×
23.09.2018
218.016.8a2a

Результат интеллектуальной деятельности: Ступня ноги шагающего космического микромеханизма

Вид РИД

Изобретение

Аннотация: Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса, и выполнения задач напланетных миссий. Ступня выполнена в виде пластины с нанесенным на площадь ее контакта с поверхностью перемещения адгезивом, соединенной пяткой с ногой с помощью шарнира с одной степенью свободы. Пластина выполнена гибкой с размещенными на ней с промежутками между собой жесткими элементами, при этом их суммарная площадь на единице площади поверхности пластины монотонно убывает от пятки к носку. Технический результат - повышение надежности фиксации на поверхности перемещения. 9 з.п. ф-лы, 6 ил.

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий.

Известен робот-альпинист, конструкция которого предусматривает использование адгезивных элементов для закрепления на поверхности перемещения (US 2012181096 [1]). В качестве адгезивных элементов в преимущественном варианте реализации предлагается использовать вакуумные присоски, закрепленные на снабженной соответствующим приводом движущейся ленте, охватывающей опору.

Недостатком известной конструкции является ее сложность и значительные массогабаритные характеристики, что ограничивает их применение для выполнения задач напланетных миссий.

Известна конструкция ноги для многоногого шагающего робота, содержащая гибкую ступню с выполненными в ней отверстиями для подачи жидкого адгезива на нижнюю, контактную поверхность (CN 201784730 [2]). Над ступней размещается резервуар с жидким адгезивом со средством создания в нем избыточного давления, обеспечивающим подачу адгезива на контактную поверхность ступни.

Недостатком известной конструкции является ее сложность и значительные массогабаритные характеристики, что ограничивает их применение для выполнения задач напланетных миссий.

Наиболее близким к заявляемому изобретению по своей технической сущности является шагающий робот, предназначенный для выполнения работ в открытом космосе, в частности для инспекции поверхности аппаратов (US 2007173973 [3]). Ступня робота выполнена в виде пластины, закрепленной на стержне (голеностопе) по ее центру, а на поверхность контакта с поверхностью перемещения нанесен слой адгезива.

Недостатком известной конструкции ступни является ее невозможность адаптации к неровностям поверхности перемещения при высоте неровностей, превышающей толщину адгезива, что приводит к уменьшению поверхности контакта и снижает надежность фиксации робота к поверхности перемещения. Кроме того, ступня робота выполнена в виде пластины, что также снижает надежность фиксации робота к поверхности перемещения. Известно также, что усилие отрыва зачастую превосходит усилие прижатия, при этом известная конструкция не позволяет уменьшить усилие отрыва из-за изотропной жесткости пластины.

Заявляемая конструкция ступни ноги шагающего космического микромеханизма направлена на повышение надежности фиксации на поверхности перемещения.

Указанный результат достигается тем, что ступня ноги шагающего космического микромеханизма выполнена в виде пластины с нанесенным на площадь ее контакта с поверхностью перемещения адгезивом. При этом ступня соединена пяткой с ногой с помощью шарнира с одной степенью свободы, пластина выполнена гибкой с размещенными на ней с промежутками между собой жесткими элементами, при этом их суммарная площадь на единице поверхности пластины монотонно убывает от пятки к носку.

Указанный результат достигается также тем, что жесткие элементы выполнены одинаковой площади, а промежутки между ними возрастают от пятки к носку.

Указанный результат достигается также тем что жесткие элементы выполнены с разной площадью, убывающей от пятки к носку

Указанный результат достигается также тем, что суммарная площадь жестких элементов на единице поверхности пластины монотонно убывает от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку.

Указанный результат достигается также тем, что жесткие элементы выполнены одинаковой площади, а промежутки между ними возрастают от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку.

Указанный результат достигается также тем, что жесткие элементы выполнены с разной площадью, убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через пятки к носку.

Указанный результат достигается также тем, что между гибкой пластиной и адгезивом размещена пленка из поляризованного пьезоэлектрического материала, подсоединенной к источнику переменного напряжения.

Указанный результат достигается также тем, что источник переменного напряжения выполнен с рабочей частотой выше 2 кГц (http://www.piceramic.de [5]).

Указанный результат достигается также тем, что жесткие элементы выполнены из пластин пьезоэлектрика и подсоединены к источнику переменного напряжения.

Указанный результат достигается также тем, что источник переменного напряжения выполнен с рабочей частотой выше 2 кГц.

