×
25.09.2018
218.016.8aed

ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002667822
Дата охранного документа
24.09.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области космической техники. Плазменный ускоритель с замкнутым дрейфом электронов включает по меньшей мере один катод-компенсатор, разрядную систему, содержащую разрядную камеру, образованную со стороны выхода внутренним и наружным кольцами, примыкающими соответственно к внутреннему и наружному торцам полого магнитного анода. Анод состоит из внешней и внутренней магнитопроводящей стенок, между которыми образована полость газового распределителя с каналами подвода и инжекции рабочего тела в разрядную камеру. Магнитная система содержит магнитопровод, внутренний и наружный магнитные полюса, по меньшей мере один источник намагничивающей силы, а также внутреннюю магнитопроводящую стенку анода, расположенную с немагнитными зазорами относительно внутреннего и наружного магнитных полюсов. Соответственно внешняя стенка полого анода выполнена из магнитопроводящего материала так, что по меньшей мере прианодная область в разрядной камере магнитоизолирована. Каналы инжекции рабочего тела во внутренней магнитопроводящей стенке могут быть выполнены по всей толщине или ограниченно конфузорной или диффузорной формы. Во внутренней части внутренней магнитопроводящей стенки выполнены дополнительные каналы инжекции рабочего тела в разрядную камеру, которые расположены в азимутальном направлении чередованием между собой, а относительно ускоряемого потока плазмы под углом. Изобретение позволяет повысить эффективность работы плазменного ускорителя и технологичность его изготовления. 2 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к области космической техники и может быть использовано в электроракетных двигателях (ЭРД), например в стационарных плазменных двигателях (называемых также по зарубежной классификации как Холловские двигатели) и двигателях с анодным слоем, а также в технологических плазменных ускорителях, применяемых в вакуумно-плазменной технологии.

Высокие удельные параметры и характеристики ускорителей заряженных частиц и плазменных потоков, на физическом принципе которых разрабатываются стационарные плазменные двигатели (СПД) и двигатели с анодным слоем (ДАС), достигаются при формировании определенной структуры магнитного поля в ускорительном канале. Действующая поперек ускорительного канала в направлении от анода до выхода (среза) канала разрядной камеры радиальная составляющая магнитного поля должна иметь нарастающий характер. Так, если в области среза ускорительного канала должен располагаться максимум радиальной составляющей магнитного поля , уровень которого составляет порядка от 14-16 мТл, что достаточно для функционирования плазменного ускорителя, то в прианодной области напротив, уровень магнитного поля должен быть минимальным (в действующих образцах порядка от 2 до 4 мТл). Такая структура магнитного поля позволяет обеспечить требуемый градиент радиальной составляющей индукции магнитного поля. Проведенные исследования показали, что предельное снижение уровня магнитного поля в прианодной области, где осуществляется непосредственная подача нейтрального рабочего газа в ускорительном канале до входа в зону ионизации и ускорения, предпочтительней вплоть до близкого к нулевому или даже может быть отрицательным [A.I. Bugrova, A.D. Desiatskov, H.R. Kaufman, et al. Design and Experimental Investigation of a Small Closed Drifet Thruster // IEPC-2001-344, 27th IEPC International Electric Propulsion Conference, Pasadena, CA, 15-19 October, 2001], что способствует лучшей организации и эффективности процесса ионнообразования и последующего их ускорения [Н.В. Белан, В.П. Ким, А.И. Оранский, В.Б. Тихонов. Стационарные плазменные двигатели // Харьков: Харьк. авиац. ин-т, 1989].

Известен плазменный ускоритель (или двигатель) с замкнутым дрейфом электронов, включающий катод-компенсатор, разрядную камеру с зонами ионизации и ускорения, образованную полым анодом, охватывающим зону ионизации, внутренним и наружным кольцами, примыкающими, соответственно, к внутреннему и наружному краю полого анода, содержащего газораспределитель с каналами подвода рабочего тела и каналами инжекции рабочего тела в разрядную камеру, и магнитную систему, содержащую магнитопровод, внутренний и наружный магнитные полюса, наружные и внутренний источники намагничивающей силы и коаксиальный магнитный экран, охватывающий разрядную камеру с внешних сторон, края которого расположены относительно соответствующих магнитных полюсов с зазорами [Патент РФ №2045134, кл.6 H05H 1/54, F03H 1/00].

