×
09.09.2018
218.016.852c

Результат интеллектуальной деятельности: СПОСОБ РЕГЕНЕРАЦИИ ИСПОЛЬЗОВАННОГО КАТАЛИЗАТОРА ГИДРООЧИСТКИ

Вид РИД

Изобретение

№ охранного документа
0002666355
Дата охранного документа
07.09.2018
Аннотация: Изобретение относится к способу регенерации использованного катализатора гидроочистки, содержащего, по меньшей мере, 8% вес. кокса и один или несколько неблагородных металлов VIII группы и/или VIb группы, включающему стадии: (i) удаление кокса с использованного катализатора гидроочистки; (ii) обработка катализатора, полученного на стадии (i), водным раствором глюконовой кислоты, содержащим от 2 до 60% вес. глюконовой кислоты относительно веса сухого катализатора; и (iii) необязательно, высушивание при температуре, самое большее, 200˚С. Технический результат – повышенная эффективность регенерированного катализатора (восстановление и даже увеличение активности в отношении гидроочистки (гидрообессеривания)). 2 н. и 20 з.п. ф-лы, 1 табл., 3 пр.

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу регенерации использованного катализатора гидроочистки.

Уровень техники

В процессах нефтепереработки сырье, такое как сырая нефть, дистиллятные продукты и остаточные фракции сырой нефти, как правило, содержат загрязняющие примеси, которые обладают потенциалом дезактивации катализатора, предназначенного для химического преобразования сырья. Обычно имеются в избытке такие загрязняющие примеси, как серосодержащие соединения, например, сероводород и серосодержащие углеводороды, и азотсодержащие соединения.

Процессы гидроочистки направлены на удаление таких загрязняющих примесей из исходного сырья нефтепереработки и, как правило, включают приведение углеводородного сырья в контакт с катализатором гидроочистки в присутствии водорода и в условиях гидроочистки. Помимо удаления загрязняющих примесей, могут иметь место и другие преобразования, такие как гидрокрекинг и гидрогенизация ароматических соединений.

Катализаторы гидроочистки содержат гидрогенизирующие металлические компоненты, нанесенные на оксидный носитель. Гидрогенизирующие металлические компоненты обычно представляют собой металлы VI группы, такие как молибден и/или вольфрам, и металлы VIII группы, такие как никель и/или кобальт.

Во время осуществления очистки различные загрязняющие примеси, такие как соединения металлов (например, сульфиды никеля и ванадия) и кокс, осаждаются на катализаторах гидроочистки, вызывая со временем дезактивацию катализатора. Чтобы продукт гидроочистки по-прежнему отвечал техническим требованиям, касающимся, например, содержания азота и серы, катализатор гидроочистки необходимо заменять на новый, или свежий, катализатор гидроочистки. Поскольку новый, или свежий, катализатор гидроочистки является дорогостоящим, дезактивированный катализатор все чаще заменяют регенерированным катализатором гидроочистки. На стадии регенерации удаляют отложения кокса, а сульфиды металлов преобразуют в оксиды посредством реакции управляемого окисления. Полученный таким образом катализатор восстанавливает некоторую долю своей исходной активности.

Ввиду увеличившегося спроса на катализаторы гидроочистки, необходимые для производства топлив со сниженным содержанием серы и азота, таких как сверхнизкосернистые дизельные топлива, и с целью удовлетворения все более жестким требованиям природоохранного законодательства, в настоящее время на предприятиях нефтепереработки большое внимание уделяют регенерации катализатора гидроочистки, чтобы сдерживать рост расходов на катализатор.

Следовательно, целью настоящего изобретения является обеспечение способа регенерации использованного катализатора гидроочистки, очень перспективного с точки зрения восстановления его активности.

Сущность изобретения

Было обнаружено, что желательное повышение активности использованного катализатора может быть достигнуто, если использованный катализатор гидроочистки подвергнуть обработке на стадии регенерации, после чего привести в контакт с глюконовой кислотой.

Таким образом, настоящее изобретение относится к способу регенерации использованного катализатора гидроочистки, содержащего, по меньшей мере, 8% вес. кокса и один или несколько неблагородных металлов VIII группы и/или VIb группы, каковой способ включает следующие стадии:

(i) удаление кокса с использованного катализатора гидроочистки; и

(ii) обработка катализатора, полученного на стадии (i), от 2 до 60% вес. глюконовой кислотой относительно веса сухого катализатора.