Указанный результат достигается также тем, что адгезив размещен на гибкой пластине в виде отдельных площадок на поверхности контакта ступни с поверхностью перемещения, при этом площадки адгезива размещены под жесткими элементами.

Указанный результат достигается также тем, что площадки адгезива совпадают по форме и размеру с жесткими элементами, размещенными на гибкой пластине.

Указанный результат достигается также тем, что используют адгезив с многократным циклом «прилипание-отлипание».

Отличительными признаками заявляемого устройства являются:

- ступня соединена пяткой с ногой с помощью шарнира с одной степенью свободы;

- пластина выполнена гибкой с размещенными на ней с промежутками между собой жесткими элементами;

- суммарная площадь жестких элементов на единице поверхности пластины монотонно убывает от пятки к носку;

- жесткие элементы выполнены одинаковой площади, а промежутки между ними возрастают от пятки к носку.

- жесткие элементы выполнены с разной площадью, убывающей от пятки к носку;

- суммарная площадь жестких элементов на единице поверхности пластины монотонно убывает от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку;

- жесткие элементы выполнены одинаковой площади, а промежутки между ними возрастают от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку;

- жесткие элементы выполнены с разной площадью, убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через пятки к носку;

- между гибкой пластиной и адгезивом размещена пленка из поляризованного пьезоэлектрического материала, подсоединенной к источнику переменного напряжения;

- источник переменного напряжения выполнен с рабочей частотой выше 2 кГц,

- жесткие элементы выполнены из пластин пьезоэлектрика и подсоединены к источнику переменного напряжения;

- источник переменного напряжения выполнен с рабочей частотой выше 2 кГц;

- адгезив размещен на гибкой пластине в виде отдельных площадок на поверхности контакта ступни с поверхностью перемещения, при этом площадки адгезива размещены под жесткими элементами;

- площадки адгезива совпадают по форме и размеру с жесткими элементами, размещенными на гибкой пластине;

- используют адгезив с многократным циклом «прилипание-отлипание». Выполнение пластины гибкой обеспечивает адаптацию ступни по неровной поверхности перемещения и этим обеспечивает увеличение площади контакта между ступней и поверхностью перемещения.

Размещение жестких элементов на пластине с промежутками между собой не влияет на адаптацию ступни к поверхности перемещения, но предотвращает ее скручивание, т.к. жесткие элементы выполняют роль грузиков и обеспечивают прижим ступни к поверхности перемещения.

Соединение ступни пяткой с ногой с помощью шарнира с одной степенью свободы и размещение жестких элементов на пластине так, что их суммарная площадь на единице поверхности пластины монотонно убывает от пятки к носку необходимо для того, чтобы преодолеть силу сцепления ступни с поверхностью перемещения, обусловленную наличием адгезива и обеспечить отрыв ступни от поверхности перемещения. Таким образом механика процесса «прилипание-отлипание» заключается в последовательном прикреплении пятки ступни с помощью адгезива, образовании узкой трещины, образуемой между поверхностью и пяткой ступни, увеличении поверхности контакта, с уменьшением величины трещины и в результате прикрепления ступни к поверхности с незначительным усилием по сравнению с со ступней, выполненной из жесткой пластинки. Отлипание ступни от поверхности начинается от пятки ступни к носку с последовательным увеличением трещины за счет ослабления сил сцепления при условии переменной жесткости, монотонно убывающей от пятки к носку.

Для того, чтобы обеспечить выполнение условия монотонного убывания от пятки к носку суммарной площади жестких элементов на единице поверхности пластины можно использовать в частных случаях различные варианты реализации устройства. Можно жесткие элементы выполнять одинаковой площади, а промежутки между ними увеличивать от пятки к носку. А можно выполнять жесткие элементы с разной площадью, убывающей от пятки к носку.

Кроме того, в частных случаях реализации целесообразно изменять жесткость ступни не только от пятки к носку, но и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку. Это обеспечит полный контакт ступни с поверхностью при условии неоднородностей поверхности по двум осям.

При этом также возможны варианты реализации для выполнения этого условия. Можно жесткие элементы выполнять одинаковой площади и изменять промежутки между ними по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку, а можно выполнять жесткие элементы с разной площадью, уменьшающейся по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку.

