×
05.09.2018
218.016.8352

Результат интеллектуальной деятельности: Устройство для определения термической стойкости веществ

Вид РИД

Изобретение

Аннотация: Изобретение относится к аналитическому приборостроению и, в частности, к комплексам, предназначенным для определения термической стойкости различных веществ. Устройство состоит из кожуха, внутри которого с воздушным зазором помещен второй заполненный теплоизоляционным материалом цилиндрический кожух, в который коаксиально помещен термостатируемый корпус термостата, представляющий собой толстостенный полый металлический цилиндр с равномерно распределенными по его торцу и равноудаленными от его цилиндрических поверхностей глухими цилиндрическими камерами для размещения герметизируемых реакционных стаканов, каждый из которых снабжен пламегасителем, пневмопредохранителем и пневмопроводом, связывающим внутренний объем реакционного стакана с прецизионным термокомпенсированным преобразователем «абсолютное давление - электрический сигнал», выход которого подключен к системе отображения и регистрации величины абсолютного давления. В каждом пневмопроводе может быть выполнен снабженный вентилем отвод, необходимый для подключения системы вакуумирования или заполнения инертным газом. Термостатирование корпуса термостата осуществляется двумя регуляторами температуры, нагреватель первого из которых распределен по наружной цилиндрической поверхности корпуса термостата, а нагреватель второго распределен по наружной цилиндрической поверхности, помещенного коаксиально внутри корпуса термостата полого металлического цилиндра, снабженного расположенным на его торце диском, расположенным между верхним торцом корпуса термостата и цилиндрическим кожухом термостата, при этом датчики температуры регуляторов расположены в теле корпуса термостата и полого цилиндра с диском. Каждый из преобразователей «абсолютное давление - электрический сигнал» может быть термостатирован. Технический результат изобретения - расширение диапазона рабочих температур и повышение точности измерений при одновременном сокращении времени анализа и времени выхода на режим. 4 з.п. ф-лы, 1 ил.

Изобретение относится к аналитическому приборостроению и, в частности, к комплексам, предназначенным для определения термической стойкости веществ. Известным и наиболее близким является устройство для определения термической стойкости веществ (патент RU 2434220 C1, опубл. 20.11.2011 г.), состоящее из заполненного теплоизоляционным материалом цилиндрического кожуха, в который коаксиально помещен термостатированный металлический цилиндр с выполненными по его периметру полостями для размещения герметизируемых реакционных стаканов, каждый из которых связан с системой измерения и регистрации давления, и системой вакуумирования или заполнения инертным газом. Каждый реакционный стакан снабжен пламегасителем и пневмопроводом, связывающим объем реакционного стакана с пневмопредохранителем и прецезионным термокомпенсированным биполярным преобразователем «давление - напряжение», который, в свою очередь, через многоканальный аналого-цифровой преобразователь, один из входов которого соединен с выходом преобразователя «атмосферное давление-напряжение», связан с системой отображения и регистрации давления.

Недостатками данного устройства являются ограниченный диапазон рабочих температур и большое время анализа и время выхода на режим, обусловленное тем, что выравнивание теплового поля и поступление теплового баланса внутри выполненного из металла массивного цилиндрического корпуса происходит прежде всего за счет его теплопроводности, что требует много времени. При этом неизбежно наличие градиента температур вдоль объема глухих камер, предназначенных для размещения реакционных камер с испытываемыми образцами. Дело в том, что термостатируемый цилиндр излучает тепло не только с цилиндрической поверхности, на которой расположен нагреватель, но и с торцов, на которых нет нагревателей, т.е. температура верхней и нижней части металлического цилиндра отличается от температуры в центре цилиндра.

При загрузке в термостат реакционных стаканов, имеющих комнатную температуру, в предназначенные для них полости имеет место интенсивный отбор тепла, необходимого для их нагрева до рабочей температуры. Анализ (сравнение эталонного образца с испытываемым) начинается с момента наступления теплового баланса, т.е. стабилизации температуры реакционных стаканов, на что требуется время, которое значительно удлиняет время анализа. При проведении анализов на высоких температурах ситуация значительно ухудшается и еще усугубляется за счет увеличения выноса тепла через пневмопровод и заглушки шлюзов, предназначенных для загрузки реакционных стаканов.

Задачей настоящего изобретения является расширение диапазона рабочих температур и повышение точности измерения за счет снижения влияния на нее температуры окружающей среды при одновременном снижении времени анализа и времени выхода на режим.