Такой известный плазменный ускоритель с замкнутым дрейфом электронов имеет ряд недостатков.

Основной недостаток заключается в том, что невозможно предельно снизить уровень магнитного поля непосредственно перед анодом в зоне подачи рабочего газа из-за достаточно удаленного размещения коаксиального магнитного экрана от прианодной области, находящейся внутри ускорительного канала, что предопределено наличием между ними промежуточного узла конструкции в виде разрядной камеры, толщина стенок которой и определяет расстояние между ними.

Другим недостатком известного плазменного ускорителя является сложность его конструкции вследствие большого количества отдельных элементов различного функционального назначения, которые требуется независимо закрепить и компактно разместить в ограниченном объеме.

Известен плазменный ускоритель с замкнутым дрейфом электронов, принятый за прототип, включающий катод-компенсатор, разрядную систему, содержащую разрядную камеру, образованную со стороны выхода внутренним и наружным кольцами, примыкающими, соответственно, к внутреннему и наружному торцам полого магнитного анода, состоящий из внешней и внутренней магнитопроводящей стенок, между которыми образована полость газового распределителя с каналами подвода и инжекции рабочего тела в разрядную камеру, и магнитную систему, содержащую магнитопровод, внутренний и наружный магнитные полюса, источники намагничивающей силы, а также внутреннюю магнитопроводящую стенку анода, расположенную с немагнитными зазорами относительно внутреннего и наружного магнитных полюсов, соответственно [Патент РФ №2191487, H05H 1/54, F03H 1/00].

Выполнение в конструкции полого анода-газораспределителя такого известного плазменного ускорителя, в сравнении с известным аналогом, внутренней стенки из электротехнического материала позволило существенно снизить общий уровень магнитного поля, действующего непосредственно внутри полости анода при помощи локального магнитного экранирования. Одновременно с этим дополнительно упростилась конструкция за счет совмещения разнородных функций в одном элементе анода и, соответственно, уменьшения количества используемых элементов в целом.

Однако и такому известному плазменному ускорителю присущи недостатки.

Снижение уровня магнитного поля в прианодной области за счет эффекта магнитного экранирования при помощи коаксиального магнитного экрана, функции которого выполняет наиболее близко расположенная к рабочей полости внутренняя стенка полого магнитного анода, достигается в ограниченной узкой зоне, которая в несколько раз меньше ширины ускорительного канала (десятая часть ширины). Такая магнитоизолированная зона, в которой магнитное поле мало или равно нулю, в большинстве случаев располагается вблизи середины ускорительного канала, а иногда со смещением от нее, при этом вокруг нее магнитное поле продолжает действовать, вследствие чего условия, способствующие эффективности процесса ионообразования по всей ширине канала, распределены неравномерно. Таким образом, полностью нейтрализовать действующее магнитное поле локально в прианодной области с обеспечением условия по всей ширине канала и, тем самым, "растянуть" ядро ионнообразования в поперечном направлении канала, сформировав вместо точечного ядра целую обширную магнитоизолированную зону только при помощи одного коаксиального магнитного экрана не возможно.

Другим недостатком известного плазменного ускорителя является усложненная технология изготовления такого анода-газораспределителя. Так для обеспечения герметичных соединений деталей изготавливаемых из разных материалов, необходимо осуществлять парный подбор материалов из условия близости их коэффициентов термического линейного расширения (КТЛР), что для разнородных материалов достаточно проблематично, а потому для их совместимости приходиться прибегать к дополнительным промежуточным переходным элементам конструкции, что усложняет конструкцию и технологию изготовления.

При создании изобретения решались задачи повышения эффективности работы плазменного ускорителя и его технологичности изготовления.

