: 0002464443
Дата охранного документа: 20.10.2012
02.10.2019
№219.017.cdc7

Устройство для увеличения объемов извлекаемого биогаза с полигонов твердых бытовых отходов

Использование: обезвреживание полигонов ТБО и свалок органических отходов путем создания в скважинах условий для увеличения объемов добываемого биогаза и его полезного использования. Сущность изобретения: устройство содержит погруженные в скважины полигона газосборные перфорированные трубы,...
Тип: Изобретение
Номер охранного документа: 0002700817
Дата охранного документа: 23.09.2019
27.12.2019
№219.017.f2ba

Приливная гэс

Изобретение относится к конструкциям автономных приливных бесплотинных электростанций небольшой мощности и может быть использовано для преобразования энергии морских течений (приливов-отливов) в электрическую энергию. Назначение: обеспечение энергией удаленных потребителей, лишенных...
Тип: Изобретение
Номер охранного документа: 0002710135
Дата охранного документа: 24.12.2019
27.12.2019
№219.017.f2eb

Установка для производства воды из сухого атмосферного воздуха

Изобретение относится к области водоснабжения. Установка содержит аккумулятор холода, водосборник и воздуховод в виде вытяжной трубы с нагревателем воздуха, соединенным с солнечным коллектором. В качестве аккумулятора холода использован грунт, в который помещен дополнительно введенный...
Тип: Изобретение
Номер охранного документа: 0002710187
Дата охранного документа: 24.12.2019
22.01.2020
№220.017.f8d3

Устройство для пассивного отвода избыточной тепловой энергии от объекта

Изобретение относится к области электроэнергетики. Устройство для пассивного отвода избыточной тепловой энергии от объекта содержит теплообменник на объекте, теплообменник внешний, расположенный в водоеме, и трубопроводы, соединяющие теплообменники. Введены в устройство герметичный...
Тип: Изобретение
Номер охранного документа: 0002711404
Дата охранного документа: 17.01.2020
+ добавить свой РИД