Технический результат достигается тем, что в устройстве для определения термической стойкости веществ, состоящем из заполненного теплоизоляционным материалом кожуха, в который помещен корпус термостата, представляющий собой металлический цилиндр с выполненными по его периметру полостями для размещения герметизируемых реакционных стаканов, каждый из которых снабжен пламегасителем, пневмопредохранителем и пневмопроводом, связывающим внутренний объем реакционного стакана с прецизионным термокомпенсированным преобразователем «абсолютное давление - электрический сигнал» выход которого, подключен к системе отображения и регистрации величины абсолютного давления. Корпус термостата устройства выполнен в виде толстостенного полого металлического цилиндра термостатирование которого осуществляется двумя регуляторами температуры, нагреватель первого из которых распределен по наружной цилиндрической поверхности корпуса термостата, а нагреватель второго распределен по наружной цилиндрической поверхности помещенного коаксиально внутри корпуса термостата, полого металлического цилиндра, снабженного закрепленным на его торце диском, расположенным между верхним торцом корпуса термостата и кожухом термостата, при этом датчики температуры регуляторов расположены в теле корпуса термостата и полого цилиндра соответственно. Каждый из преобразователей «абсолютное давление - электрический сигнал» может быть термостатирован. В каждом пневмопроводе может быть выполнен отвод, снабженный вентилем, связанным с системой вакуумирования и заполнения инертным газом. Полости для размещения реакционных стаканов могут быть выполнены в виде глухих цилиндрических камер, равномерно распределенных по окружности корпуса термостата и расположенных на равном расстоянии от наружной и внутренней цилиндрической поверхности корпуса термостата. Устройство может быть помещено в дополнительный кожух, формирующий воздушный зазор между ним и цилиндрическим кожухом, заполненным теплоизоляционным материалом. На чертеже изображено предлагаемое устройство. Устройство состоит из внешнего металлического кожуха 1, в который с расположенным по всему периметру кожуха 1 воздушным зазором 2 помещен имеющий отражающую поверхность и заполненный теплоизоляционным материалом 3 цилиндрический металлический кожух 4, в котором коаксиально помещен выполненный в виде толстостенного полого цилиндра корпус 5 термостата. На наружной цилиндрической поверхности корпуса 5 размещен равномерно распределенный по ней нагреватель 6, который соединен с регулятором температуры 7, датчик температуры 8, который размещен в теле корпуса 5 в непосредственной близости к нагревателю 6. Внутри корпуса 5 коаксиально размещен пустотелый металлический цилиндр 9 с расположенным на его верхнем торце металлическим диском 10, являющимся его естественным продолжением. На наружной цилиндрической поверхности цилиндра 9 размещен равномерно распределенный по ней нагреватель 11, связанный с регулятором температуры 12 датчик температуры 13 которого закреплен на внутренней поверхности полого цилиндра 9. В теле корпуса 5 в виде несквозных цилиндрических отверстий выполнены глухие камеры 14, предназначенные для размещения реакционных стаканов 15. Глухие камеры 14 равноудалены от наружной и внутренней цилиндрических поверхностей корпуса 5 и равномерно распределены по окружности корпуса 5. Реакционные стаканы 15 помещаются в глухие камеры 14 через шлюзы в кожухах 1 и 4, закрываемые выполненными из теплоизоляционного материала заглушками 16, одеваемыми на пневмопроводы 17 реакционных стаканов 15. На входе пневмопровода 17 размещен пламегаситель 18, а его выход соединен с пневмопредохранителем 19 преобразователем 20 «абсолютное давление-электрический сигнал» и через вентиль 21 может быть связан с системой вакуумирования и заполнения инертным газом 22. Выход преобразователя 20 соединен со входом системы отображения и регистрации 23.

Устройство работает следующим образом. На регуляторы температуры 7 и 12 подается одинаковое задающее воздействие, соответствующее рабочей температуре корпуса 5, величина которой соответствует условиям проведения эксперимента. Регуляторы температуры 7 и 12 подают питающее напряжение на нагреватели, расположенные на наружных цилиндрических поверхностях корпуса 5 и полого цилиндра 9. В связи с тем, что масса цилиндра 9 намного меньше, чем масса корпуса 5, он нагреется до рабочей температуры за несколько минут и регулятор температуры 12, реализующий пропорционально-интегрально-дифференциальный закон регулирования температуры, начнет поддерживать ее с высокой точностью. При этом значительная часть тепла излучением будет отдаваться корпусу 5, ускоряя его нагрев до рабочей температуры. Кроме того, цилиндр 9 за счет теплопроводности материала и конвекции воздуха внутри цилиндра 9 начнет отдавать тепло являющемуся его продолжением диску 10, который также нагреется до рабочей температуры и в дальнейшем при работе устройства исключит излучение тепла с верхнего торца корпуса 5 и влияние изменений температуры окружающей среды и конвекции воздуха в помещении на температуру реакционных стаканов и, как следствие, на точность измерений.