В соответствии с настоящим способом, активность в отношении гидроочистки использованного катализатора может быть восстановлена в очень большой степени. В некоторых случаях активность в отношении гидроочистки может быть восстановлена полностью или даже может быть увеличена по сравнению с активностью в отношении гидроочистки свежего неиспользованного катализатора. Таким образом, настоящим изобретением обеспечивается значительное усовершенствование известных способов регенерации катализаторов гидроочистки.

Подробное описание изобретения

Настоящее изобретение относится к способу регенерации использованного катализатора гидроочистки, который содержит, по меньшей мере, 8% вес. кокса и один или несколько неблагородных металлов VIII группы и/или VIb группы.

Катализатор гидроочистки, подлежащий регенерации в соответствии с настоящим изобретением, может представлять собой любой известный катализатор гидроочистки.

Катализатор гидроочистки, используемый на стадии (i), надлежащим образом может быть катализатором гидрообессеривания. Катализатор гидрообессеривания может представлять собой любой катализатор гидрообессеривания, известный в данной области. Обычно, такие катализаторы содержат в качестве гидрогенизирующих компонентов металл VIII группы Периодической системы элементов и соединение металла VIb группы Периодической системы элементов, нанесенные на пористый носитель катализатора. Надлежащими примерами пористых носителей катализатора являются оксид кремния, оксид алюминия, оксид титана, оксид циркония, оксид кремния-алюминия, оксид кремния-титана, оксид кремния-циркония, оксид титана-алюминия, оксид циркония-алюминия, оксид кремния-титана и сочетания из двух или более перечисленных материалов. Предпочтительный пористый носитель катализатора выбирают из группы, состоящей из оксида алюминия, оксида кремния и оксида кремния-алюминия. Из них наиболее предпочтительным пористым жаропрочным оксидом является оксид алюминия, более конкретно, гамма-оксид алюминия.

Пористый носитель катализатора может характеризоваться средним диаметром пор в диапазоне от 50 до 200 Å, измеренным в соответствии с методом испытания ASTM D-4222. Общий объем пор пористого жаропрочного оксида предпочтительно лежит в диапазоне от 0,2 до 2 см3/г.

Удельная площадь поверхности пористого жаропрочного оксида, измеренная методом Брунауэра-Эммета-Теллера (БЭТ), вообще, превышает 100 м2/г, обычно, лежит в диапазоне от 100 до 400 м2/г. Удельную площадь поверхности следует измерять методом БЭТ в соответствии с методом испытания ASTM D-3663-03.

Металлическими элементами металлических компонентов являются элементы, выбранные из VIb группы, предпочтительно хром, молибден и вольфрам, и VIII группы, предпочтительно кобальт и никель, Периодической системы элементов, приведенной в Handbook of Chemistry and Physics 63rd Edition. Фосфор также может являться желательным компонентом.

Металлический компонент может быть металлом как таковым или любым компонентом, содержащим металл, включая, помимо прочего, оксиды металла, гидроксиды металла, карбонаты металла и соли металла.

Что касается металлов VIII группы, металлические компоненты предпочтительно выбирают из группы, состоящей из ацетатов, формиатов, цитратов, оксидов, гидроксидов, карбонатов, нитратов, сульфатов металла VIII группы и двух или более из указанных соединений. Предпочтительно компоненты, содержащие металл VIII группы, это нитраты металла, более конкретно, нитраты никеля и/или кобальта. Что касается компонентов, содержащих металл VIb группы, предпочтительные компоненты выбирают из группы, состоящей из оксидов и сульфидов металла VIb группы.

Содержащий металл VIII группы компонент, более конкретно, кобальт и/или никель, предпочтительно кобальт, может присутствовать в катализаторе гидроочистки в количестве, лежащем в диапазоне от 0,5% вес. до 20% вес., предпочтительно от 1% вес. до 15% вес., наиболее предпочтительно от 2% вес. до 12% вес. относительно общего сухого веса катализатора гидроочистки.

Содержащий металл VIb группы компонент, более конкретно, молибден и/или вольфрам, предпочтительно молибден, может присутствовать в катализаторе гидроочистки в количестве, лежащем в диапазоне от 5% вес. до 50% вес., предпочтительно от 8% вес. до 40% вес., наиболее предпочтительно от 10% вес. до 30% вес. относительно общего сухого веса катализатора гидроочистки.

