×
09.09.2018
218.016.854c

Результат интеллектуальной деятельности: Способ определения высоты подрыва осколочно-фугасного снаряда над грунтом

Вид РИД

Изобретение

№ охранного документа
0002666375
Дата охранного документа
07.09.2018
Аннотация: Изобретение относится к боеприпасам и может быть использовано для оценки функционирования неконтактных взрывателей. Перед испытаниями неконтактных взрывателей в составе снаряда проводят подрыв снаряда с контактным взрывателем. В образовавшейся при взрыве воронке измеряют глубину воронки h. Затем производят стрельбу с использованием неконтактных взрывателей в таких же снарядах, при той же наводке орудия. В образующихся при взрывах снарядов воронках также измеряют глубину воронки h. Высоту подрыва снаряда над поверхностью грунта оценивают расчетом с помощью соотношения H=(h-h)/(l-η), где Н - высота подрыва снаряда над грунтом; h - глубина воронки в грунте при подрыве снаряда с помощью контактного взрывателя; h - глубина воронки в грунте при подрыве снаряда с помощью неконтактного взрывателя на высоте Н; η - эмпирический (табличный) коэффициент взаимодействия взрыва с подстилающей поверхностью. Задачей предлагаемого технического решения является повышение достоверности оценки параметров испытания неконтактных взрывателей, в частности повышение достоверности определения высоты подрыва снарядов с неконтактными взрывателями. 1 з.п. ф-лы, 4 ил., 2 табл.

Изобретение относится к боеприпасам и может быть использовано для оценки функционирования неконтактных взрывателей.

Известен способ оценки параметров подрыва боеприпасов при использовании различных взрывателей. Способ заключается в том, что испытываемый взрыватель устанавливают в снаряд, производят выстрел, и с помощью оптических приборов оценивают параметры подрыва снаряда, в том числе оценивают высоту подрыва снаряда над местностью. (Стрельба и управление огнем артиллерийских подразделений. Левченко В.А., Сергин М.Ю., Иванов В.А., Зеленин Г.В. //Учебное пособие. Изд-во Тамб. гос. техн. ун-та, 2004 г.).

Недостатком этого способа является низкая достоверность определения высоты подрыва снаряда при малых расстояниях зоны взрыва от поверхности грунта.

Задачей предлагаемого технического решения является повышение достоверности оценки параметров испытания неконтактных взрывателей, в частности повышение достоверности определения высоты подрыва снарядов с неконтактными взрывателями.

Поставленная задача решается следующим образом.

Перед испытаниями неконтактных взрывателей в составе снаряда проводят подрыв снаряда с контактным взрывателем. В образовавшейся при взрыве воронке измеряют глубину воронки hв. Затем производят стрельбу с использованием неконтактных взрывателей в таких же снарядах, при той же наводке орудия. В образующихся при взрывах снарядов воронках также измеряют глубину воронки hвH. Высоту подрыва снаряда над поверхностью грунта оценивают расчетом с помощью соотношения

H=(hв-hвH)/(l-η),

где H- высота подрыва снаряда над грунтом; hв - глубина воронки в грунте при подрыве снаряда с помощью контактного взрывателя; hвH - глубина воронки в грунте при подрыве снаряда с помощью неконтактного взрывателя на высоте Н; η - эмпирический (табличный) коэффициент взаимодействия взрыва с подстилающей поверхностью.

Предлагаемый способ разработан на основе проведенных исследований по анализу результатов подрыва осколочно-фугасных снарядов (ОФС) в полигонных условиях и данных аналитических расчетов. Основные результаты этих исследований приведены ниже.

Как известно, взрыв - это очень быстрое выделение энергии в ограниченном объеме, связанное с внезапным изменением состояния вещества, и сопровождаемое обычно разбрасыванием (дроблением) окружающей среды. Наиболее характерными являются взрывы, при которых на первом этапе внутренняя химическая энергия превращается в тепловую. По сравнению с обычным топливом химические взрывчатые вещества (ВВ) обладают небольшим тепловыделением (4⋅103 кДж/кг или 103 ккал/кг), но из-за малого времени химического превращения (10-5 с), которое происходит без участия кислорода воздуха, вещество не успевает разлететься в процессе взрыва и образуется газ с высокой температурой (2⋅103-4⋅103 К) и давлением до 10 ГПа (105 кгс/см). Расширение газа приводит в движение окружающую среду - возникает взрывная волна, скорость распространения которой вблизи очага взрыва достигает нескольких км/с. Взрывная волна оказывает механическое действие на окружающие объекты.

