×
05.09.2018
218.016.8367

Результат интеллектуальной деятельности: Устройство для охлаждения масла в газотурбинном двигателе

Вид РИД

Изобретение

№ охранного документа
0002665799
Дата охранного документа
04.09.2018
Аннотация: Данное изобретение относится к устройству для охлаждения масла в газотурбинном двигателе, таком как турбореактивный или турбовинтовой авиационный двигатель. Oно содержит трубопровод для циркуляции охлаждающего воздуха, средство для впрыскивания масла в указанный трубопровод и средство для извлечения масла, смешанного с потоком холодного воздуха, расположенное в трубопроводе ниже по потоку от средства для впрыскивания. Технический результат изобретения – упрощение устройства и повышение его эффективности. 3 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к устройству для охлаждения масла в газотурбинном двигателе, который оснащен таким устройством, и к способу охлаждения масла в газотурбинном двигателе.

В газотурбинном двигателе различные элементы и единицы оборудования (камеры, содержащие подшипники, редукторы, электромашины и т.д.) должны смазываться или охлаждаться посредством масляного контура, при этом создаваемое тепло, как правило, отводится к указанному масляному контуру посредством теплообменников топливно-масляного и/или воздушно-масляного типа.

Современные газотурбинные двигатели вырабатывают все большее количество тепла, в частности, по причине усложнения передаточных механизмов (редукторов) и очень высоких степеней разбавления. В результате топливно-масляные теплообменники (обозначаемых сокращенно как ТМТ) работают в режиме насыщения. Это обусловлено тем, что расход топлива ограничен расходом газотурбинного двигателя. К тому же, нагревание топлива должно быть ограничено для предотвращения его превращения в смолу и закупоривания топливного контура, причем в худшем случае такое нагревание может вызвать воспламенение в газотурбинном двигателе.

Таким образом, в современных газотурбинных двигателях необходимо использование воздушно-масляных теплообменников (обозначаемых сокращенно как ВМТ).

Работа воздушно-масляных теплообменников основана на использовании воздушного потока, принудительного или непринудительного, направляемого вдоль поверхности, обеспечивающей обмен с масляным контуром. Подача воздуха может быть осуществлена, например, путем забора или выпуска воздушного потока.

Воздушно-масляный теплообменник может представлять собой теплообменник поверхностного типа. В этом случае он, как правило, выполнен в виде участка металлической поверхности, обеспечивающего прохождение масла в трубки, выполненные по центру указанного участка. Тепло отводится посредством ребер, находящихся в контакте с потоком холодного воздуха. Чтобы обеспечить интенсивный теплообмен, такой теплообменник должен иметь большую площадь поверхности и, соответственно, большую массу и большие габариты.

Кроме того, существуют воздушно-масляные теплообменники «блочного» типа, которые являются сравнительно тяжеловесными, при этом в них происходит срыв воздушного потока, и они негативно влияют на эффективность работы газотурбинного двигателя.

Целью данного изобретения, в частности, является создание простого, эффективного и экономически выгодного решения этих проблем.

Для достижения указанной цели предложено устройство для охлаждения масла в газотурбинном двигателе, таком как турбореактивный или турбовинтовой авиационный двигатель, отличающееся тем, что оно содержит трубопровод для циркуляции потока холодного воздуха, средство для впрыскивания масла в указанный трубопровод и средство для извлечения масла, смешанного с потоком холодного воздуха, расположенное в указанном трубопроводе ниже по потоку от средства для впрыскивания.

Таким образом, данное изобретение обеспечивает смешивание горячего масла и холодного воздуха для получения путем конвективного теплообмена однородной воздушно-масляной смеси в указанном трубопроводе, при этом температура этой смеси будет равновесной. Эта смесь затем подвергается обработке с помощью маслоотделителя для отделения масла от воздуха. Таким образом, обеспечивается возможность повторной подачи масла в масляный контур газотурбинного двигателя, при этом воздух может выпускаться в атмосферу, в вентилируемую камеру или в зону низкого давления газотурбинного двигателя (например, в виде вторичной струи).

Предпочтительно, средство для впрыскивания масла представляет собой впрыскивающее сопло, выполненное с возможностью распыления масла с образованием капель масла размером от 1 до 5 мкм.

Полученные таким образом капли масла имеют большую площадь поверхности для передачи тепла потоку холодного воздуха, что максимально увеличивает возможность теплообмена между ними.

В соответствии с одним вариантом выполнения данное устройство содержит впускной маслопровод, соединенный со средством для впрыскивания масла, и выпускной маслопровод, соединенный со средством для извлечения масла, причем указные впускной и выпускной маслопроводы соединены с помощью перепускного трубопровода, содержащего задвижку или клапан, выполненный с возможностью открывания при избыточном давлении во впускном маслопроводе.

