×
09.09.2018
218.016.852a

Результат интеллектуальной деятельности: Светильник

Вид РИД

Изобретение

Аннотация: Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, максимально соответствующим спектру солнечного света, за счет использования светоизлучающих диодов. В светильнике, содержащем набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне частот порядка 400-800 нм, снабженных драйверами питания, согласно изобретению использованы светодиоды, спектры излучения которых находятся в диапазоне 400-675 нм, при этом спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона предпочтительно на уровне 0,4-0,6 от максимальной амплитуды на центральной частоте излучения, причем использованы восемь типов светодиодов разного спектра мощностью от 0,1 до 200 Вт и более каждый, а излучаемый спектр включает спектры излучения таких светодиодов, как Теплый белый, Фиолетовый, Королевский синий, Синий, Голубой, Зеленый, Глубокий красный и Растительный свет, с возможным отклонением от центральной частоты на ±15 нм, при этом драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,25, 0,97, 0,24, 0,87, 1,02, 1,11 и 0,46 от уровня светового потока, излучаемого светодиодом Растительный свет, с возможным отклонением указанных значений энергии на ±30%. Кроме того, тип спектра сформирован набором однотипных светодиодов с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра. Кроме того, названные светодиоды имеют максимальное излучение на частотах соответственно 587, 413, 437, 460, 490, 524, 664 и 650 нм. Изобретение обеспечивает светильнику спектр излучения, соответствующий солнечному свету в диапазоне 400-675 нм. 2 з.п. ф-лы, 6 ил., 3 табл.

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом максимально соответствующим спектру солнечного света за счет использования светоизлучающих диодов для использования в световыращивательных технологиях.

Известен светильник, содержащий набор светодиодов с разными спектрами излучения, снабженных драйверами, при этом в составе светильника использованы двенадцать красных светодиодов с длиной волны 660 нм, шесть оранжевых светодиодов с длиной волны 612 нм и один синий светодиод с длиной волны 470 нм (см. US №6921182).

Известен также светильник, содержащий набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне длин волн порядка 400-800 нм, снабженных драйверами (см. RU №2504143, 2014). При этом в составе светильника использованы по меньшей мере два типа светодиодов, причем предпочтительно, чтобы светодиоды первого типа излучали в области синего цвета с длиной волны от 400 нм до 500 нм, а светодиоды второго типа излучали в области красного цвета с длиной волны от 600 нм до 700 нм, причем свет, излучаемый первой группой светодиодов, состоит приблизительно из 80%-90% красного света и 10%-20% синего света. Такие светильники с двух спектральным излучением (синий свет с центральной длиной излучений 440 нм и красный свет с центральной длиной излучений 660 нм) принято называть светильниками полного спектра «Full Spectrum» или растительными светильниками «Grow Light». Также стали производить отдельные светодиоды полного спектра «Full Spectrum» или растительные светодиоды «Grow Light» (http://alled.ru/gr5-fito-led.html?sl=RU; https://ru.aliexpress.com/item/Hontiey-380Nm/32673210204.html?spm=a2g0v.10010108.1000015.60.603e552b6F0qEU.

Все перечисленные решения были направлены на получение оптимального сочетания длин волн для усиления темпов роста растений, а также снижение энергопотребления и увеличение срока службы светильников, при их технической реализации по сравнению с существующими световыращивательными технологиями, но не обеспечивают спектр излучения близкий к спектру солнца. Кроме того, сочетание длин волн, выбранных для усиления роста растений в существующих технических решениях непривлекательно для людей, наблюдающих освещенное растение, а иногда даже вредно для глаз.

Задача, на решение которой направлено изобретение, - обеспечение в светильнике спектра излучения соответствующего спектру солнечного света в моделируемом диапазоне длин волн 400-675 нм.

Технический результат, проявляющийся при решении поставленной задачи, заключается в обеспечении для светильника спектра излучения, близкого к спектру излучения солнечного света в моделируемом диапазоне длин волн 400-675 нм, при минимизации общего количества используемых светодиодов.