Указанный технический результат достигается тем, что в плазменном ускорителе с замкнутым дрейфом электронов, включающим по меньшей мере один катод-компенсатор, разрядную систему, содержащую разрядную камеру, образованную со стороны выхода внутренним и наружным кольцами, примыкающими, соответственно, к внутреннему и наружному торцам полого магнитного анода, состоящего из внешней стенки и внутренней магнитопроводящей стенки, расположенной с немагнитными зазорами относительно внутреннего и наружного магнитных полюсов, соответственно, между которыми образована полость газового распределителя с каналами подвода и инжекции рабочего тела в разрядную камеру, и магнитную систему, содержащую магнитопровод, внутренний и наружный магнитные полюса, по меньшей мере, один источник намагничивающей силы, согласно изобретению, внешняя стенка полого анода выполнена из магнитопроводящего материала так, что, по меньшей мере, прианодная область в разрядной камере магнитоизолирована.

Каналы инжекции рабочего тела во внутренней магнитопроводящей стенке могут быть выполнены по всей толщине или ограниченно конфузорной или диффузорной формы.

Во внутренней части внутренней магнитопроводящей стенки могут быть выполнены дополнительные каналы инжекции рабочего тела в разрядную камеру, которые расположены в азимутальном направлении чередованием между собой, а относительно ускоряемого потока плазмы под углом.

Выполнение внешней стенки полого анода из магнитопроводящего материала позволяет решить задачу по повышению эффективности работы плазменного ускорителя

путем магнитного изолирования (или эффекта магнитного экранирования) по меньшей мере прианодной области в разрядной камере за счет эффекта двойного магнитного экранирования (локальное изолирование распространения действия магнитного поля) при помощи полого магнитного анода, стенки которого эквидистантны между собой и отстоят друг от друга с зазором. Конструкция такого полого магнитного анода позволяет сформировать в прианодной области обширную магнитоизолированную зону по всей ширине ускорительного канала. При этом для неизменных геометрических размеров ускорительного канала плазменного ускорителя градиент радиальной составляющей индукции магнитного поля существенно увеличивается, а зона, в которой магнитное поле равно нулю, простирается как по всей ширине ускорительного канала от одной стенки до другой, так и с увеличением ее протяженности по потоку ускорения плазмы (по глубине ускорительного канала), образуя целый слой в прианодной области, в котором передвижение электронов в процессе стока и замыкания на анод происходит под действием только электрического поля.

Кроме того, выполнение внешней стенки полого анода-газораспределителя из магнитопроводящего материала также позволяет решить задачу повышения технологичности его производства путем исключения применения разнородных материалов с различными КТЛР в герметично соединяемых деталях и за счет этого расширения температурного диапазона применения при одновременном упрощении, как самой конструкции распределителя, так и технологии его изготовления.

Выполнение каналов инжекции рабочего тела во внутренней магнитопроводящей стенке конфузорной или диффузорной формы по всей ее толщине или ограниченной глубины позволяет реализовать вариативность такой конструкции, в части обеспечения равномерного распределения газа, для работы в различных режимах и, соответственно, при различных рабочих условиях в магистралях газового тракта подачи рабочего тела. При этом выбор требуемой формы каналов инжекции рабочего тела осуществляется из условия обеспечения равномерности распределения газа при расходе через анод-газораспределитель, оперируя необходимым характером истечения газа в зависимости от условий подачи на входе в каналы инжекции.

Выполнение во внутренней части внутренней магнитопроводящей стенки дополнительных каналов инжекции рабочего тела в разрядную камеру, расположенных в азимутальном направлении чередованием между собой, а относительно ускоряемого потока плазмы под углом, позволяет решить задачу по повышению равномерности распределения газа с покрытием всех развитых поверхностей полого анода без исключения путем организации дополнительного принудительного впрыска части газа непосредственно в данной области из распределителя со стороны оси плазменного ускорителя для снижения рисков сквозного электронного тока в данной зоне.