При взрыве в неограниченной среде продукты взрыва через некоторое время после начала их разлета займут предельный объем, отвечающий остаточному давлению продуктов взрыва, равному давлению (атмосферному) окружающей среды. Для типичных ВВ при гипотезе мгновенной детонации скорость истечения газов при взрыве составляет примерно 104 м/с. Из технической литературы известны данные расчетов по определению расстояний от центра взрыва ВВ, на которых действие продуктов взрыва на окружающую среду уже практически не будет сказываться. Показано, что продукты взрыва типичных ВВ расширяются примерно в 800-1600 раз. В случае сферического взрыва предельный радиус объема, занятого продуктами взрыва, будет в 10-12 раз больше начального радиуса заряда. Для цилиндрического взрыва это отношение будет приблизительно 30-40.

Были проведены эксперименты, фиксирующие процесс изменения облака разлета продуктов взрыва ОФС калибром 152 мм и длиной цилиндрической части примерно 0,5 м в воздухе на высоте примерно 12 м от поверхности земли. Инструментальные оценки размеров облака взрыва таких снарядов в воздухе показывают, что максимальный размер, образующихся облаков разлета продуктов взрыва, составляет примерно 7…8 м (радиус R - соответственно 3,5-4 м). При этом наблюдается максимальный рост размера ВВ (характерного размера заряда ВВ до взрыва) примерно в 15 раз. Эти данные хорошо согласуются с известными данными наблюдений.

В связи с этим можно утверждать, что действие собственно продуктов взрыва (расширение продуктов взрыва) ограничено весьма незначительными расстояниями (например, радиус действия облака продуктов взрыва ОФС калибром 152 мм и массой ВВ примерно 9 кг составляет приблизительно 4 м), но именно этот объем продуктов взрыва оказывает разрушающее действие на среду, с которой взаимодействует.

Для взрывов на абсолютно твердой поверхности (например, стальная плита) вся выделившаяся при взрыве энергия распространяется в пределах полусферы в окружающем пространстве вне твердой поверхности.

Для взрыва на не абсолютно твердой поверхности, например, на грунте, часть энергии расходуется на образование воронки. Эмпирически установлена взаимосвязь величины энергии взрыва, которая распространяется в пространстве при наличии подстилающей поверхности. Эту величину принято характеризовать коэффициентом η (Физика взрыва /Под. ред. Л.П. Орленко. - изд. 3-е, перераб. - В 2 т. Т. 1. - М.: ФИЗМАТЛИТ, 2002. - 832 с). В таблице 1 приведены общепринятые значения этого коэффициента при взаимодействии продуктов взрыва с различной подстилающей поверхностью.

Из анализа таблицы 1 можно отметить, что при взаимодействии продуктов взрыва с поверхностью в виде грунта примерно 60% энергии взрыва излучается в воздушное пространство и 40% энергии расходуется на образование воронки. На фиг. 1 приведено схематичное изображение воронки, образующейся при взрыве ОФС в грунте.

Изобретение поясняется чертежами.

Фиг. 1. Изображение воронки, образующейся при взрыве ОФС: rв - радиус воронки; hв - глубина воронки. Фиг. 2. Изображение момента взрыва снаряда при установке взрывателя на контактное действие: в левом нижнем углу приведено фото воронки, образовавшейся при взрыве. Фиг. 3. Фотография момента подрыва ОФС при работе взрывателя на неконтактный подрыв в режиме H1. Фиг. 4. Схема процесса образования воронки при контактном (а) и неконтактном (б) взрыве ОФС: R - радиус облака взрыва; hв - глубина воронки при контактном взрыве снаряда; hвH - глубина воронки при неконтактном взрыве снаряда на высоте Н.

Типичные размеры воронок при стрельбе осколочно-фугасными и фугасными снарядами с установкой взрывателя на фугасное действие приведены в таблице 2.

Как видно из таблицы 2, при стрельбе ОФС калибра 152 мм на контактное действие радиус воронки составляет примерно 4-5 метров. Выше показано, что при подрыве аналогичного снаряда облако продуктов взрыва также имеет радиус примерно 4 метра.

На фиг. 2 приведено фото, на котором зарегистрирован момент подрыва такого же ОФС при установке взрывателя на контактное действие.