Для решения поставленной задачи, светильник, содержащий набор известных светодиодов с разными спектрами излучения, снабженных драйверами питания, отличается тем, что в нем использованы светодиоды, максимальные амплитуды излучения которых находятся в диапазоне длин волн 400-675 нм, при этом спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона предпочтительно на уровне 0,4-0,6 от максимальной амплитуды на центральной длине волны излучения, причем использованы восемь типов светодиодов разного спектра мощностью от 0,1 до 1000 Вт каждый, а излучаемый спектр включает спектры излучения таких светодиодов, как Теплый белый, Фиолетовый, Королевский синий, Синий, Голубой, Зеленый, Глубокий красный и Растительный свет, с возможным отклонением от центральной длины волны на ±15 нм, при этом драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,25, 0,97, 0,24, 0,87, 1,02, 1,11 и 0,46 от уровня светового потока, излучаемого светодиодом Растительный свет, с возможным отклонением указанных значений энергии на ±30%. Кроме того, тип спектра сформирован набором однотипных светодиодов с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра. Кроме того, названные светодиоды имеют максимальное излучение на частотах соответственно 587, 413, 437, 460, 490, 524, 664 и 650 нм.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».

При этом совокупность признаков отличительной части формулы изобретения обеспечивают светильнику спектр излучения соответствующего естественному солнечному свету, причем отличительные признаки отличительной части формулы изобретения обеспечивают решение нижеследующего комплекса функциональных задач.

Признаки «… использованы светодиоды, максимальные амплитуды излучения которых находятся в диапазоне длин волн 400-675 нм…» обеспечивают максимально полное приближение к спектру солнечного света, при минимальном количестве используемых типов светодиодов.

Признаки «… спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона…» способствуют выравниванию (снижению волнистости) суммарного спектра светильника.

Признаки, указывающие, что спектры, составляющие набор светодиодов, перекрывают друг друга «предпочтительно на уровне 0,4-0,6 от максимальной амплитуды на центральной длине волны излучения», также способствуют снижению волнистости суммарного спектра светильника.

Признаки, указывающие, что «использованы восемь типов светодиодов разного спектра мощностью от 0,1 до 1000 Вт каждый, а излучаемый спектр включает спектры излучения таких светодиодов, как Теплый белый, Фиолетовый, Королевский синий, Синий, Голубой, Зеленый, Глубокий красный и Растительный свет», обеспечивают формирование светильником спектра излучения близкого к солнечному свету.

Признаки, указывающие, что возможно отклонение излучаемого светодиодами спектра «от центральной длины волны на ±15 нм», задают параметры, обеспечивающие компоновку линейки или матрицы светодиодов.

Признаки, указывающие, что «драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,25, 0,97, 0,24, 0,87, 1,02, 1,11 и 0,46 от уровня светового потока, излучаемого светодиодом Растительный свет», обеспечивают необходимое выравнивание излучений светодиодов, снижающее волнистость суммарного спектра светильника.

Признаки, указывающие, что возможно отклонение уровня энергии подаваемой на светодиоды на ±30%, задают параметры подачи энергии на светодиоды, обеспечивающие оптимальную компоновку линейки или матрицы светодиодов.

Признаки, указывающие, что «тип спектра сформирован набором однотипных светодиодов, с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра», обеспечивают возможность использования как одиночного светодиода большой мощности, так и матрицы, сформированной из нескольких светодиодов малой мощности.

Признаки, указывающие, что «названные светодиоды имеют максимальное излучение на частотах соответственно 587, 413, 437, 460, 490, 524, 664 и 650 нм», конкретизируют технические характеристики светодиодов.

На фиг. 1 показаны спектры излучения восьми типов использованных светодиодов, выровненных по мощности излучения; на фиг. 2 показан спектр суммарного излучения восьми светодиодов, соответствующий солнечному спектру (коричневая кривая (real SUN) - спектр солнца, а розовая кривая (Sun 8 Реш) - спектр светильника из восьми светодиодов); на фиг. 3 показан спектр излучения трех типов светодиодов (Cyan, Green, Warm White) и суммарного их спектра при различной ширине полосы излучения Green светодиода; на фиг. 4 показана матрица из восьми светодиодов разного типа, формирующая суммарный спектр излучения, в диапазоне частот 400-675 нм, который соответствует солнечному спектру; на фиг. 5 показан реальный суммарный спектр излучения матрицы из восьми светодиодов разного типа; на фиг. 6 показана плотность мощности излучения светодиодов разного номинала мощности, составляющих матрицу и их суммарной мощности без применения регулирования драйверами.