Таким образом, реализация предложенной конструкции полого магнитного анода-газораспределителя с эквидистантными магнитопроводящими стенками, расположенными между собой с зазором, позволит повысить эффективность работы плазменного ускорителя за счет предельной нейтрализации действия рабочего магнитного поля в прианодной зоне, где осуществляется впрыск рабочего газа в разрядную камеру, что является предпосылкой повышения эффективности процесса ионнообразования по всей ширине ускорительного канала.

Изобретение иллюстрируется чертежами.

На Фиг. 1 представлена половина осевого разреза предлагаемого плазменного ускорителя с замкнутым дрейфом электронов с полым магнитным анодом-газораспределителем, изолирующим прианодную область от действующего магнитного поля внутри рабочего магнитного контура при помощи эффекта двойного магнитного экранирования.

На Фиг. 2 показ поперечный разрез А-А плазменного ускорителя с замкнутым дрейфом электронов по секущей плоскости, проходящей через полый магнитный анод, с видом со стороны выхода из разрядной камеры, на которой представлено взаимное расположение каналов инжекции чередованием с другими каналами на различных участках внутренней магнитопроводящей стенки анода.

На Фиг. 3 показан осевой разрез Б-Б с увеличением, проходящий через ось одного из дополнительных каналов инжекции, выполненных на внутренней части внутренней магнитопроводящей стенки анода и расположенных под углом относительно ускоренного потока плазмы.

На Фиг. 4 показан осевой выносной вид В с увеличением, на котором показаны возможные варианты исполнений конфузорной формы различных по месту расположения каналов инжекции рабочего тела в полость разрядной камеры. Так в донной части внутренней магнитопроводящей стенки анода-газораспределителя показаны каналы инжекции, которые выполнены полностью конфузорной формы, тогда как на внешней части показан канал инжекции частично конфузорной формы, переходящей в цилиндрическую форму.

Плазменный ускоритель с замкнутым дрейфом электронов, согласно изобретению, содержит разрядную систему, включающую комбинированную разрядную камеру 2, образованную со стороны выхода кольцеобразными внутренним 3 и наружным 4 кольцами, примыкающими, соответственно, к внутреннему 5 и наружному 6 торцам полого магнитного анода 7, который содержит внешнюю 8 и внутреннюю 9 магнитопроводящие стенки, между которыми образована полость газового распределителя 10 с каналами подвода 11 и инжекции 12 рабочего тела в разрядную камеру 2, магнитную систему, содержащую магнитопровод 13, внутренний 14 и наружный 15 магнитные полюса, источники намагничивающей силы 16 (на рисунке в качестве примера показаны внутренний 16а и наружный 16б источники намагничивающей силы), а также наружную 8 и внутреннюю 9 магнитопроводящие стенки анода, и катод-компенсатор 1.

В варианте исполнения конструкции каналы инжекции рабочего тела 12 во внутренней магнитопроводящей стенке 9 могут быть сделаны конусообразной формы с протяженностью на всю толщину стенки или регламентированной глубины. Диффузорная 12а или частично конфузорная 12б форма каналов инжекции рабочего тела в общем случае выбирается исходя из рабочих условий, таких как: давление подачи рабочего тела, скорость истечения газа, геометрические размеры ускорительного канала, место расположения и прочее.

В другом варианте конструкции плазменного ускорителя, для повышения равномерности распределения газа по ширине ускорительного канала (в поперечном направлении) во внутренней части 9а внутренней магнитопроводящей стенки 9 предпочтительней выполнить дополнительные каналы инжекции 13 рабочего тела в ускорительный канал разрядной камеры, которые в азимутальном направлении чередуются между собой, а относительно ускоряемого потока плазмы располагаются под заданным углом.

Плазменный ускоритель работает следующим образом.