Равномерно распределенный по наружной поверхности корпуса 5 нагреватель 6 нагревает корпус 5 до рабочей температуры и регулятор температуры 7, реализующий пропорционально-интегрально-дифференциальный закон регулирования, начинает поддерживать заданную температуру с высокой точностью. Одновременным равномерным нагревом внутренней и наружной цилиндрических поверхностей корпуса 5 нагревательными элементами 6 и 11 достигается значительное сокращение времени выхода на рабочий режим и наступления теплового баланса между элементами конструкции. Распределенные по наружным поверхностям цилиндров 5 и 9 нагреватели 6 и 11 обеспечивают равномерное распределение одинаковой температуры по поверхностям, благодаря чему градиент температур в радиальном направлении и по окружности корпуса 5 сведен к минимуму. Наличие незначительного градиента температуры в направлении нижнего торца, обусловленное излучением тепла с нижнего торца корпуса 5, устраняется тем, что цилиндрические глухие камеры 15 не доходят до этой зоны. Выполнение из материала, хорошо отражающего инфракрасное излучение кожуха 4, помещенного с воздушным зазором в наружный кожух 1, снижает количество тепла, отдаваемого кожуху 1 при работе на высоких температурах, обеспечивая безопасность работы оператора, кроме того, снижая величину изменения температуры реакционных стаканов от интенсивности конвекции воздуха в комнате и температуры окружающей среды.

При работе на высоких температурах усиливается влияние конвекции воздуха и температуры окружающей среды на точность измерения абсолютного давления преобразователем 20, что обусловлено повышением его температуры и, как следствие, недостаточностью диапазона термокомпенсатора, выполненного в единой технологии на мембране преобразователя 20 вместе с тензодатчиками. С целью исключения этого влияния осуществляется термостатирование преобразователя 20, которое производится за счет помещения его в термостатированный кожух или путем нанесения на мембрану преобразователя 20 нагревателя, который совместно с имеющимся датчиком температуры подключается к терморегулятору.

Работа на высоких температурах обусловлена расширением в большую сторону диапазона измеряемых и регистрируемых давлений, что, естественно, приводит к снижению точности измерений и повышению требований к уплотнениям реакционных стаканов 15. С целью исключения этих проблем осуществляется вакуумирование реакционных стаканов 15 перед нагревом, что позволяет удалить из них воздух, воду, примеси в воздухе и легкокипящие вещества и растворенные газы из исследуемого продукта. При последующем нагреве реакционных стаканов 15 в них не происходит увеличения давления за счет расширения воздуха, паров воды и примесей, а повышение давления происходит в соответствии с количеством выделенных из исследуемых веществ газов в следствие их нагрева и термодеструкции.

Для проведения исследований термостат устройства нагревается до рабочей температуры без реакционных стаканов 15, но с установленными в шлюзах кожухов 1 и 4 заглушками 16. Тщательно отмытые и подверженные термовакуумной обработке реакционные стаканы 15 заполняются исследуемым веществом и герметично соединяются с пневмопроводами 17. В зависимости от температуры, при которой проводятся испытания, реакционные стаканы 15 либо подвергаются процедуре вакуумирования, либо сразу устанавливаются через шлюзы, в кожухах 1 и 4 в глухие камеры 14, где нагреваются до рабочей температуры.

Вместе со стаканами 15 с исследуемым веществом в термостат помещаются загерметизированные пустые стаканы 15 или стаканы с контрольным веществом, обладающим свойствами, аналогичными с испытываемым веществом, которое перед испытанием находилось в идентичных с исследуемым веществом условиях. При нагреве реакционных стаканов 15, в них пропорционально будет повышаться давление, кроме того, дополнительное повышение давления будет происходить вследствие перехода в газообразное состояние из жидкого (например, вода) или твердого состояния. При достижении в стаканах 15 рабочей температуры начинаются частичная или полная термодеструкция испытываемого вещества и переход части его компонентов в газообразное состояние в соответствии с его термической стойкостью, при этом в соответствии с динамикой и масштабами этого процесса будет подниматься давление в стаканах 15. Сравнивая динамику изменения и величину давления в пустых стаканах 15, в стаканах 15 с контрольным веществом и в стаканах 15 с испытываемым веществом, можно судить как о составе исследуемого вещества, так и о качестве процесса синтеза данного вещества. Информация (пневмосигнал) о величине давления в реакционном стакане 15 через пламегаситель 18 и пневмопровод 17 поступает на преобразователь 20 «абсолютное давление - электрический сигнал» и затем поступает в систему отображения и регистрации 23, в качестве которой обычно используется компьютером. На пневмопроводе установлен также пневмопредохранитель 19, необходимый для сброса давления, когда его величина превышает верхний предел измерения, что исключает возможность выхода из строя преобразователя 20.