В частных случаях реализации целесообразно между гибкой пластиной и адгезивом размещать пленку из поляризованного пьезоэлектрического материала, подсоединенную к источнику переменного напряжения. При подаче напряжения ступня будет вибрировать и может обеспечить выполнение двух функций - облегчить отрыв ступни от поверхности перемещения чтобы преодолеть силу сцепления ступни с поверхностью перемещения, обусловленную наличием адгезива (напряжение следует подавать с момент совершения шага) и обеспечить очистку адгезива от загрязнений. В этом случае необходимо подавать переменное напряжение с частотой выше 2 кГц.

В частных случаях целесообразно выполнять жесткие элементы в виде пластин пьезоэлектрика и подсоединять к источнику переменного напряжения. В этом случае жесткие элементы будут выполнять несколько функций - выполнять роль грузиков, обеспечивая прижим ступни к поверхности перемещения и являться источником колебаний, облегчая отрыв ступни от поверхности перемещения, чтобы преодолеть силу сцепления ступни с поверхностью перемещения, обусловленную наличием адгезива (напряжение следует подавать с момент совершения шага) и обеспечивать очистку адгезива от загрязнений. Адгезив в этом случае целесообразно размещать на гибкой пластине в виде отдельных площадок на поверхности контакта ступни с поверхностью перемещения и площадки адгезива размещать под жесткими элементами. Это позволит существенно снизить массу конструкции. Представляется оптимальным для функционирования шагающего робота использовать адгезив с многократным циклом «прилипание-отлипание». В частности, такой «сухой» адгезив описан, например, в (CN 103333495 [4], www.membrana.ru/particle/17615 [6]).

Сущность заявляемого устройства поясняется примерами реализации и чертежами. На фиг.1 показан схематично вид сбоку на ступню, реализованную в наиболее общем виде. На фиг.2 показан схематично вид сверху на ступню. На фиг.3 представлены варианты реализации ступни (вид сверху) когда жесткие элементы выполнены с разной площадью, убывающей по направлению к периферии от оси симметрии, проходящей через пятки к носку. На фиг. 4 представлен вариант реализации ступни с использованием между гибкой пластиной и адгезивом пленки из поляризованного пьезоэлектрического материала, подсоединенную к источнику переменного напряжения. На фиг. 5 представлен вариант реализации ступни с использованием жестких элементов, выполненных из пьезоэлектрического материала, подсоединенных к источнику переменного напряжения. На фиг. 6 схематично показана адаптация ступни к поверхности перемещения.

Пример 1. Ступня в самом общем случае представляет собой гибкую пластину 1 на которой размещены с промежутками между собой жесткие элементы 2 так, что их суммарная площадь на единице поверхности пластины монотонно убывает от пятки к носку. Ступня соединена пяткой с ногой 3 с помощью шарнира 4 с одной степенью свободы. На поверхность контакта пластины 1 с поверхностью перемещения нанесен слой адгезива 5. В качестве материала пластины может использоваться полиимид, полиэфирамид, полисульфон или подобный полимер, формируемый из раствора с последующей полимеризацией. В качестве материала жестких элементов может выступать монокристаллический кремний, поликристаллический кремний, поликор, металлы или пьезоэлектрические жесткие материалы -кварц, ниобат лития и пр.

Устройство функционирует следующим образом. При прилипании ступни (фиг 1) к поверхности последовательно прикрепляется пятка ступни возле шарнира 4 с помощью адгезива 5 с постепенным увеличением площади контакта между ступней и поверхностью за счет адгезионных сил с уменьшением трещины между ступней и поверхностью и за счет переменной жесткости ступни (фиг. 3), обеспечиваемой суммарной площадью жестких элементов 2 (фиг. 3) на единице поверхности пластины монотонно убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку. При этом жесткие элементы 2 (фиг. 3) выполнены одинаковой площади, а промежутки между ними возрастают от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку, жесткие элементы могут быть выполнены с разной площадью (2, фиг. 3), убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через пятки к носку. Отлипание ступни (фиг.1 - 5) от поверхности начинается от пятки ступни к носку с последовательным увеличением трещины за счет ослабления сил сцепления при условии переменной жесткости ступни, монотонно убывающей от пятки к носку за счет уменьшения площади жестких элементов 2.