В полость разрядной камеры 2, образованной снаружи внутренним 3 и наружным 4 керамическими кольцами, а изнутри полостью полого магнитного анода 7, которые сопрягаются по внутреннему 5 и наружному 6 торцам анода 7, из полости газового распределителя 10, в которую газ попадает, пройдя предварительно по каналам подвода 11 и инжекции 12а, 12б рабочего тела, подается рабочий газ. Между внутренним 14 и наружным 15 магнитными полюсами, при помощи источников магнитодвижущей силы 16а (внутренний) и 16б (наружный) создается преимущественно поперечное по отношению к направлению ускорения плазмы магнитное поле (иначе говоря -преобладающее действие радиальной составляющей индукции магнитного поля ). Генерируемый магнитный поток распространяется преимущественно по магнитному контуру магнитной системы, которая содержит магнитопровод 13, внутренний 14 и наружный 15 магнитные полюса, необходимое количество источников намагничивающей силы 16а и 16б, а также магнитопроводящие стенки 8 и 9 анода, расположенные относительно внутреннего 14 и наружного 15 магнитных полюсов с расчетными немагнитными зазорами, соответственно. Разрядное напряжение прикладывается между анодом 7 (в варианте конструкции, представленной на рисунке 1, элемент объединен с газовым распределителем 10) и катодом-компенсатором 1 при запуске и последующей работе, между которыми инициируется основной разряд в скрещенных электрическом и магнитном полях. Вентильные свойства поперечного магнитного поля препятствуют свободному движению электронов от катода-компенсатора 1 к аноду 7, которые замыкаются на внутреннюю поверхность внутренней магнитопроводящей стенки 9. Взаимодействие электрического и магнитного полей вызывает дрейф электронов в азимутальном направлении, в процессе которого электроны ионизируют нейтральные атомы (n) рабочего газа. Образовавшиеся в газовом разряде ионы ускоряются за счет приложенного напряжения между катодом-компенсатором 1 и анодом 7. На выходе из разрядной камеры 2 поток ускоренных ионов компенсируется частью электронов, имитируемых катодом-компенсатором 1. Часть электронов, выходящих из катода-компенсатора, поступают обратным током к аноду через полость разрядной камеры 2, участвуя в столкновениях (соударениях) с нейтральными атомами подаваемого газа с передачей им при этом энергии, ионизируя тем самым их, а другая их часть нейтрализует ускоренный ионный поток за пределами разрядной камеры 2 (за ее срезом).

В варианте конструкции полого магнитного анода с дополнительными каналами инжекции 13 рабочего тела, выполненных во внутренней части 9а внутренней магнитопроводящей стенки 9, эффективность распределения газа в полости разрядной камеры 2 повышается из-за лучшей равномерности покрытия газом анодной поверхности и предельного снижения паразитного обратного сквозного тока при работе плазменного ускорителя.

Использование предложенного изобретения в космической технике позволит создавать более эффективные электроракетные двигатели (ЭРД) на базе плазменных ускорителей для выполнения различных задач в составе космических аппаратов (КА).

Использование данного изобретения в ионно-плазменной технологии позволит повысить производительность промышленного оборудования, использующего технологические плазменные ускорители, применяемые для процессов нанесения различных покрытий и сухого травления материалов.


ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ
ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ
ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ
Источник поступления информации: Роспатент

Showing 1-10 of 11 items.
28.06.2018
№218.016.67cc

Плазменный ускоритель с замкнутым дрейфом электронов

Изобретение относится к области космической техники и может быть использовано в электроракетных двигателях, в частности в стационарных плазменных двигателях (СПД), а также в технологических плазменных ускорителях, применяемых в вакуумно-плазменной технологии. В плазменном ускорителе с замкнутым...
Тип: Изобретение
Номер охранного документа: 0002659009
Дата охранного документа: 26.06.2018
02.08.2018
№218.016.7737

Полый катод

Изобретение относится к области плазменной техники, а именно к полым катодам, работающим на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях для нейтрализации ионного потока, а также в технологических источниках плазмы, предназначенных для ионно-плазменной...
Тип: Изобретение
Номер охранного документа: 0002662795
Дата охранного документа: 31.07.2018
19.09.2018
№218.016.889d