Измерения параметров воронки дали следующие значения: rв - примерно 3,1 м; hв - примерно 1,5 м. Как видно эти данные совпадают с результатами измерений приведенными в таблице 2 для ОФС калибром 152 мм.

В соответствии с анализом, приведенным выше, в части оценки энергии взрыва направляемой на образование воронки при контактном подрыве снаряда на поверхности грунта (η=0,6), глубина, образующейся воронки будет составлять примерно (1-η) от радиуса облака взрыва, так как на грунт будут действовать продукты взрыва расположенные в нижней полусфере облака взрыва. При радиусе облака взрыва R примерно 4 метра следует ожидать глубину воронки hв примерно 1,6 м. На практике, мы видим совпадение таких наблюдений. В этом случае соотношение для глубины воронки hв при контактном подрыве можно записать в виде:

На фиг. 3 приведено фото регистрации неконтактного подрыва такого же снаряда при установке взрывателя на неконтактный подрыв в режиме.

На фотографии момента подрыва снаряда, среди частиц выброшенного при взрыве грунта, просматривается огненное облако продуктов взрыва. По существующей сегодня методике оценки работы взрывателя такой подрыв сложно отнести к неконтактному. Измерения параметров воронки, образовавшейся при таком взрыве, показывают, что ее размеры существенно отличаются от размеров, зафиксированных при контактном подрыве такого же снаряда. Они значительно меньше. Общий вид этой воронки приведен в левом верхнем углу на фиг. 3. Характерные размеры воронки составили: rв - примерно 1,5 м; hв - примерно 0,6 м.

Исходя из полученных результатов, можно сделать вывод, что для грунта данного полигона глубина воронки от воздействия продуктов взрыва также составляет примерно (1-η) от линейного размера зоны облака взрыва, находящейся ниже плоскости разделения воздуха и грунта (зоны облака непосредственно взаимодействующей с грунтом). Т.е. можно оценить глубину воронки при известном значении расстояния от центра взрыва до поверхности грунта (Н).

Когда центр облака взрыва находится на высоте Н от поверхности грунта, в процессе образования воронки будет участвовать только часть облака взрыва, линейный размер которого в направлении формирования глубины воронки будет определяться разностью (R-H). В этом случае глубину образующейся воронки hвH можно определить с помощью соотношения

Преобразование соотношения (2) позволяет получить формулу для оценки высоту центра взрыва Н по значению глубины воронки от взрыва снаряда и радиусу облака взрыва, а именно

Схематично результаты поясняются рисунком фиг. 4, на котором изображен процесс образования воронки при контактном и неконтактном (на высоте Н) взрыве ОФС.

Проведя вычисления, для приведенного выше примера, получим, что Н составляет примерно 2,5 метра.

В случае если радиус облака взрыва не известен, высоту расположения центра облака взрыва Н можно оценить по данным измерения глубины воронки при контактном подрыве снаряда. Такое соотношение можно получить после преобразования соотношений (1) и (2), исключив R. Это соотношение приведено ниже.

Результаты испытаний ОФС калибром 152 мм при их неконтактном подрыве и фиксации центра огненного шара от взрыва снаряда с помощью оптических приборов показали, что измеренные высоты соответствуют рассчитанным с помощью соотношения (4). Эксперименты выполнены для разных высот подрыва в диапазоне от 0,5 до 3,0 метров. Получены положительные результаты.

Таким образом, предложенный способ оценки параметров функционирования неконтактных взрывателей позволяет просто и достоверно определить высоту подрыва снаряда над поверхностью грунта

Изложенные сведения о заявленном изобретении, охарактеризованном в независимом пункте формулы, свидетельствуют о возможности его осуществления с помощью описанных в заявке и известных средств и методов. Следовательно, заявленный способ соответствует условию промышленной применимости.