Пример 2. Ступня представляет собой гибкую пластину 1 на которой размещены с промежутками между собой жесткие элементы 2 так, что их суммарная площадь на единице поверхности пластины монотонно убывает от пятки к носку. Ступня соединена пяткой с ногой 3 с помощью шарнира 4 с одной степенью свободы, пластина выполнена гибкой с размещенными на ней с промежутками между собой жесткими элементами, при этом их суммарная площадь на единице поверхности пластины монотонно убывает от пятки к носку. На поверхность контакта пластины 1 с поверхностью перемещения нанесен слой адгезива 5. Между гибкой пластиной 1 и слоем адгезива размещена пленка 6 из поляризованного пьезоэлектрического материала, подсоединенной к источнику переменного напряжения (на чертеже не показано).

Устройство функционирует следующим образом. При прилипании ступни (фиг 4.) к поверхности последовательно прикрепляется пятки ступни возле шарнира 4 помощью адгезива 5 с постепенным увеличением площади контакта между ступней и поверхностью за счет адгезионных сил и деформации ступни за счет пьезоэлектрической пленки 6, активированной напряжением с последовательным уменьшением трещины между ступней и поверхностью и за счет переменной жесткости ступни (фиг. 3), обеспечиваемой суммарной площадью жестких элементов 2 (фиг. 3) на единице поверхности пластины, монотонно убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку. При этом жесткие элементы 2 (фиг. 3) выполнены одинаковой площади, а промежутки между ними возрастают от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку, а жесткие элементы выполнены с разной площадью, убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через пятки к носку. После образования контакта пятки с поверхностью активацию напряжением пленки 6 отключают. Отлипание ступни (фиг. 4) от поверхности начинается от пятки ступни к носку при одновременной активации пьезоэлектрической пленки 6 с последовательным увеличением трещины за счет ослабления сил сцепления при условии переменной жесткости ступни, монотонно убывающей от пятки к носку за счет уменьшения площади жестких элементов 2.

Пример 3. Ступня представляет собой гибкую пластину 1 на которой размещены с промежутками между собой жесткие элементы 2 так, что их суммарная площадь на единице поверхности пластины монотонно убывает от пятки к носку. Ступня соединена пяткой с ногой 3 с помощью шарнира 4 с одной степенью свободы, пластина выполнена гибкой с размещенными на ней с промежутками между собой жесткими элементами, при этом их суммарная площадь на единице поверхности пластины монотонно убывает от пятки к носку. Под жесткими элементами на гибкой пластине размещен адгезив в виде отдельных площадок на поверхности контакта ступни с поверхностью перемещения. Жесткие элементы 2 выполнены из пьезоэлектрического материала и подсоединены к источнику переменного напряжения (на чертеже не показано). В качестве пьезоэлектрического материала может выступать монокристаллический кварц, спеченная пьезокерамика типа ЦТС, ниобат лития и пр.

Устройство функционирует следующим образом. При прилипании ступни (фиг 5.) к поверхности последовательно прикрепляется пятка ступни, расположенная возле шарнира 4 с помощью адгезива 5 с постепенным увеличением площади контакта между ступней и поверхностью за счет адгезионных сил и деформации ступни с последовательным уменьшением трещины между ступней и поверхностью и за счет переменной жесткости ступни (фиг. 2 и 3), обеспечиваемой суммарной площадью жестких элементов 2 (фиг. 5) на единице поверхности пластины монотонно убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку. При этом жесткие элементы 2 (фиг. 5) выполнены из пьезоэлектрика, промежутки между ними возрастают от пятки к носку и по направлению к периферии от оси симметрии, проходящей через ступню от пятки к носку. Жесткие элементы могут быть выполнены с разной площадью (2, фиг. 3), убывающей от пятки к носку и по направлению к периферии от оси симметрии, проходящей через пятки к носку. Перед образованием контакта между ступней и поверхностью пьезоэлектрические жесткие вставки активируются напряжением для удаления пыли, частиц и т.п. Затем активацию напряжением жестких элементов 2 отключают. Отлипание ступни (фиг. 5) от поверхности начинается от пятки ступни к носку с последовательным увеличением трещины за счет ослабления сил сцепления при условии переменной жесткости ступни, монотонно убывающей от пятки к носку.