В настоящее время промышленность выпускает различные светодиоды с узкой и широкой полосой излучения, с пиком излучения, приходящимся на одну или несколько определенных частот света. Охвачен широкий диапазон частот света от УФ излучения до красного и инфракрасного света. Кроме того, имеются светодиоды белого света с различной цветовой температурой.

Таким образом, если имеется набор светодиодов с различными спектрами (фиг. 1), то из них можно набрать линейку или матрицу светодиодов с перекрытием спектральных кривых на уровне примерно 0,4-0,6 и тогда они, суммируя свои энергетические параметры, будут формировать спектр излучения соответствующий солнечному свету (см. фиг. 2). Таким образом, если известен моделируемый диапазон спектра солнечного излучения, то подбирая различные светодиоды с разным спектром и разной центральной длиной излучения и задавая им разную интенсивность излучения, можно получить источник света очень похожий по своему спектру на солнечное излучение. Трудность заключается в том, что светодиоды имеют очень узкий спектр генерирования излучения на определенной длине волны и непостоянный уровень мощности излучения при одних и тех же номиналах выпускаемой продукции у разных производителей и даже в пределах одной партии у одного и того же производителя. Поэтому для перекрытия всего диапазона фотосинтетически активной радиации солнечного спектра требуется большое количество разных типов светодиодов. Однако чем больше количество используемых светодиодов, тем труднее подобрать их точные, мощность, частоту и режимы питания по току, чтобы синтезируемая полоса частот в точности соответствовала солнечному спектру.

Для того чтобы спектр светового излучения получившегося светильника не имел волнообразный характер, а был бы равномерным, надо чтобы спектры отдельных светодиодов были бы примерно одинаковой формы (ширины) и пересекались друг с другом на уровне 0,4-0,6 от максимума. Если, например, есть два зеленых (Green) светодиода каждый из которых излучает максимум световой энергии на длине волны 523 нм, а на уровне 0,5 ширина полосы излучения первого будет 37 нм («Green F»), а второго 70 нм («Green W»), то при суммировании с соседними светодиодами (Cyan и Warm White) появится неравномерность (волнообразный характер), что приводит к отличию полученного спектра от спектра солнца (в данном случае в диапазоне длин волн 480-580 нм), хотя в среднем энергия будет такая же. На (Фиг. 3) изображены спектры излучения трех типов светодиодов по отдельности (Cyan, Green, Warm White) и их суммарного спектра при различной ширине полосы излучения Green светодиода. Светло-зеленым сплошным цветом изображен спектр излучения светодиода Green с широкой полосой излучения на уровне 0,5 от максимума равной 70 нм (обозначение «Green W»). Светло-зеленым пунктиром изображен спектр излучения светодиода Green с узкой полосой излучения на уровне 0,5 от максимума равной 37 нм (обозначение «Green F»). При суммировании энергии излучения двух светодиодов Cyan и Warm White с одним из «Green W» или «Green F» получается суммарный спектр, изображенный на фиг. 3 темно-зеленым цветом, причем сплошной цвет - суммарное излучение включает «Green W», а темно-зеленый пунктир - суммарное излучение включает «Green F». Хорошо видно, что широкие спектры отдельных светодиодов способствуют получению гладкого равномерного характера спектра суммарного излучения, в то время как узкие спектры отдельных светодиодов приводят к неравномерному (волнообразному характеру) суммарного спектра и увеличению ошибки воспроизведения заданного солнечного спектра.

По каждому типу светодиодов спектрофотометром «ТКА-Спектр» были сняты спектральные и энергетические параметры (фиг. 1 и фиг. 6), которые позволили сформировать излучение светильника близкое к солнечному спектру (фиг. 2).