Совокупность использованных технических решений в заявленном устройстве позволяет в два раза расширить диапазон рабочих температур, сократить время выхода на режим, время анализа и повысить точность и повторяемость измерений.


Устройство для определения термической стойкости веществ
Устройство для определения термической стойкости веществ
Источник поступления информации: Роспатент

Showing 161-166 of 166 items.
17.01.2020
№220.017.f671

Высокоэнергетический пироксилиновый порох для метательных зарядов танковой артиллерии

Изобретение относится к производству пироксилиновых высокоэнергетических порохов и может быть использовано для изготовления порохов к ствольным системам многоразового действия, а именно метательных зарядов (МЗ) выстрела танковой артиллерии. Изобретение направлено на улучшение воспламеняемости...
Тип: Изобретение
Номер охранного документа: 0002711143
Дата охранного документа: 15.01.2020
23.02.2020
№220.018.05f8

Высокопористый многоканальный сферический порох

Решение относится к производству пористых порохов, применяемых, в частности, для снаряжения спортивных и охотничьих дробовых патронов к гладкоствольному оружию. Сферический порох характеризуется тем, что пороховые элементы представляют собой полый шар с пористой оболочкой - горящим сводом,...
Тип: Изобретение
Номер охранного документа: 0002714814
Дата охранного документа: 19.02.2020
25.04.2020
№220.018.198e

Сферический порох для патронов стрелкового оружия

Изобретение относится к производству сферических порохов (СФП) на основе нитратов целлюлозы, в частности использования нитратов целлюлозы с повышенной удельной поверхностью для получения сферического пороха к 5,6-мм винтовочным патронам кольцевого воспламенения. Изобретение направлено на...
Тип: Изобретение
Номер охранного документа: 0002719843
Дата охранного документа: 23.04.2020
21.05.2023
№223.018.698c

Сферический порох для 5,45 мм патрона с усиленным зарядом

Изобретение относится к области получения сферических порохов для снаряжения патронов с усиленным зарядом, предназначенных для проверки прочности запирающего механизма стрелкового оружия. Сферический порох для снаряжения 5,45 мм патрона с усиленным зарядом включает пироксилин 1 Пл, стабилизатор...
Тип: Изобретение
Номер охранного документа: 0002794938
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.698d

Сферический порох для 5,45 мм патрона с усиленным зарядом

Изобретение относится к области получения сферических порохов для снаряжения патронов с усиленным зарядом, предназначенных для проверки прочности запирающего механизма стрелкового оружия. Сферический порох для снаряжения 5,45 мм патрона с усиленным зарядом включает пироксилин 1 Пл, стабилизатор...
Тип: Изобретение
Номер охранного документа: 0002794938
Дата охранного документа: 25.04.2023
16.06.2023
№223.018.7ad6

Сферический порох для метательного заряда к 5,45х39 мм патрону

Изобретение относится к области получения сферических порохов для стрелкового оружия. Сферический порох для метательного заряда к 5,45×39 мм патрону включает пироксилин, нитроглицерин, дифениламин, централиты I и II, динитротолуол, графит, этилацетат и влагу. При этом в качестве исходного сырья...
Тип: Изобретение
Номер охранного документа: 0002732335
Дата охранного документа: 15.09.2020
Showing 191-200 of 211 items.
07.06.2019
№219.017.752d

Композиционная резиновая смесь для акустических покрытий

Изобретение относится к резиновой промышленности и может быть использовано в производстве звукопоглощающих покрытий, в частности, для объектов судостроения. Композиционная резиновая смесь для акустических покрытий включает, мас. ч.: бутадиен-нитрильный каучук с массовой долей связанного нитрила...
Тип: Изобретение
Номер охранного документа: 0002690807
Дата охранного документа: 05.06.2019
19.06.2019
№219.017.8735

Способ получения химических соединений с додекагидро-клозо-додекаборатным анионом