Способ определения высоты подрыва осколочно-фугасного снаряда над грунтом
Способ определения высоты подрыва осколочно-фугасного снаряда над грунтом
Источник поступления информации: Роспатент

Showing 41-50 of 54 items.
13.12.2019
№219.017.ecd9

Радиовзрыватель с линейной частотной модуляцией сигнала

Изобретение относится к области радиолокационной техники и может быть применено в устройствах с непрерывными частотно-модулированными зондирующими сигналами для фиксации заранее установленной дальности до объекта при сближении с ним. Радиовзрыватель с линейной частотной модуляцией сигнала...
Тип: Изобретение
Номер охранного документа: 0002708765
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed71

Ампульный химический источник тока для артиллерийских боеприпасов

Изобретение относится к резервным энергосодержащим источникам тока и может быть использовано при создании ампульных химических источников тока, применяемых в электромеханических взрывательных устройствах артиллерийских боеприпасов. Предлагаемый ампульный химический источник тока для...
Тип: Изобретение
Номер охранного документа: 0002708770
Дата охранного документа: 11.12.2019
22.01.2020
№220.017.f823

Способ повышения стойкости брони против воздействия кинетических снарядов

Изобретение относится к области военного дела и предназначено для обеспечения защиты вооружения, военной техники и других объектов от поражения артиллерийскими снарядами, в том числе бронебойными, например подкалиберными и кумулятивными боеприпасами. Для повышения стойкости брони к воздействию...
Тип: Изобретение
Номер охранного документа: 0002711565
Дата охранного документа: 17.01.2020
13.03.2020
№220.018.0b1e

Акустический боеприпас

Изобретение относится к нелетальному оружию и может быть использовано для защиты объектов от агрессивной толпы или террористов. Технический результат - повышение эффективности устройства. Акустический боеприпас имеет корпус в форме прямой трубы. Источник мощного акустического излучения...
Тип: Изобретение
Номер охранного документа: 0002716325
Дата охранного документа: 11.03.2020
28.03.2020
№220.018.1114

Броневая преграда

Изобретение относится к области военного дела и предназначено для обеспечения защиты вооружения, военной техники и других объектов от поражения артиллерийскими снарядами, в том числе бронебойными, например, подкалиберными и кумулятивными боеприпасами. Броневая преграда состоит из различных...
Тип: Изобретение
Номер охранного документа: 0002717886
Дата охранного документа: 26.03.2020
28.03.2020
№220.018.115c

Способ калибровки радиовзрывателей на основе автодина

Изобретение относится к радиотехнике и может быть использовано для контроля параметров и настройки устройств, использующих эффект Доплера, в том числе радиовзрывателей боеприпасов. Способ калибровки радиовзрывателей на основе автодина заключается в том, что неподвижным радиовзрывателем излучают...
Тип: Изобретение
Номер охранного документа: 0002717861
Дата охранного документа: 26.03.2020
02.04.2020
№220.018.1284

Способ поражения гиперзвуковых летательных аппаратов

Изобретение относится к военной технике, а более конкретно к способу поражения гиперзвуковых летательных аппаратов (ГЛА). Способ поражения ГЛА заключается в том, что с помощью локационных средств обнаруживают ГЛА, с помощью вычислительного устройства определяют координаты его движения и...
Тип: Изобретение
Номер охранного документа: 0002718183
Дата охранного документа: 31.03.2020
10.04.2020
№220.018.13d2

Способ обеспечения неконтактного подрыва боеприпаса

Изобретение относится к боеприпасам и может быть использовано при создании неконтактных взрывательных устройств различных боеприпасов. Способ заключается в том, что боеприпас снабжают неконтактным радиовзрывателем на основе автодина с приемо-передающей антенной, излучающей при подлете...
Тип: Изобретение
Номер охранного документа: 0002718557
Дата охранного документа: 08.04.2020
04.05.2020
№220.018.1bbe

Бронебойный оперенный подкалиберный снаряд

Изобретение относится к артиллерийским боеприпасам, и в частности к бронебойным снарядам для гладкоствольных или нарезных артиллерийских систем среднего или крупного калибров унитарного, раздельно-гильзового или картузного заряжания. Технический результат - повышение бронебойного действия...
Тип: Изобретение
Номер охранного документа: 0002720434
Дата охранного документа: 29.04.2020
07.06.2020
№220.018.24ed

Способ обнаружения цели с помощью радиовзрывателя ракеты

Изобретение относится к военной технике и может быть использовано при создании помехозащищенных неконтактных датчиков цели различных боеприпасов. Способ обнаружения цели с помощью радиовзрывателя ракеты заключается в том, что с помощью генератора радиовзрывателя через промежутки времени T...
Тип: Изобретение
Номер охранного документа: 0002722904
Дата охранного документа: 04.06.2020
Showing 41-50 of 61 items.
07.11.2019
№219.017.def8

Способ неконтактного подрыва боеприпасов с помощью взрывателей с лазерными устройствами