Моделируемый диапазон 400-675 нм из диапазона фотосинтетически активной радиации солнечного спектра, составляющего 400-800 нм, реализуется набором из восьми типов светодиодов имеющих разную мощность. Например, из этого набора есть три светодиода мощностью 10 Вт следующего состава: WW - теплый белый, GR - зеленый и FS - растительный свет, и пяти светодиодов мощностью 3 Вт следующего состава: Violet - фиолетовый, Royal Blue - королевский синий, Blue - синий, Cyan - голубой, Deep Red - глубокий красный (см. фиг. 6). На фиг. 6 видно, что максимальные значения плотности мощности излучения, измеренные прибором спектрофотометром «ТКА-Спектр» на расстоянии 50 см от центра светодиодов, по их оси, имеют разную амплитуду и разные пики излучения. В данном случае на все 10 Вт светодиоды подавался один и тот же ток 900 мА, а на все 3 Вт светодиоды - ток 600 мА (табл. 1). Если просто просуммировать мощности всех спектров излучения указанных светодиодов, то суммарный спектр будет иметь форму, далекую от спектра солнечного света (на фиг. 6 кривая «Сумма» красного цвета).

Для того чтобы из этого набора светодиодов получить спектр солнца в диапазоне длин волн 400-675 нм необходимо привести все пики излучения к одной и той же величине, т.е. пронормировать. Для этого существует два способа: первый - регулировка осуществляется изменением тока питания с помощью токовых драйверов питания у каждого светодиода; второй - регулировка осуществляется подбором количества однотипных по частоте излучения светодиодов, работающих в номинальном рабочем режиме, но которые имеют разную мощность излучения, т.е. разный паспортный номинал мощности. После приведения уровня излучения всех типов светодиодов к одной и той же величине спектр излучения всех светодиодов примет вид, изображенный на фиг. 1. При этом названные области спектров излучения светодиодов перекрывают друг друга в разных спектральных участках моделируемого диапазона излучения, где-то на уровне 0,4-0,6 от максимальной амплитуды.

Желтым фоном на фиг. 2 выделена область моделирования солнечного спектра в диапазоне длин волн 400-675 нм. В таблице 2 приведены параметры семи типов светодиодов (или наборов светодиодов одного и того же типа) моделирующих диапазон 400-675 нм солнечного спектра после их приведения к одной и той же плотности излучения и нормирования.

Из табл. 2 видно, что у двух светодиодов имеется два спектральных пика мощности излучения: один из которых Warm White -на длине волны 587 нм (максимальная амплитуда равна 1), а на длине волны 447 нм - 0,44; другой светодиод Growing Light с максимальной амплитудой на длине волны 650 нм - 1, а на длине волны 447 нм - 0,47. Все остальные светодиоды имеют один пик излучения. Измерения проводились спектрофотометром «ТКА-Спектр», на расстоянии 500 мм от центра светодиодов по их оси.

Если каждый светодиод будет излучать световую энергию измеренную в Вт/м2, в пропорциях соответствующих коэффициентам приведенными в табл. 3, то получится суммарный спектр мощности излучения светильника, показанный на фиг. 2 (кривая Sun 8 Реш), который хорошо совпадает со спектром мощности излучения Солнца в этом диапазоне.

В этом случае все светодиоды должны получать энергию от токовых драйверов питания таким образом, чтобы их излучение соответствовало коэффициентам таблицы 3. В результате будет сформирован суммарный спектр излучения светильника, практически полностью повторяющий спектр излучения солнечного света (фиг. 2, розовый цвет кривой). Спектр мощности солнечного света измерялся спектрофотометром марки «ТКА-Спектр» во Владивостоке 11.02.2017 в 10-38 местного времени.

В процессе работы была сформирована действующая матрица светодиодов (фиг. 4), в которой каждый светодиод был запитан током с помощью токового драйвера таким образом, чтобы мощность излучения каждого типа светодиода, измеренная на расстоянии 50 см от светодиодов, давала вклад в суммарное излучение в соответствии с режимами в табл. 3. При включении всех светодиодов с указанными режимами спектр мощности излучения светильника характеризовался зависимостью, показанной на фиг. 5. Полученная плотность мощности излучения равная 20 мВт/м2 в диапазоне длин волн 400-675 нм на расстоянии 50 см от светильника и имеет гладкий характер, практически полностью соответствует солнечному спектру со среднеквадратичной ошибкой отклонения не превышающей 11,2%.

