×
14.09.2018
218.016.87dd

Результат интеллектуальной деятельности: Метеостанция для трехкоординатного измерения вектора скорости потока воздуха и температуры

Вид РИД

Изобретение

№ охранного документа
0002666971
Дата охранного документа
13.09.2018
Аннотация: Изобретение относится к области метеорологии и может быть использовано для измерения трехкоординатного вектора скорости воздуха и температуры. Сущность: метеостанция выполнена в виде флюгера, установленного на двухстепенном шарнире (1). На флюгере установлен блок (2) датчиков и ультразвуковые приемо-передающие датчики (4) температуры и скорости потока воздуха. В блоке (2) датчиков размещены датчики температуры воздуха, датчики относительной влажности воздуха, датчики атмосферного давления, электромагнитный компас, акселерометр, датчик угловых скоростей, устройство обработки информации, устройство передачи информации. Технический результат: повышение точности и скорости измерения скорости и направления ветра, уменьшение габаритных размеров, сокращение сроков установки и подготовки устройства к работе. 1 ил.

Изобретение относится к области метеорологии и может быть использовано для определения давления, влажности, а также скорости, направления и температуры воздуха.

Известны устройства, позволяющие измерять скорость ветра и температуру воздуха ультразвуковым методом («Прибор метеорологический автоматизированный» патент на изобретение №RU 2466435 от 10.11.2012 г.; «Преобразователь измерений метеорологических параметров окружающей среды» патент на полезную модель №RU 53024 от 27.04.2006 г.). Эти устройства для измерения трех компонентов вектора скорости ветра имеют в своем составе несколько пар ультразвуковых приемопередатчиков, ориентированных навстречу друг другу.

Недостатком подобной конструкции являются низкие скорость и точность измерений, большие габаритные размеры, а также необходимость предварительной юстировки. В устройствах такого типа измеряются временные интервалы прохождения сигнала от одного приемопередатчика до другого, расположенного вдоль оси измерения. Абсолютная погрешность измерения времени зависит от частоты ультразвукового сигнала, а также ограничена дискретностью времени вычислителя. Абсолютная погрешность измерения времени для двух приборов с идентичными характеристиками электронных компонентов и равным расстоянием между ультразвуковыми приемопередатчиками одинакова. Необходимость измерения трех компонент скорости приводит к тому, что в общем случае по каждой из осей измеряется меньшая по модулю величина, что приводит к росту относительной погрешности. Кроме того, в известных устройствах фактически дважды измеряются угловые координаты. Первый раз для определения ориентации системы датчиков в пространстве, а второй при определении направления ветра из компонент скорости. Погрешности этих измерений складываются.

Прототипом заявляемого изобретения является «Ультразвуковой термоанемометр с устройством автоматического восстановления точностных характеристик измерений» патент на изобретение №RU 2319987 от 05.06.2006 г. В конструкции прототипа применено решение, позволяющее отслеживать неверные показания анемометра, связанные с изменением длины измерительной базы. Измерение длины производится путем сопоставления измерений температуры, проведенных ультразвуковым методом, и с помощью отдельного датчика температуры. Операция производится внутри ветрозащищенного бокс-контейнера. Однако прототип также обладает всеми перечисленными недостатками, присущими вышеперечисленным аналогам.

Задачей изобретения является устранение таких недостатков, как пониженные скорость и точность измерений, необходимость предварительной юстировки прибора, а также большие габаритные размеры. Технический результат - увеличение точности и скорости измерения модуля вектора скорости и направления ветра, уменьшение габаритных размеров, сокращение сроков установки и подготовки прибора к работе.

Указанный технический результат достигается за счет применения для измерения скорости воздушных масс ультразвукового анемометра в сочетании с флюгером на двухосевом шарнире и блоком датчиков, обеспечивающих определение положения флюгера в пространстве. Кроме того, в конструкции анемометра предусмотрено размещение дополнительного датчика температуры, позволяющего ввести поправку на температурное расширение конструкции и изменение измерительной базы (расстояния между ультразвуковыми датчиками).