В таком случае задвижка или клапан выполнены с возможностью открывания в случае блокирования впрыскивающего средства, или когда масло является холодным и имеет большую вязкость. В таких рабочих условиях масло не охлаждается с помощью потока холодного воздуха, а выводится непосредственно из впускного в выпускной трубопровод.

Предпочтительно, средство для извлечения масла представляет собой вращающийся маслоотделитель.

Конструкция и принцип работы такого маслоотделителя известны, в частности, из патента Франции FR 2937680, выданного на имя заявителя настоящей заявки.

Следует отметить, что во время работы вращающийся маслоотделитель не всегда обеспечивает возможность извлечения всего масла, содержащегося в воздушно-масляной смеси. В действительности эффективность такого маслоотделителя повышается при увеличении скорости его вращения и снижается при увеличении объемного расхода, т.к. в таком случае капли масла, содержащиеся в воздушно-масляной смеси, уменьшаются в размерах, при этом увеличивается их количество. Эти мелкие капли могут вовлекаться в воздушные струи, несмотря на силы, действующие на них при центрифугировании, и силу инерции, которые возникают при работе вращающегося маслоотделителя.

Эффективность маслоотделителя, в частности, может быть увеличена путем:

- увеличения давления масла в трубопроводе при равномерном массовом расходе (уменьшение скорости воздуха и капель, что обеспечивает лучшее отделение при центробежном воздействии),

- охлаждения воздуха выше по потоку от средства для впрыскивания масла (увеличение перепада температур между горячим маслом и холодным воздухом),

- обеспечения высокой скорости вращения вращающегося маслоотделителя.

Предпочтительно, указанный трубопровод снабжен турбиной, расположенной выше по потоку от средства для впрыскивания масла, причем указанная турбина содержит вал, приводимый во вращение при прохождении воздушного потока через указанную турбину и присоединенный с возможностью вращения к вращающемуся маслоотделителю.

Такая конструкция обеспечивает возможность приведения во вращение вращающегося маслоотделителя с высокой скоростью, что увеличивает его эффективность, как было указано выше.

Кроме того, средство для извлечения масла содержит рабочую часть, выполненную из металлической пены. Такая рабочая часть, выполненная с возможностью использования в сочетании с вращающимся маслоотделителем или без него, известна, например, под товарным знаком Retimet и описана в заявке на США 2012/024723 при использовании вместе с вращающимся маслоотделителем.

Эта рабочая часть обеспечивает возможность получения волнообразного контура, обеспечивающего возможность контакта масляных капель со стенками указанного блока, что в свою очередь обеспечивает возможность лучшего захвата этих капель и тем самым повышает эффективность средства для извлечения. Однако использование такого блока влечет за собой большой перепад давлений, который необходимо учитывать.

Данное изобретение также относится к газотурбинному двигателю, такому как турбореактивный или турбовинтовой авиационный двигатель, содержащему, если смотреть в направлении газового потока, воздушный винт, компрессор низкого давления, компрессор высокого давления, камеру сгорания, турбину высокого давления, турбину низкого давления и газовыпускной патрубок, причем указанный двигатель отличается тем, что он содержит устройство для охлаждения масла вышеуказанного типа и средство для забора воздуха в зоне, расположенной ниже по потоку от указанного воздушного винта и выше по потоку от компрессора высокого давления, выполненное с возможностью подачи в указанный трубопровод холодного воздуха, выходящего из указанной зоны.

Компрессор низкого давления может быть присоединен с возможностью вращения к турбине низкого давления посредством первого вала, при этом компрессор высокого давления присоединен с возможностью вращения к турбине высокого давления посредством второго вала, расположенного соосно с первым валом и установленного внутри него, при этом верхний по потоку конец первого вала снабжен подшипником, размещенным в камере, в которую поступает воздух, выходящий из указанного трубопровода.

Выпуск воздуха ниже по потоку от средства для извлечения масла, таким образом, обеспечивает возможность преимущественно использовать второй маслоэкстракционный тракт, обеспечивая соединение капель (с увеличением их размера и способствуя их отеканию) путем их слияния.

В заключение, данное изобретение относится к способу охлаждения масла в газотурбинном двигателе с помощью устройства вышеуказанного типа, отличающееся тем, что он включает следующие этапы:

- циркуляцию потока холодного воздуха внутри указанного трубопровода,

- впрыскивание масла в указанный трубопровод с помощью средства для впрыскивания для обеспечения смешивания масла и воздуха и охлаждения, таким образом, масла с помощью воздуха,

- отделение масла от воздуха для извлечения масла, содержащегося в указанной смеси, с помощью средства для извлечения.

Данное изобретение станет более понятным, а другие его детали, признаки и преимущества станут очевидными после прочтения следующего описания, приведенного в качестве неограничительного примера со ссылкой на сопроводительные чертежи.