Очень важно отметить, что коэффициенты в табл. 3 относятся к плотности мощности излучения света, или к спектральной облученности, измеренной на одном и том же расстоянии одним и тем же прибором спектрофотометром. При этом приведенные в табл. 3 коэффициенты никак не характеризуют потребляемую светодиодами энергию или величину тока, протекающую через светодиоды. Это связано с тем, что к.п.д. у каждого светодиода разный и режимы питания тоже все разные. Если есть два светодиода одинакового типа, но с разными к.п.д., например 15% и 30%, то спектральная облученность, полученная на одном и том же расстоянии, у первого светодиода будет в 2 раза меньше при одном и том же питании по току или потребляемой мощности, чем у второго. И если их запитать по току в соответствии с табл. 3, то суммарный спектр всех светодиодов будет сильно отличаться от расчетного спектра, изображенного на фиг. 2. В случае если имеются два светодиода с одинаковой частотой излучения, но разным номиналом мощности, например 1 Вт и 10 Вт, то первый тип светодиода можно запитать максимальным током 300 мА, а второй тип - 900 мА. Соответственно плотности мощности излучения световой энергии у них будут очень сильно отличаться. Кроме того, очень важно использовать такие режимы питания всех восьми типов светодиодов (или групп однотипных по частоте излучения светодиодов в сборке), чтобы в каждой группе однотипные светодиоды (светодиоды излучающие свет одной и той же частоты) давали суммарный пик излучения одинаковой величины, которую удобно приравнять к относительной единице, как это изображено на фиг. 1.


Светильник
Светильник
Светильник
Источник поступления информации: Роспатент

Showing 61-70 of 171 items.
10.05.2018
№218.016.3ac9

Биомедицинский клеточный препарат

Изобретение относится к медицине и касается биомедицинского клеточного препарата (БМПК), содержащего криоконсервированный антиген CD34+ после размораживания. БМПК содержит линии аллогенных гемопоэтических стволовых клеток CD133+, ко-экспрессирующих поверхностные маркеры стволовых клеток: CD34+,...
Тип: Изобретение
Номер охранного документа: 0002647429
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3bb3

Соус майонезный

Изобретени относится к масложировой промышленности. Соус майонезный содержит растительное масло, яичный порошок, добавку из семян горчицы, сахар, соль, воду, уксус и добавку из ламинарии. В качестве растительного масла используют смесь масла соевого в количестве 42,0-54,0 мас.% и масла льняного...
Тип: Изобретение
Номер охранного документа: 0002647271
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3d2a

Лакокрасочное покрытие

Изобретение относится к многослойному лакокрасочному покрытию, используемому в гидротехническом строительстве, для гидроизоляции и защиты от обрастания морскими организмами бетонных и железобетонных поверхностей, эксплуатируемых в морской воде. Лакокрасочное покрытие содержит слой грунтовки,...
Тип: Изобретение
Номер охранного документа: 0002648082
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.410a

Состав для производства хлебобулочных изделий

Изобретение относится к пищевой промышленности, в частности к хлебопекарному производству, и может быть использовано для производства хлебобулочных изделий с высокой пищевой и биологической ценностью, предназначенных для массового питания. Предложен состав для производства хлебобулочных...
Тип: Изобретение
Номер охранного документа: 0002649020
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.410d

Состав для производства хлебобулочных изделий

Изобретение относится к пищевой промышленности. Cостав для производства хлебобулочных изделий содержит муку пшеничную хлебопекарную, дрожжи, сахар-песок, соль поваренную пищевую, воду питьевую и добавку на основе водоросли. Жидкость в количестве 59% от массы муки содержит добавку в виде...
Тип: Изобретение
Номер охранного документа: 0002649191
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4122

Способ оценки формы измеренной поверхности

Изобретение относится к способам входного контроля заготовок деталей со сложной поверхностью. Способ оценки формы измеренной поверхности, включающий восстановление координат положения точек на поверхности детали и их сравнение с положением аналогичных точек на поверхности ее математической...
Тип: Изобретение
Номер охранного документа: 0002649035
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.435b

Концентратор тяжелых минералов из сыпучего материала

Изобретение относится к горнообогатительной технике и может быть использовано для извлечения драгоценных металлов и редких элементов, предпочтительно тонкого золота, при переработке некоторых отходов промышленного производства (таких, как хвосты обогащения, илоотстойники, частично породы...
Тип: Изобретение
Номер охранного документа: 0002649614
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.473d

Способ приготовления десертного продукта

Изобретение относится к пищевой промышленности, к кондитерской отрасли и может быть использовано при приготовлении десертов типа кремов. Предложен способ приготовления десертного продукта, содержащий взбивание яичного белка до получения пышной, стойкой пены с дальнейшим последовательным...
Тип: Изобретение
Номер охранного документа: 0002650562
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4975