Полый катод

Изобретение относится к области плазменной техники, а именно к полым катодам (катодам-компенсаторам), работающим на газообразных рабочих телах, которые применяются в электрореактивных двигателях для нейтрализации ионного потока, а также в технологических источниках плазмы и в качестве автономно...
Тип: Изобретение
Номер охранного документа: 0002667155
Дата охранного документа: 17.09.2018
04.10.2018
№218.016.8e9e

Плазменный двигатель с замкнутым дрейфом электронов

Изобретение относится к области космической техники и может быть использовано в электроракетных двигателях, а также в технологических плазменных ускорителях, применяемых в вакуумно-плазменной технологии. В плазменном двигателе с замкнутым дрейфом электронов, содержащем разрядную камеру с...
Тип: Изобретение
Номер охранного документа: 0002668588
Дата охранного документа: 02.10.2018
10.04.2019
№219.016.fef0

Плазменный полый катод

Изобретение относится к области плазменной техники, а именно в катодах-компенсаторах, работающих на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях для нейтрализации ионного потока, а также в технологических источниках плазмы, предназначенных для...
Тип: Изобретение
Номер охранного документа: 0002684309
Дата охранного документа: 08.04.2019
12.10.2019
№219.017.d549

Плазменный двигатель с замкнутым дрейфом электронов

Изобретение относится к области космической техники и может быть использовано в электроракетных двигателях. Плазменный двигатель с замкнутым дрейфом электронов содержит по меньшей мере один катод-компенсатор, разрядную систему и магнитную систему с магнитным контуром. Внешний силуэт магнитного...
Тип: Изобретение
Номер охранного документа: 0002702709
Дата охранного документа: 09.10.2019
01.11.2019
№219.017.dd00

Узел подачи топлива в камеру разложения однокомпонентного жидкостного ракетного двигателя малой тяги

Изобретение относится к космической технике и может быть использовано при создании однокомпонентных жидкостных ракетных двигателей, входящих в состав двигательных установок малой тяги спутников. Узел подачи топлива в камеру разложения однокомпонентного жидкостного ракетного двигателя малой тяги...
Тип: Изобретение
Номер охранного документа: 0002704521
Дата охранного документа: 29.10.2019
15.11.2019
№219.017.e1df

Однокомпонентный жидкостный ракетный двигатель малой тяги (варианты)

Изобретение относится к космической технике и может быть использовано при создании однокомпонентных жидкостных ракетных двигателей. Однокомпонентный жидкостный ракетный двигатель малой тяги содержит трубку подачи топлива 1, инжектор 2 в днище камеры разложения 3, сопло 4. В камере разложения...
Тип: Изобретение
Номер охранного документа: 0002706101
Дата охранного документа: 13.11.2019
15.11.2019
№219.017.e28d

Однокомпонентный жидкостный ракетный двигатель малой тяги

Изобретение относится к космической технике, в частности к однокомпонентным жидкостным ракетным двигателям, входящим в состав двигательных установок малой тяги спутников для решения задач орбитального маневрирования. Однокомпонентный жидкостный ракетный двигатель малой тяги содержит камеру...
Тип: Изобретение
Номер охранного документа: 0002705982
Дата охранного документа: 12.11.2019
21.05.2020
№220.018.1e83

Экранно-вакуумная теплоизоляция ракетного двигателя малой тяги

Изобретение относится к теплотехнике и может быть, использовано в вакууме для теплоизоляции ракетных двигателей малой тяги, а также может быть использовано в технике низких температур. Экранно-вакуумная теплоизоляция выполнена в виде двухслойного комплекта полос, спирально навитых на...
Тип: Изобретение
Номер охранного документа: 0002721395
Дата охранного документа: 19.05.2020
Showing 1-10 of 16 items.
20.12.2013
№216.012.8ecb

Плазменный катод

Изобретение относится к области плазменной техники, а именно к катодам-компенсаторам, работающим на газообразных рабочих телах. Технический результат - увеличение ресурса надежной работы и снижение трудоемкости изготовления. Плазменный катод содержит полый держатель 1 с торцевыми стенками 2, 3...
Тип: Изобретение
Номер охранного документа: 0002502238
Дата охранного документа: 20.12.2013
28.06.2018
№218.016.67cc