На чертежах:

Фиг. 1 изображает осевой разрез известного газотурбинного двигателя;

Фиг. 2 схематично изображает устройство для охлаждения масла в газотурбинном двигателе в соответствии сданным изобретением.

Фиг. 1 изображает авиационный газотурбинный двигатель 1 в соответствии с предшествующим уровнем техники, содержащий, если смотреть в направлении газового потока, воздушный винт 2, компрессор 3 низкого давления, компрессор 4 высокого давления, камеру 5 сгорания, турбину 6 высокого давления, турбину 7 низкого давления и газовыпускной патрубок (не показан на чертеже).

Компрессор 3 низкого давления присоединен с возможностью вращения к турбине 7 низкого давления посредством первого вала 8, при этом компрессор 4 высокого давления присоединен с возможностью вращения к турбине 6 высокого давления посредством второго вала (не показан на чертеже), расположенного соосно с первым валом 8 и установленного внутри него. Верхний по потоку конец первого вала 8 оснащен подшипником 9 качения, размещенным в вентилируемой камере 10.

Как указано выше, различные элементы и составные части двигателя 1 должны смазываться или охлаждаться посредством масляного контура, при этом вырабатываемое тепло, переносимое маслом, отводится посредством устройства для охлаждения масла.

Фиг. 2 изображает устройство 11 для охлаждения масла в соответствии с одним вариантом выполнения данного изобретения, содержащее трубопровод 12 для циркуляции потока F: холодного воздуха. Холодный воздух подается в верхний по потоку конец 13 трубопровода 12 с помощью средства для забора воздуха в зоне, расположенной ниже по потоку от воздушного винта 2 и выше по потоку от компрессора 4 высокого давления. Нижний по потоку конец 14 трубопровода 12 проходит в вентилируемую камеру 10.

Трубопровод 12 содержит, если смотреть в направлении циркуляции потока Fi холодного воздуха, турбину 15, сопло 16 для впрыскивания масла, выполненное с возможностью распыления капель масла 17 в указанный трубопровод, обеспечивая образование воздушно-масляной смеси 18, и вращающийся маслоотделитель 19, выполненный с возможностью отделения масла 20 от смеси 18. Маслоотделитель 19 приводится во вращение валом 21, приводимым во вращение турбиной 15. Маслоотделитель 19 может содержать рабочую часть, выполненную из металлической пены для обеспечения большей эффективности.

Устройство 11 в соответствии с изобретением также содержит впускной маслопровод 22, с помощью которого обеспечивается подача масла в сопло 16, и выпускной маслопровод 23, соединенный с вращающимся маслоотделителем 19, причем впускной и выпускной маслопроводы 22, 23 соединены перепускным трубопроводом 24, содержащим невозвратный клапан 25 или клапан, выполненный с возможностью открывания при избыточном давлении во впускном маслопроводе 22.

Следует отметить, что такое устройство может быть расположено в одном элементе оборудования без какого-либо кинематического соединения с остальной частью турбины 1, что облегчает его установку.

Далее приведено подробное описание работы устройства 11.

Забор воздуха осуществляется в зоне, расположенной ниже по потоку от воздушного винта 2 и выше по потоку от компрессора 4 высокого давления. Затем этот воздух расширяется при прохождении через турбину 15. Указанная турбина приводит во вращение вал 21, а также вращающийся маслоотделитель 19. Сопло 16 распыляет в воздух мелкие капли масла 17, размеры которых составляют, например, от 1 до 5 мкм, в результате чего образуется достаточно однородная воздушно-масляная смесь 18. Затем капли масла охлаждаются воздухом до температуры Ths на выходе, которая теоретически равна:

, где

(Th)s - температура масла на выходе,

(Th)e - температура масла на входе,

(Та)е - температура воздуха на входе,

Da - массовый расход воздуха,

(ср)а - удельная теплоемкость воздуха,

Dh - массовый расход масла,

(cp)h - удельная теплоемкость масла.

Основная часть масла 20 затем отводится по отводящему трубопроводу 23 посредством вращающегося маслоотделителя 19. Однако небольшая часть масла выводится вместе с воздушным потоком в камеру 10, в которой обеспечивается возможность преимущественно использовать второй извлекающий тракт для обеспечения соединения капель (с увеличением их размера и способствуя их стеканию) путем их слияния.

Соответственно, устройство 11 обеспечивает возможность эффективного охлаждения масла, используемого для смазки различных компонентов газотурбинного двигателя 1, при этом оно имеет сравнительно небольшую массу и небольшие габариты с учетом его технических характеристик.