Свежий неиспользованный катализатор гидроочистки, который после использования в процессе гидроочистки подвергают обработке способом настоящего изобретения, надлежащим образом изготавливают способом, включающим следующие стадии:

(а) обработка носителя одним или несколькими компонентами, содержащими металл VIb группы и/или одним или несколькими компонентами, содержащими металл VIII;

(b) обжиг обработанного носителя катализатора при температуре, по меньшей мере, 200°С, предпочтительно от 200 до 700°С, с образованием пропитанного носителя; и

(с) сульфидирование пропитанного носителя с получением катализатора гидроочистки.

Этот свежий катализатор гидроочистки затем используют в процессе гидроочистки. Активность свежего катализатора гидроочистки снижается в ходе процесса гидроочистки из-за осаждения кокса и, возможно, других загрязняющих примесей на поверхности катализатора гидроочистки. Использованный катализатор, подлежащий регенерации в соответствии с настоящим изобретением, содержит, по меньшей мере, 8% вес. кокса относительно общего веса использованного катализатора. Использованный катализатор гидроочистки также может содержать до 30% вес. кокса и обычно содержит от 8 до 20% вес. кокса относительно общего веса использованного катализатора. Следовательно, удаление кокса с использованного катализатора гидроочистки является важной стадией способа регенерации использованного катализатора гидроочистки.

На стадии (i) настоящего способа с использованного катализатора гидроочистки удаляют кокс.

Стадия (i) надлежащим образом может быть проведена в реакторе, отличном от реактора, в котором осуществлялся процесс гидроочистки. Иными словами, использованный катализатор гидроочистки надлежащим образом изымают из реактора, в котором осуществлялся процесс гидроочистки, и транспортируют в установку регенерации, в которой проводят стадию (i).

Стадию (i) обычно осуществляют путем выжигания кокса при повышенной температуре в окислительных условиях. Целесообразно использовать на стадии (i) кислород или кислородсодержащий газ. Таким образом, кокс может быть удален в результате сгорания углеродсодержащих компонентов, которые присутствуют на катализаторе гидроочистки.

Перед тем, как использованный катализатор гидроочистки будет подвергнут обработке на стадии (i), он может быть подвергнут обработке, в ходе которой более мелкие, пылевидные частицы катализатора отделяют от повторно используемых частиц катализатора. Это может быть выполнено, например, путем просеивания. Кроме того, использованный катализатор гидроочистки также может быть подвергнут обработке на стадии, направленной на удаление масла, до обработки на стадии (i). На стадии обезмасливания с использованного катализатора гидроочистки может быть удалено масло, все еще присутствующее на использованном катализаторе гидроочистки. Способы обезмасливания, как таковые, хорошо известны.

Стадия (i) может быть надлежащим образом осуществлена путем нагревания использованного катализатора гидроочистки в присутствии кислородсодержащего газа при температуре, лежащей в диапазоне от 200 до 750°С. Предпочтительно на стадии (i) кокс удаляют путем приведения использованного катализатора гидроочистки в контакт с кислородсодержащим газом при температуре, лежащей в диапазоне от 250 до 700°С, более предпочтительно от 320 до 550°С, наиболее предпочтительно от 330 до 470°С. Стадию (i) предпочтительно осуществляют с использованием кислородсодержащего газа, такого как воздух или разбавленный азотом воздух, так, чтобы окислить углеродсодержащие отложения до оксидов углерода (СО2 и/или СО) и в значительной степени преобразовать сульфиды металлов в оксиды металлов. Предпочтительно кислородсодержащим газом является воздух. Предпочтительно применяют поток кислородсодержащего газа. Вообще, стадию (i) завершают, когда количество оксидов углерода (СО2 и/или СО) в отходящем газа достаточно низкое, указывающее на то, что существенная часть углеродсодержащих отложений уже выгорела.

В одном из предпочтительных вариантов осуществления настоящего способа перед стадией (i) использованный катализатор гидроочистки подвергают тепловой обработке в инертной атмосфере, например, в атмосфере азота, после чего полученный катализатор гидроочистки подвергают обработке на стадии (i). Предпочтительно подобную тепловую обработку в инертной атмосфере проводят при температуре, лежащей в диапазоне от 250 до 700°С, более предпочтительно от 320 до 550°С, наиболее предпочтительно от 330 до 470°С.