Изобретение может быть использовано в химической промышленности. В способе получения химических соединений с додекагидро-клозо-додекаборатным анионом BH  проводят пиролиз тетрагидробората калия KBH в инертной атмосфере в присутствии тетрафторобората натрия или тетрафторобората калия. Далее...
Тип: Изобретение
Номер охранного документа: 0002378196
Дата охранного документа: 10.01.2010
19.06.2019
№219.017.8af9

Заряд для 5,45 мм патрона

Изобретение относится к области разработки зарядов к патронам для стрелкового оружия. Заряд выполнен из сферических пороховых элементов, состоящих из нитроцеллюлозы с содержанием оксида азота 213,0…214,0 мл NO/г и 10,5…13,5 мас.% нитроглицерина, 0,5…1,1 мас.% дифениламина, с насыпной плотностью...
Тип: Изобретение
Номер охранного документа: 0002448076
Дата охранного документа: 20.04.2012
19.06.2019
№219.017.8aff

Заряд для 5,6 мм спортивно-винтовочного патрона кольцевого воспламенения

Изобретение относится к области разработки зарядов к патронам для стрелкового оружия. Заряд состоит из сферического пороха, изготовленного из нитроцеллюлозы с содержанием оксида азота 209…210,5 мл NO/г, углерода, дифениламина и этилацетата с насыпной плотностью 0,600…0,850 кг/дм и размером...
Тип: Изобретение
Номер охранного документа: 0002448077
Дата охранного документа: 20.04.2012
19.06.2019
№219.017.8b45

Способ получения мелкодисперсных нитратов целлюлозы

Изобретение относится к области получения нитратцеллюлозных пресс-порошков для изготовления энергетических составов и касается способа получения мелкодисперсных нитратов целлюлозы. Способ включает приготовление водной суспензии нитратцеллюлозных волокон, дозировку этилацетата, добавление...
Тип: Изобретение
Номер охранного документа: 0002441880
Дата охранного документа: 10.02.2012
29.06.2019
№219.017.a000

Устройство для импульсной знакопеременной обработки прискважинной зоны пласта

Изобретение относится к нефтегазодобывающей промышленности. Обеспечивает возможность разработки генератора давления для интенсификации нефтегазодобычи на основе артиллерийских порохов, характеризующегося пониженной массой заряда и сопоставимого по эффективности с наиболее мощными существующими...
Тип: Изобретение
Номер охранного документа: 0002451173
Дата охранного документа: 20.05.2012
29.06.2019
№219.017.a100

Заряд твердого ракетного топлива

Заряд твердого ракетного топлива включает пучок топливных элементов, скрепленных с дном двигателя полимерным крепящим составом и дополнительным клеем. Полимерный крепящий состав представляет собой полиуретан, состоящий из смоляной части и отвердителя аминного типа. Отвердитель наряду с...
Тип: Изобретение
Номер охранного документа: 0002449156
Дата охранного документа: 27.04.2012
10.07.2019
№219.017.ad10

Капсюль-воспламенитель патрона стрелкового оружия

Группа изобретений относится к области патронного производства. Капсюль-воспламенитель патрона стрелкового оружия (вариант 1) включает ударно-воспламенительный состав, содержащий диазодинитрофенол, одноосновный стифнат калия и инертный сенсибилизатор, при этом отношение массы...
Тип: Изобретение
Номер охранного документа: 0002384552
Дата охранного документа: 20.03.2010
03.10.2019
№219.017.d1d3

Футляр для зарядов к миномётным 82-мм выстрелам

Изобретение относится к области военной техники в части упаковки метательных зарядов минометных 82-мм выстрелов. Футляр состоит из корпуса и крышки, в которых содержатся основной и дополнительный заряды, стойки для удержания дополнительных зарядов, штанги для размещения основного заряда,...
Тип: Изобретение
Номер охранного документа: 0002701748
Дата охранного документа: 01.10.2019
24.11.2019
№219.017.e5dc

Флегматизирующий состав для эмульсионной флегматизации сферических порохов

Изобретение относится к производству порохов для стрелкового оружия. Флегматизирующий состав для эмульсионной флегматизации сферических порохов содержит смесь динитрата диэтиленгликоля и динитрата триэтиленгликоля (ЛД-30) 50-90 мас.% и централит II 10-50 мас.%. Применение смеси ЛД-30 в виде...
Тип: Изобретение
Номер охранного документа: 0002707031
Дата охранного документа: 21.11.2019
+ добавить свой РИД