Устройство для охлаждения масла в газотурбинном двигателе
Устройство для охлаждения масла в газотурбинном двигателе
Источник поступления информации: Роспатент

Showing 171-180 of 928 items.
10.01.2014
№216.012.94f4

Ротор маслоотделителя для газотурбинного двигателя

Ротор маслоотделителя для газотурбинного двигателя, содержащий трубчатую втулку, наружный кольцевой фланец и кольцевой колпак, имеющий поперечное сечение по существу L-образной формы и установленный вокруг этой втулки, причем упомянутый кольцевой фланец втулки содержит на своей наружной...
Тип: Изобретение
Номер охранного документа: 0002503826
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9832

Узел из диска турбины газотурбинного двигателя и опорной цапфы опорного подшипника, контур охлаждения диска турбины такого узла

Объектом настоящего изобретения является узел из диска турбины газотурбинного двигателя и опорной цапфы опорного подшипника. Диск турбины содержит радиальный кольцевой крепежный фланец, неподвижно соединенный с радиальной кольцевой частью цапфы при помощи болтов. Болты последовательно проходят...
Тип: Изобретение
Номер охранного документа: 0002504661
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9833

Вентиляция турбины высокого давления в газотурбинном двигателе

Турбина высокого давления газотурбинного двигателя содержит, по меньшей мере, один лопаточный роторный диск, две кольцевых радиально внешних полости. Одна из полостей расположена на входе диска и получает поток вентиляционного воздуха для лопаток диска от днища камеры сгорания. Вторая из...
Тип: Изобретение
Номер охранного документа: 0002504662
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9afe

Изготовление части металлической детали при помощи способа mig с пульсирующим током и пульсирующей подачей проволоки

Изобретение может быть использовано при изготовлении металлических деталей газотурбинного двигателя. Формируют, по меньшей мере, часть металлической детали шириной L и высотой Н. Подачу металла осуществляют с использованием сварочного оборудования сварочным электродом в среде защитного газа...
Тип: Изобретение
Номер охранного документа: 0002505384
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f13

Направляющий сопловый аппарат турбины для газотурбинного двигателя, турбина газотурбинного двигателя и газотурбинный двигатель

Направляющий сопловый аппарат турбины газотурбинного двигателя содержит внутреннюю и внешнюю кольцевые платформы, соединенные радиальными лопатками. Внутренняя платформа содержит кольцевые элементы из истираемого материала, размещенные на образующих кольцо листовых секторах с сечением L, S или...
Тип: Изобретение
Номер охранного документа: 0002506431
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f14

Износостойкое устройство для лопаток направляющего соплового аппарата турбины авиационного газотурбинного двигателя

Сектор лопаток направляющего соплового аппарата турбины содержит переднее и заднее средства зацепления, а также износостойкое устройство. Переднее средство зацепления опирается на опору, установленную на корпусе турбины. Износостойкое устройство образовано деталью из металлического материала,...
Тип: Изобретение
Номер охранного документа: 0002506432
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f19

Конструктивный каркас для газотурбинного двигателя и газотурбинный двигатель

Конструктивный каркас газотурбинного двигателя, такой как промежуточный или выпускной каркас, образован элементами, содержащими внутреннюю и наружную коаксиальные обечайки и радиальные стойки, соединяющие обечайки. Каждая из обечаек выполнена в виде множества участков цилиндра, окружные концы...
Тип: Изобретение
Номер охранного документа: 0002506437
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a17c

Способ ультразвуковой дробеструйной обработки деталей газотурбинных двигателей

Изобретение относится к ультразвуковой дробеструйной обработке деталей газотурбинных двигателей, содержащих труднодоступную зону в виде паза, сформированного крючком лопатки и участком ее ножки, соединенным с крючком. Осуществляют дробеструйную обработку в камере шариками поверхности крючка...
Тип: Изобретение
Номер охранного документа: 0002507055
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a1c3

Воздухозаборник авиационного двигателя с толкающими воздушными винтами, не заключенными в обтекатель

Изобретение относится к области авиации, более конкретно к воздухозаборнику авиационного двигателя. Воздухозаборник (113) предназначен для соединения с фюзеляжем (141) самолета при помощи пилона (134), при этом локальная длина этого воздухозаборника, измеренная параллельно оси (А) двигателя...
Тип: Изобретение
Номер охранного документа: 0002507126
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a2d7

Система управления оборудованием с изменяемой геометрией газотурбинного двигателя, содержащей, в частности, соединение с помощью направляющих дорожек

Изобретение относится к общей области управления оборудованием с изменяемой геометрией газотурбинного двигателя. Система управления по меньшей мере двух типов оборудования с изменяемой геометрией газотурбинного двигателя, содержащего, по меньшей мере, один первый корпус и один второй корпус,...
Тип: Изобретение
Номер охранного документа: 0002507402
Дата охранного документа: 20.02.2014
+ добавить свой РИД