Стадия (i) надлежащим образом может продолжаться в течение, по меньшей мере, 0,5 часа, предпочтительно, по меньшей мере, 2,5 часа, наиболее предпочтительно, по меньшей мере, 3 часа.

Катализатор гидроочистки, полученный на стадии (i), надлежащим образом содержит менее 5% вес. кокса, предпочтительно менее 3% вес. кокса, более предпочтительно менее 2% вес. кокса относительно общего веса катализатора гидроочистки.

На стадии (ii) катализатор, полученный на стадии (i), обрабатывают от 2 до 60% вес. глюконовой кислоты.

Предпочтительно катализатор обрабатывают раствором глюконовой кислоты, более конкретно, раствором, содержащим от 2 до 60% вес. глюконовой кислоты. Объем раствора, предпочтительно равен объему пор катализатора.

Используемый раствор предпочтительно содержит такое количество глюконовой кислоты, которое составляет от 3 до 50% вес., более предпочтительно от 4 до 40% вес., наиболее предпочтительно от 6 до 30% вес. веса катализатора.

Предпочтительно молярное отношение количества глюконовой кислоты к общему содержанию металла VIb группы и VIII группы в катализаторе гидроочистки составляет от 0,01 до 2,5. Стадию (ii) надлежащим образом проводят в течении периода времени, лежащего в диапазоне от 0,1 до 24 часов, предпочтительно в диапазоне от 0,25 до 12 часов, более предпочтительно в диапазоне от 0,5 до 6 часов.

Стадию (ii) надлежащим образом проводят при температуре, лежащей в диапазоне от 10 до 90°С, предпочтительно в диапазоне от 15 до 80°С, более предпочтительно в диапазоне от 20 до 70°С.

После стадии (ii) катализатор, обработанный глюконовой кислотой, надлежащим образом может быть подвергнут сушке, которую проводят при температуре, самое большее, 200°С, и получают высушенный катализатор гидроочистки. Обычно, температуру сушки поддерживают в диапазоне температур от 60 до 150°С.

Главным преимуществом настоящего способа является то, что лишь обработка на стадии (ii) позволяет восстановить активность использованного катализатора в очень значительной степени при том, что сам процесс очень прост и рентабелен. Таким образом, в соответствии с настоящим изобретением, активность катализатора гидроочистки восстанавливается на, по меньшей мере, 85%, предпочтительно, по меньшей мере, 90%, более предпочтительно, по меньшей мере, 95%, наиболее предпочтительно, по меньшей мере, 98%. В некоторых случаях активность в отношении гидроочистки может быть восстановлена полностью или даже увеличена по сравнению с активностью в отношении гидроочистки свежего неиспользованного катализатора. Использование глюконовой кислоты позволяет наиболее привлекательным способом восстановить активность катализатора гидроочистки в отношении гидрообессеривания, что, как считается, является следствием того, что раствор глюконовой кислоты вызывает перераспределение гидрогенизирующих металлических компонентов на поверхности использованного катализатора гидроочистки.

Настоящим изобретением также обеспечивается способ гидроочистки серосодержащего углеводородного сырья, каковой способ включает приведение углеводородного сырья при парциальном давлении водорода от 1 до 70 бар и температуре от 200 до 420°С в контакт с регенерированным катализатором, полученным в соответствии с настоящим изобретением.

Катализатор гидроочистки, полученный после стадии (ii) и, необязательно, стадии сушки, перед повторным использованным в процессе гидроочистки может быть сульфидирован. Перед такой стадией сульфидирования катализатор гидроочистки может быть надлежащим образом подвергнут обжигу с целью преобразования гидрогенизирующих металлических компонентов в соответствующие оксиды. Затем обожженный катализатор гидроочистки может быть подвергнут сульфидированию. Сульфидирование регенерированного катализатора может быть выполнено с использованием любого обычного способа, известного специалистам в данной области. Так, регенерированный катализатор может быть приведен в контакт с серосодержащим соединением, которое может быть разложено до сероводорода, в условиях контакта настоящего изобретения. К примерам такого разлагаемого соединения относятся меркаптаны, CS2, тиофены, диметилсульфид (DMS) и диметилдисульфид (DMDS). Также является предпочтительным, чтобы сульфидирование было проведено путем приведения этой композиции в надлежащих для сульфидирования условиях в контакт с углеводородным сырьем, которое включает серосодержащее соединение. Серосодержащее соединение углеводородного сырья может быть органическим соединением серы, в частности, таким, какие обычно содержатся в дистиллятных продуктах, подвергаемых обработке способами гидрообессеривания. Обычно, температура сульфидирования лежит в диапазоне от 150 до 450°С, предпочтительно от 175 до 425°С, наиболее предпочтительно от 200 до 400°С.