Изобретение относится к военной технике и может быть использовано в неконтактных взрывательных устройствах различных боеприпасов. Способ неконтактного подрыва боеприпасов с помощью взрывателей с лазерными устройствами заключается в том, что во взрыватель устанавливают импульсный лазерный...
Тип: Изобретение
Номер охранного документа: 0002705123
Дата охранного документа: 05.11.2019
15.11.2019
№219.017.e1eb

Прибор для спектрального анализа излучения от объектов

Изобретение относится к области спектрального анализа и касается прибора для спектрального анализа излучения от объектов. Прибор содержит последовательно соединенные оптический блок с объективом, оптический фильтр, ПЗС-матрицу, аппаратуру цифровой обработки и систему отображения. Оптический...
Тип: Изобретение
Номер охранного документа: 0002706048
Дата охранного документа: 13.11.2019
15.11.2019
№219.017.e2e4

Способ определения ресурса стальных изделий

Изобретение относится к методам неразрушающего контроля материалов и может быть использовано при неразрушающей оценке ресурса стальных изделий после длительных сроков эксплуатации. Способ определения ресурса стальных изделий, заключающийся в том, что измеряют параметры механических свойств...
Тип: Изобретение
Номер охранного документа: 0002706106
Дата охранного документа: 13.11.2019
16.11.2019
№219.017.e356

Способ определения глубины пробития мишени бронебойными подкалиберными снарядами

Изобретение относится к методам оценки эффективности бронебойных боеприпасов и брони при их соударении и может быть использовано при создании новых боеприпасов и новой брони для защиты объектов. Для осуществления способа определения глубины пробития мишени бронебойными подкалиберными снарядами...
Тип: Изобретение
Номер охранного документа: 0002706280
Дата охранного документа: 15.11.2019
01.12.2019
№219.017.e8fc

Способ поражения целей боеприпасом с ударными ядрами

Изобретение относится к военной технике и может быть использовано при разработке и применении боеприпасов с боевыми элементами, формирующими ударные ядра. Технический результат – повышение эффективности боеприпасов. По способу после выброса из боеприпаса боевые элементы падают на землю,...
Тип: Изобретение
Номер охранного документа: 0002707836
Дата охранного документа: 29.11.2019
01.12.2019
№219.017.e979

Способ коррекции траектории артиллерийских вращающихся снарядов

Изобретение относится к боеприпасам ствольной артиллерии и может быть использовано во взрывателях артиллерийских снарядов. Способ коррекции траектории артиллерийских вращающихся снарядов, заключающийся в том, что с помощью аппаратурных и вычислительных средств, установленных в головной...
Тип: Изобретение
Номер охранного документа: 0002707616
Дата охранного документа: 28.11.2019
13.12.2019
№219.017.ecd9

Радиовзрыватель с линейной частотной модуляцией сигнала

Изобретение относится к области радиолокационной техники и может быть применено в устройствах с непрерывными частотно-модулированными зондирующими сигналами для фиксации заранее установленной дальности до объекта при сближении с ним. Радиовзрыватель с линейной частотной модуляцией сигнала...
Тип: Изобретение
Номер охранного документа: 0002708765
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed71

Ампульный химический источник тока для артиллерийских боеприпасов

Изобретение относится к резервным энергосодержащим источникам тока и может быть использовано при создании ампульных химических источников тока, применяемых в электромеханических взрывательных устройствах артиллерийских боеприпасов. Предлагаемый ампульный химический источник тока для...
Тип: Изобретение
Номер охранного документа: 0002708770
Дата охранного документа: 11.12.2019
22.01.2020
№220.017.f823

Способ повышения стойкости брони против воздействия кинетических снарядов

Изобретение относится к области военного дела и предназначено для обеспечения защиты вооружения, военной техники и других объектов от поражения артиллерийскими снарядами, в том числе бронебойными, например подкалиберными и кумулятивными боеприпасами. Для повышения стойкости брони к воздействию...
Тип: Изобретение
Номер охранного документа: 0002711565
Дата охранного документа: 17.01.2020
13.03.2020
№220.018.0b1e

Акустический боеприпас

Изобретение относится к нелетальному оружию и может быть использовано для защиты объектов от агрессивной толпы или террористов. Технический результат - повышение эффективности устройства. Акустический боеприпас имеет корпус в форме прямой трубы. Источник мощного акустического излучения...
Тип: Изобретение
Номер охранного документа: 0002716325
Дата охранного документа: 11.03.2020
+ добавить свой РИД