На фиг. 1 представлен эскиз устройства, который состоит из флюгера на двухстепенном шарнире (1), блока датчиков (2) с вычислителем, системой электропитания и системой беспроводной передачи данных на портативную или стационарную ЭВМ, измерительного тракта ультразвукового анемометра. Измерительный тракт представляет собой металлический каркас (3) с закрепленными на противоположных сторонах ультразвуковыми приемопередатчиками (4). Блок датчиков содержит датчик угловых скоростей и трехкоординатный акселерометр, электронный магнитный компас, датчики давления, влажности и температуры. Блок датчиков располагается вблизи центра масс всей системы. Двухстепенной шарнир располагается в центре масс всей системы, что обеспечивает безразличное равновесие в спокойном воздухе (V=0). Оперение (5) имеет произвольную форму (например, х-образное, звездообразное, решетчатое, и т.д.), и обеспечивает ориентацию флюгера вдоль направления потока воздуха в горизонтальной и вертикальной плоскостях.

Работа устройства осуществляется следующим образом.

Оперенный флюгер на двухстепенном шарнире, закрепленный на штанге, ориентируется по направлению воздушного потока. Пространственное положение флюгера измеряется при помощи датчика магнитного поля (электронного магнитного компаса), датчиков угловых скоростей и трехкоординатного акселерометра. Атмосферное давление определяется цифровым барометрическим датчиком давления. Влажность и температура определяются соответствующими датчиками. Измерение параметров воздушной среды проводится ультразвуковыми приемопередатчиками в измерительном тракте. При измерении параметров воздушной среды происходит измерение времени прохождения звукового сигнала в прямом и обратном направлении. Изменение длины измерительной базы производится путем сопоставления измерений температуры, проведенных ультразвуковым методом, и с помощью отдельного датчика температуры. Далее вычислителем производится вычисление скорости звука в среде и скорости среды

где

с - скорость звука

L - длина измерительной базы

tпрям - время распространения сигнала в прямом направлении

tобр - время распространения сигнала в обратном направлении

Vвозд - скорость потока воздуха.

С учетом поправок на изменение влажности воздуха можно вычислить температуру воздуха

где

Т - абсолютная температура

М - молярная масса

γ - показатель адиабаты

R - универсальная газовая постоянная

е - парциальное давление водяных паров

p - атмосферное давление.

Измеренные и вычисленные метеорологические параметры: температура воздуха, атмосферное давление, влажность, величина и азимут горизонтальной компоненты скорости ветра, передаются по беспроводному интерфейсу в портативную ЭВМ для последующих интерпретации и визуализации.

Таким образом, описанное техническое решение за счет уменьшения количества ультразвуковых приемопередающих датчиков, оригинальной конструкции, алгоритмов измерения и вычисления, введения дополнительного датчика температуры позволяет повысить точность измерения модуля вектора скорости и направления ветра, температуры воздуха, уменьшить массогабаритные параметры, обеспечить быстрые установку и подготовку прибора к работе.

Метеостанция для измерения трехкоординатного вектора скорости воздуха и температуры, содержащая ультразвуковые приемо-передающие датчики, датчики температуры воздуха, датчики относительной влажности воздуха, датчики атмосферного давления, электромагнитный компас, устройство обработки информации, устройство передачи информации, отличающаяся тем, что дополнительно содержит акселерометр, датчик угловых скоростей, флюгер, установленный на двухстепенном шарнире, причем ультразвуковые приемо-передающие датчики выполнены с возможностью измерения скорости потока воздуха и температуры и размещены на флюгере.
Метеостанция для трехкоординатного измерения вектора скорости потока воздуха и температуры
Метеостанция для трехкоординатного измерения вектора скорости потока воздуха и температуры
Источник поступления информации: Роспатент

Showing 171-180 of 255 items.
20.02.2019
№219.016.c1b8

Способ газификации углеводородов для получения водорода и синтез-газа

Изобретение относится к экологически безопасным технологиям разработки месторождений и добычи углеводородов, в частности трудноизвлекаемых и нерентабельных залежей угля, сланцев, нефти и газового конденсата. Техническим результатом является повышение эффективности проведения подземной...
Тип: Изобретение
Номер охранного документа: 0002423608
Дата охранного документа: 10.07.2011
20.02.2019
№219.016.c228