Литература

1. US 2012181096.

2. CN 201784730.

3. US 2007173973.

4. CN 103333495.

5. http://www.piceramic.de

6. www.membrana.ru/particle/17615


Ступня ноги шагающего космического микромеханизма
Ступня ноги шагающего космического микромеханизма
Ступня ноги шагающего космического микромеханизма
Ступня ноги шагающего космического микромеханизма
Ступня ноги шагающего космического микромеханизма
Ступня ноги шагающего космического микромеханизма
Ступня ноги шагающего космического микромеханизма
Источник поступления информации: Роспатент

Showing 21-30 of 31 items.
20.04.2023
№223.018.4c23

Способ калибровки датчиков теплового потока вращающимся зеркалом с переменной скоростью

Изобретение относится к способу калибровки датчика теплового потока при помощи лазерного излучения и может быть использовано в высокоскоростных газодинамических экспериментах, в газовой динамике, в исследовании пламени и химических реакций с выделением тепла. Технический результат – повышение...
Тип: Изобретение
Номер охранного документа: 0002765967
Дата охранного документа: 07.02.2022
14.05.2023
№223.018.5500

Устройство и способ подавления колебаний оптического разряда

Изобретение относится к устройствам и способу подавления колебаний оптического разряда и может быть использовано микроэлектронике, спектроскопии, фотохимии и других областях. Технический результат - стабилизация широкополосного оптического излучения с высокой спектральной яркостью. Устройство...
Тип: Изобретение
Номер охранного документа: 0002735947
Дата охранного документа: 11.11.2020
14.05.2023
№223.018.5525

Способ подавления неустойчивостей оптического разряда

Изобретение относится к способам подавления неустойчивостей оптического разряда для стабилизации широкополосного оптического излучения с высокой спектральной яркостью и представляет интерес для приложений в микроэлектронике, спектроскопии, фотохимии и других областях. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002735948
Дата охранного документа: 11.11.2020
14.05.2023
№223.018.558f

Устройство и способ устранения колебаний оптического разряда

Изобретение относится к области широкополосного оптического излучения и может быть применено в микроэлектронике, спектроскопии, фотохимии и других областях. Устройство устранения колебаний оптического разряда состоит из разрядной камеры, прозрачной для входного лазерного излучения и выходного...
Тип: Изобретение
Номер охранного документа: 0002738461
Дата охранного документа: 14.12.2020
14.05.2023
№223.018.55c1

Устройство и способ избавления от неустойчивостей оптического разряда

Изобретение относится к устройствам и способу избавления от неустойчивостей оптического разряда для стабилизации широкополосного оптического излучения с высокой спектральной яркостью и представляет интерес для приложений в микроэлектронике, спектроскопии, фотохимии и других областях. Устройство...
Тип: Изобретение
Номер охранного документа: 0002738463
Дата охранного документа: 14.12.2020
14.05.2023
№223.018.55c3

Устройство и способ устранения неустойчивостей оптического разряда

(57) Изобретение относится к устройствам и способу устранения неустойчивостей оптического разряда для стабилизации широкополосного оптического излучения с высокой спектральной яркостью и представляет интерес для приложений в микроэлектронике, спектроскопии, фотохимии и других областях....
Тип: Изобретение
Номер охранного документа: 0002738462
Дата охранного документа: 14.12.2020
14.05.2023
№223.018.5687

Устройство и способ избавления от колебаний оптического разряда

Изобретение относится к устройствам и способу избавления от колебаний оптического разряда, используемого для получения широкополосного оптического излучения с высокой спектральной яркостью, и представляет интерес для приложений в микроэлектронике, спектроскопии, фотохимии и других областях....
Тип: Изобретение
Номер охранного документа: 0002734026
Дата охранного документа: 12.10.2020
14.05.2023
№223.018.5695

Способ предотвращения колебаний оптического разряда

Изобретение относится к способу предотвращения колебаний оптического разряда с целью стабилизации широкополосного оптического излучения с высокой спектральной яркостью и представляет интерес для приложений в микроэлектронике, спектроскопии, фотохимии и других областях. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002734111
Дата охранного документа: 13.10.2020
14.05.2023
№223.018.5697

Устройство и способ стабилизации излучения оптического разряда

Изобретение относится к устройствам и способу стабилизации широкополосного оптического излучения с высокой спектральной яркостью и представляет интерес для приложений в микроэлектронике, спектроскопии, фотохимии и других областях. Технический результат - уменьшение колебательной неустойчивости...
Тип: Изобретение
Номер охранного документа: 0002734162
Дата охранного документа: 13.10.2020
14.05.2023
№223.018.569c