Давление сульфидирования может лежать в диапазоне от 1 бар до 70 бар, предпочтительно от 1,5 бар до 55 бар, наиболее предпочтительно от 2 бар до 45 бар.

Предпочтительно сульфидирование представляет собой жидкофазное сульфидирование.

Нижеследующие примеры приведены для дополнительного пояснения изобретения, однако, их не следует рассматривать, как ограничивающие объем изобретения.

Примеры

Пример 1 - Обычная регенерация

Промышленные носители из оксида алюминия трехдольчатой формы размером 1,3 мм подвергли заполнению объема пор содержащим металл раствором с целью получения следующей композиции металлических компонентов (вес металла по отношению к общему сухому весу катализатора): 14% Мо, 3,5% Со, 2,25% Р. Пропитанный носитель сушили при 110ºС в течении 2 часов, затем обжигали 2 часа при температуре более 300°С (катализатор А). Этот катализатор использовали в течении 1000 часов в процессе гидроочистки, часть этого использованного катализатора затем подвергли выжиганию кокса при 357°С (катализатор В), тогда как из другой части кокс выжигали при температуре 450ºС (катализатор С), чтобы достичь содержания кокса от 1 до 2% вес.

Пример 2 - Регенерация в соответствии с изобретением

Часть катализатора В, полученного в примере 1, подвергли обработке водным раствором глюконовой кислоты, содержащим 15% вес. глюконовой кислоты относительно количества сухого катализатора (катализатор D).

Пример 3 - Активность катализаторов

Регенерированные катализаторы были доведены до кондиционного состояния и сульфидированы путем приведения в контакт с жидким углеводородом, содержащим выделяющее серу вещество, обеспечивающее содержание серы 2,5% вес. Рабочие условия, использованные в этих испытаниях, включали соотношение газа и нефти 300 Нл/кг, давление 40 бар и часовую объемную скорость жидкости 1 ч-1. Средневесовую температуру слоя (weight average bed temperature - WABT) регулировали так, чтобы она лежала в диапазоне от 340 до 380°С.

Сырье, используемое в испытаниях, представляло собой газойль с полным набором фракций, содержащий 1,28% вес. серы.

Рабочие условия и свойства сырья являются типичными для операций со сверхнизкосернистыми дизельными топливами (Ultra Low Sulphur Diesel - ULSD).

Температура, необходимая для получения продукта, содержащего 10 частей на миллион серы, приведена в таблице 1. Более низкая величина температуры, необходимой для достижения такого содержания серы, указывает на то, что катализатор, регенерированный в соответствии с настоящим изобретением, обладает повышенной эффективностью по сравнению с катализаторами, регенерированными обычным путем.

Таблица 1
Активность в отношении гидрообессеривания
Катализатор Температура, необходимая для достижения содержания S 10 ppm, (°С)
А 361
В 359
С 363
D 353
ppm - частей на миллион

Источник поступления информации: Роспатент

Showing 351-360 of 389 items.
29.04.2020
№220.018.1a5e

Способ получения наночастиц дисульфида молибдена на носителе из диоксида титана

Изобретение относится к способу получения наночастиц MoS на носителе из TiO в котором получение осуществляют восстановительным соосаждением с использованием водных растворов, содержащих соли-предшественники Ti и Mo, при этом соли-предшественники Ti и Mo представляют собой TiCl и (NH)MoS...
Тип: Изобретение
Номер охранного документа: 0002720181
Дата охранного документа: 27.04.2020
14.05.2020
№220.018.1c2e

Способ получения 1,4-бутандиола и тетрагидрофурана из фурана

Изобретение относится к способу получения тетрагидрофурана (THF) и 1,4-бутандиола (1,4-BDO) из фурана. Предложен способ получения THF и 1,4-BDO из фурана в присутствии каталитической композиции, в котором каталитическая композиция содержит по меньшей мере один металл, выбранный из группы,...
Тип: Изобретение
Номер охранного документа: 0002720682
Дата охранного документа: 12.05.2020
14.05.2020
№220.018.1c49