Плазменный ускоритель с замкнутым дрейфом электронов

Изобретение относится к области космической техники и может быть использовано в электроракетных двигателях, в частности в стационарных плазменных двигателях (СПД), а также в технологических плазменных ускорителях, применяемых в вакуумно-плазменной технологии. В плазменном ускорителе с замкнутым...
Тип: Изобретение
Номер охранного документа: 0002659009
Дата охранного документа: 26.06.2018
09.08.2018
№218.016.789c

Полый катод

Изобретение относится к области плазменной техники, а именно к полым катодам, работающим на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях для нейтрализации ионного потока, а также в технологических источниках плазмы, предназначенных для ионно-плазменной...
Тип: Изобретение
Номер охранного документа: 0002663241
Дата охранного документа: 03.08.2018
19.09.2018
№218.016.889d

Полый катод

Изобретение относится к области плазменной техники, а именно к полым катодам (катодам-компенсаторам), работающим на газообразных рабочих телах, которые применяются в электрореактивных двигателях для нейтрализации ионного потока, а также в технологических источниках плазмы и в качестве автономно...
Тип: Изобретение
Номер охранного документа: 0002667155
Дата охранного документа: 17.09.2018
04.10.2018
№218.016.8e9e

Плазменный двигатель с замкнутым дрейфом электронов

Изобретение относится к области космической техники и может быть использовано в электроракетных двигателях, а также в технологических плазменных ускорителях, применяемых в вакуумно-плазменной технологии. В плазменном двигателе с замкнутым дрейфом электронов, содержащем разрядную камеру с...
Тип: Изобретение
Номер охранного документа: 0002668588
Дата охранного документа: 02.10.2018
01.03.2019
№219.016.cd56

Способ запуска и электропитания электрореактивного плазменного двигателя (его варианты) и устройство для его осуществления (его варианты)

Изобретение относится к способам и устройствам эксплуатации электрореактивных плазменных двигателей. Способ включает в себя замыкание электропитающего ключа и подачу питающего напряжения от источника электропитания на анод и катод, замыкание пускового ключа и создание тока по меньшей мере в...
Тип: Изобретение
Номер охранного документа: 0002366123
Дата охранного документа: 27.08.2009
01.03.2019
№219.016.ce22

Плазменный двигатель с замкнутым дрейфом электронов

Изобретение относится к области космической техники и может быть использовано при разработке электроракетных двигателей, а также в технологических плазменных ускорителях, применяемых в вакуумно-плазменной технологии. Плазменный двигатель с замкнутым дрейфом электронов содержит разрядную камеру,...
Тип: Изобретение
Номер охранного документа: 0002426007
Дата охранного документа: 10.08.2011
01.03.2019
№219.016.d029

Плазменный ускоритель с замкнутым дрейфом электронов

Заявленное изобретение относится к области космической техники и может быть использовано в электроракетных двигателях, а также в технологических плазменных ускорителях, применяемых в вакуумно-плазменной технологии. В плазменном ускорителе с замкнутым дрейфом электронов стенки внутреннего и...
Тип: Изобретение
Номер охранного документа: 0002447625
Дата охранного документа: 10.04.2012
10.04.2019
№219.016.fef0

Плазменный полый катод

Изобретение относится к области плазменной техники, а именно в катодах-компенсаторах, работающих на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях для нейтрализации ионного потока, а также в технологических источниках плазмы, предназначенных для...
Тип: Изобретение
Номер охранного документа: 0002684309
Дата охранного документа: 08.04.2019
13.04.2019
№219.017.0c70

Катод-компенсатор

Изобретение относится к области плазменной техники, а именно к полым катодам, работающим на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях, а также в технологических источниках плазмы, предназначенных для ионно-плазменной обработки поверхностей различных...
Тип: Изобретение
Номер охранного документа: 0002684633
Дата охранного документа: 11.04.2019
+ добавить свой РИД