Способ стабилизации процесса горения топлива в камере сгорания и камера сгорания прямоточного воздушно-реактивного двигателя летательного аппарата

Способ стабилизации процесса горения в камере сгорания прямоточного воздушно-реактивного двигателя, работающей на жидком углеводородном топливе, основан на создании вихревых зон с помощью стабилизаторов пламени в виде плохо обтекаемых тел. В вихревую зону за стабилизаторного пространства...
Тип: Изобретение
Номер охранного документа: 0002454607
Дата охранного документа: 27.06.2012
20.02.2019
№219.016.c230

Универсальная упругоподобная аэродинамическая модель и способ ее изготовления

Изобретения относятся к области экспериментальной аэродинамики, в частности исследований проблем аэроупругости летательных аппаратов. Модель содержит силовой сердечник и одну съемную крышку, сердечник выполнен в виде части профиля, включающей всю верхнюю поверхность, например, крыла, а также...
Тип: Изобретение
Номер охранного документа: 0002454646
Дата охранного документа: 27.06.2012
08.03.2019
№219.016.d34f

Устройство измерения шарнирного момента отклоняемой поверхности

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения шарнирных моментов, действующих на органы управления и взлетно-посадочную механизацию аэродинамических моделей летательных аппаратов в потоке аэродинамической трубы. Устройство содержит механизм...
Тип: Изобретение
Номер охранного документа: 0002681251
Дата охранного документа: 05.03.2019
08.03.2019
№219.016.d51c

Способ определения характеристик штопора модели летательного аппарата и устройство для его осуществления

Изобретения относятся к экспериментальной аэродинамике, в частности к определению характеристик штопора геометрически и динамически подобной свободно летающей модели летательного аппарата (ЛА) в воздушном потоке вертикальной аэродинамической трубы. Способ заключается в запуске в поток...
Тип: Изобретение
Номер охранного документа: 0002410659
Дата охранного документа: 27.01.2011
11.03.2019
№219.016.d862

Рабочая часть трансзвуковой аэродинамической трубы (варианты)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке...
Тип: Изобретение
Номер охранного документа: 0002393449
Дата охранного документа: 27.06.2010
20.03.2019
№219.016.e423

Устройство для получения твердофазных наноструктурированных материалов

Изобретение относится к нанотехнологиям и может быть использовано при получении углеродных нанотрубок. В парогазогенераторе 4 готовят многофазную смесь исходного вещества и направляют ее под давлением в газодинамический резонатор 9, где смесь детонирует. Продукты детонационного горения через...
Тип: Изобретение
Номер охранного документа: 0002299849
Дата охранного документа: 27.05.2007
20.03.2019
№219.016.e50a

Способы получения нанодисперсного углерода (варианты) и устройство для их реализации

Изобретение относится к нанотехнологиям и может быть использовано при получении твердофазных наноструктурированных материалов, в частности ультрадисперсных алмазов, фуллеренов и углеродных нанотрубок. Готовят смесь с отрицательным кислородным балансом, состоящую из углеродсодержащего вещества и...
Тип: Изобретение
Номер охранного документа: 0002344074
Дата охранного документа: 20.01.2009
21.03.2019
№219.016.eada

Устройство бесконтактного возбуждения механических колебаний

Изобретение относится к акустике. Устройство бесконтактного возбуждения механических колебаний содержит громкоговоритель и рупор. Поверхность рупора представляет собой криволинейную поверхность постоянной отрицательной кривизны с образующей линией в форме трактрисы, рупор широкой частью...
Тип: Изобретение
Номер охранного документа: 0002682582
Дата охранного документа: 19.03.2019
29.03.2019
№219.016.f76c

Способ измерения температуры режущей кромки лезвийного инструмента при высокоскоростном фрезеровании металла

Изобретение относится к измерительной технике, в частности к измерениям температуры в зоне резания лезвийным инструментом с использованием термопары. Техническим результатом является определение температуры детали в фактической точке резания (на режущей кромке инструмента) с максимальной...
Тип: Изобретение
Номер охранного документа: 0002445588
Дата охранного документа: 20.03.2012
+ добавить свой РИД