Процесс получения гликолей

Настоящее изобретение относится к процессу производства гликолей, включающему следующие стадии: стадию (a), в которой получают сырье, содержащее крахмал; стадию (b), в которой указанное сырье подвергают реакции гидролиза в присутствии воды для получения жидкого продукта гидролиза, содержащего...
Тип: Изобретение
Номер охранного документа: 0002720679
Дата охранного документа: 12.05.2020
14.05.2020
№220.018.1cc8

Способ и система охлаждения и разделения потока углеводородов

Настоящее изобретение относится к способу охлаждения и разделения потока углеводородов. Пропускают поток углеводородного сырья (7) через первую ступень охлаждения и сепарации для получения верхнего потока пара, обогащенного метаном (110), и потока бедной на метан жидкости (10). Пропускают поток...
Тип: Изобретение
Номер охранного документа: 0002720732
Дата охранного документа: 13.05.2020
15.05.2020
№220.018.1cee

Способ генерирования энергии с помощью комбинированного цикла

В данном изобретении предложен способ генерирования энергии с помощью комбинированного цикла, включающий работу первой энергетической системы, в которой сгорает топливо, генерируя первичную энергию и поток дымовых газов с температурой дымовых газов более 450°C, и работу второй энергетической...
Тип: Изобретение
Номер охранного документа: 0002720873
Дата охранного документа: 13.05.2020
21.05.2020
№220.018.1ee2

Способ получения фурана из фурфурола

Изобретение относится к способу получения фурана, который включает следующие стадии: i) контактирования фурфурола с катализатором декарбонилирования в реакторе декарбонилирования для получения газообразного потока продукта реакции декарбонилирования, содержащего фуран и угарный газ; ii)...
Тип: Изобретение
Номер охранного документа: 0002721422
Дата охранного документа: 19.05.2020
23.05.2020
№220.018.2059

Способы и системы для удаления примеси алкилиодида из возвратного газового потока при получении этиленоксида

Предложен способ для получения этиленоксида, этиленкарбоната и/или этиленгликоля, включающий приведение в контакт по меньшей мере части возвратного газового потока, содержащего примесь алкилиодида, с материалом защитного слоя с получением очищенного возвратного газового потока, причем указанный...
Тип: Изобретение
Номер охранного документа: 0002721603
Дата охранного документа: 21.05.2020
23.05.2020
№220.018.20d0

Способ получения сингаза и устройство для охлаждения сингаза

Изобретение относится к способу получения сингаза, содержащего водород и монооксид углерода, из предварительно нагретого метаносодержащего газа и к охлаждающему устройству для охлаждения горячего неочищенного сингаза. Способ включает следующие этапы: (a) проведение реакции между предварительно...
Тип: Изобретение
Номер охранного документа: 0002721837
Дата охранного документа: 22.05.2020
27.05.2020
№220.018.20ea

Способ разделения гликолей

Данное изобретение касается способа получения первого диола высокой чистоты, выбранного из группы, состоящей из диолов С-С из потока продукта, содержащего два или более С-С диолов, где поток продукта представляет собой или образован из потока продуктов из способа гидрогенолиза сахарида, причем...
Тип: Изобретение
Номер охранного документа: 0002721903
Дата охранного документа: 25.05.2020
09.06.2020
№220.018.25c1

Колонна подачи отработавшего катализатора в регенератор, содержащая её система регенерации отработавшего катализатора и способ регенерации отработавшего катализатора с её использованием

Изобретение относится к колонне подачи катализатора, предназначенной для подачи отработавшего катализатора в регенератор, содержащей горизонтальный участок, поворотный участок и вертикальный участок. Причем внутри вертикального участка расположена одна или большее количество кольцевых частей....
Тип: Изобретение
Номер охранного документа: 0002723020
Дата охранного документа: 08.06.2020
Showing 1-1 of 1 item.
29.04.2020
№220.018.1a5e

Способ получения наночастиц дисульфида молибдена на носителе из диоксида титана

Изобретение относится к способу получения наночастиц MoS на носителе из TiO в котором получение осуществляют восстановительным соосаждением с использованием водных растворов, содержащих соли-предшественники Ti и Mo, при этом соли-предшественники Ti и Mo представляют собой TiCl и (NH)MoS...
Тип: Изобретение
Номер охранного документа: 0002720181
Дата охранного документа: 27.04.2020
+ добавить свой РИД