Способ нагружения корпуса судна при проведении испытаний

Изобретение относится к области судостроения, в частности к способам испытаний корпусов судов, и может быть использовано для определения их прочностных и деформационных характеристик в процессе разработки, эксплуатации и ремонта. Предложен способ нагружения корпуса судна при проведении...
Тип: Изобретение
Номер охранного документа: 0002651375
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4d96

Способ получения красителя

Изобретение относится к технологии получения натуральных пищевых красителей и может быть использовано для получения коричневого красителя из растительного сырья. Описан способ получения красителя, включающий измельчение околоплодника ореха маньчжурского, его экстракцию водой и отделение...
Тип: Изобретение
Номер охранного документа: 0002652194
Дата охранного документа: 25.04.2018
Showing 21-27 of 27 items.
10.07.2019
№219.017.af05

Способ регистрации сигналов измерительных преобразователей на основе брэгговских решеток, записанных в едином волоконном световоде

Изобретение относится к области мониторинга деформации и термических процессов с использованием контрольно-измерительных систем на основе волоконных брэгговских решеток. Оптический рефлектометр формирует зондирующий импульс, который через циркулятор попадает на первую опрашиваемую брэгговскую...
Тип: Изобретение
Номер охранного документа: 0002413259
Дата охранного документа: 27.02.2011
15.10.2019
№219.017.d5d6

Устройство для лазерной очистки корпуса судна

Изобретение относится к устройству для лазерной очистки корпуса судна. Устройство содержит контейнер с отверстием для вывода лазерного излучения и лазер. Контейнер выполнен герметичным с фокусирующей и сканирующей системой, выходное отверстие которой выполнено как щелевидный конфузор. Контейнер...
Тип: Изобретение
Номер охранного документа: 0002702884
Дата охранного документа: 11.10.2019
31.12.2020
№219.017.f45f

Способ получения композиционного материала для биорезорбируемого магниевого имплантата

Изобретение относится к способу получения материала с композиционным антикоррозионным покрытием для биосовместимых имплантатов с ограниченным сроком нахождения в организме, служащих для замены и/или регенерации поврежденных костных тканей, и может найти применение в имплантационной хирургии....
Тип: Изобретение
Номер охранного документа: 0002710597
Дата охранного документа: 30.12.2019
13.03.2020
№220.018.0b62

Устройство для непрерывного литья и деформации плоских заготовок

Изобретение относится к непрерывной разливке металла. Кристаллизатор содержит две пары стенок. Стенки первой пары выполнены в виде бойков с рабочей торцевой поверхностью, причем у первого бойка (1) она выполнена вертикальной, а у второго бойка (2) рабочая поверхность содержит наклонный (5) и...
Тип: Изобретение
Номер охранного документа: 0002716340
Дата охранного документа: 11.03.2020
03.07.2020
№220.018.2e1e

Устройство для непрерывного литья и деформации плоских заготовок

Изобретение относится к непрерывной разливке металла. Кристаллизатор содержит две пары подвижных стенок. Рабочая поверхность первой пары стенок содержит наклонный (5) и вертикальный (6) участки, закрепленные на бойках (1). Рабочая поверхность второй пары (7) стенок выполнена вертикальной и...
Тип: Изобретение
Номер охранного документа: 0002725258
Дата охранного документа: 30.06.2020
31.07.2020
№220.018.3a01

Способ исследования свойств защитных покрытий в потоке морской воды и установка для его осуществления

Изобретение относится к средствам исследования свойств защитных покрытий на субстратах, подвергающихся воздействию морской среды, а именно к способам оценки противообрастающих и антикоррозийных покрытий подводной части корпуса судов, а также к установкам для их осуществления. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002728490
Дата охранного документа: 29.07.2020
10.05.2023
№223.018.5346

Способ выращивания растений руколы

Изобретение относится к области сельского хозяйства, в частности к растениеводству, и может быть использовано при выращивании пищевых растений с высоким содержанием антоцианов. В способе предварительно семена руколы проращивают в течение 3 суток в чашках Петри с увлажненным кварцевым песком с...
Тип: Изобретение
Номер охранного документа: 0002795300
Дата охранного документа: 02.05.2023
+ добавить свой РИД