Приспособление и способ стабилизации излучения оптического разряда

Изобретение относится к приспособлению и способу стабилизации широкополосного оптического излучения с высокой спектральной яркостью и может быть использовано в микроэлектронике, спектроскопии, фотохимии и других областях. Технический результат - улучшение характеристик процесса...
Тип: Изобретение
Номер охранного документа: 0002734074
Дата охранного документа: 12.10.2020
Showing 21-30 of 52 items.
26.08.2017
№217.015.e736

Способ измерения электрических параметров и характеристик без демонтажа объекта исследования, а также устройства для его реализации

Изобретения могут использоваться в электронной, космической, авиационной, военной и других отраслях промышленности. Способ измерения электрических параметров или характеристик объекта исследования, установленного в электронном устройстве или блоке без демонтажа объекта исследования с печатной...
Тип: Изобретение
Номер охранного документа: 0002627281
Дата охранного документа: 04.08.2017
19.01.2018
№218.016.01e6

Способ изготовления сквозных металлизированных микроотверстий в кремниевой подложке

Изобретение относится к области технологии микроэлектроники и может быть использовано при изготовлении 3D-устройств микросистемной техники и полупроводниковых приборов, содержащих в своей структуре металлизированные и/или неметаллизированные сквозные отверстия в кремнии различного...
Тип: Изобретение
Номер охранного документа: 0002629926
Дата охранного документа: 04.09.2017
10.05.2018
№218.016.46c3

Тест-реле с механической активацией аксессуаром измерительного прибора

Изобретение может использоваться в электронной, космической, авиационной, военной промышленности при создании электронной аппаратуры, предполагающей проведение диагностики, настройки, поиск неисправностей, входной и выходной контроль. Основное назначение изобретения - обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002650502
Дата охранного документа: 16.04.2018
09.06.2018
№218.016.5c91

Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов

Изобретение относится к области технологии дискретных полупроводниковых приборов и может быть использовано при изготовлении бескорпусных диодов для солнечных батарей космических аппаратов. Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002656126
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d06

Способ изготовления чувствительного элемента акселерометра

Изобретение может быть использовано при создании и изготовлении микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы методом химического травления с использованием масок. Способ изготовления чувствительного элемента акселерометра основан на формировании...
Тип: Изобретение
Номер охранного документа: 0002656109
Дата охранного документа: 31.05.2018
20.06.2018
№218.016.63e1

Способ обработки полиимидной пленки в факеле неравновесной гетерогенной низкотемпературной свч- плазмы при атмосферном давлении

Изобретение относится к технологии микроэлектроники, а именно изготовлению изделий микроэлектроники, содержащих в конструкции клеевое адгезионное соединение «полиимидная пленка-металл». В частности, предложена обработка полиимидной пленки в факеле неравновесной гетерогенной низкотемпературной...
Тип: Изобретение
Номер охранного документа: 0002657899
Дата охранного документа: 18.06.2018
23.09.2018
№218.016.8a1e

Ступня ноги шагающего космического микроробота

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий. Ступня ноги шагающего космического микроробота выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002667594
Дата охранного документа: 21.09.2018
03.11.2018
№218.016.99ff

Способ создания двустороннего топологического рисунка в металлизации на подложках со сквозными металлизированными микроотверстиями

Способ создания двустороннего топологического рисунка металлизации позволит повысить технологичность и воспроизводимость при формировании двустороннего топологического рисунка в металлизации на подложках со сквозными металлизированными микроотверстиями. При формировании топологического рисунка...
Тип: Изобретение
Номер охранного документа: 0002671543
Дата охранного документа: 01.11.2018
19.12.2018
№218.016.a86b

Ступня ноги для шагающего космического микроробота

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий. Ступня ноги шагающего космического микроробота выполнена с...
Тип: Изобретение
Номер охранного документа: 0002675327
Дата охранного документа: 18.12.2018
29.12.2018
№218.016.ac76

Способ формирования плат микроструктурных устройств со сквозными металлизированными отверстиями на монокристаллических кремниевых подложках

Изобретение относится к области технологии микроэлектроники, а именно к способам, специально предназначенным для изготовления или обработки плат микроструктурных устройств или систем на монокристаллических кремниевых подложках. Изобретение может быть использовано при изготовлении...
Тип: Изобретение
Номер охранного документа: 0002676240
Дата охранного документа: 26.12.2018
+ добавить свой РИД