×
01.09.2018
218.016.8248

СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛСОДЕРЖАЩИХ НАНОРАЗМЕРНЫХ ДИСПЕРСИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Настоящее изобретение относится к нефтехимической промышленности, а именно к способам получения низкоконцентрированных каталитических дисперсий для процесса получения алифатических углеводородов по методу Фишера-Тропша в трехфазном сларри-реакторе. Способ получения металлсодержащей наноразмерной дисперсии катализатора синтеза Фишера-Тропша на основе оксидов активных металлов включает растворение солей активных металлов в воде, введение полученного раствора в расплавленный нефтяной парафин при температуре выше температуры разложения указанных солей и образование указанной дисперсии катализатора, причем введение указанного раствора солей осуществляют со скоростью 20-60 мл/час при перемешивании в токе инертного газа, после чего осуществляют выдерживание до образования оксидов активных металлов и охлаждение в токе инертного газа в течение 1-6 часов, а содержание активных металлов катализатора в указанной дисперсии не превышает 3 мас.%. Технический результат - уменьшение размера частиц наноразмерной дисперсии, узкое распределение наноразмерных частиц по размерам, снижение концентрации активных металлов, снижение эксплуатационных затрат, предотвращение оседания и агломерации частиц дисперсии, обеспечение возможности ее длительного хранения без расслаивания и оседания. 2 з.п. ф-лы, 1 табл., 12 пр.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к нефтехимической промышленности, а именно к способам получения низкоконцентрированных каталитических дисперсий для процесса получения алифатических углеводородов по методу Фишера-Тропша в трехфазном сларри-реакторе.

Уровень техники

Технологии формирования каталитических дисперсий непосредственно в углеводородной среде трехфазных реакторов находят все большее применение в процессах нефтехимии и нефтепереработки. В частности, перспективной технологической модификацией синтеза Фишера-Тропша в настоящее время считается синтез в присутствии катализатора, суспендированного в высококипящей углеводородной жидкости (сларри-система). При этом ультрадисперсные частицы катализатора - каталитические дисперсии - могут быть сформированы in situ непосредственно в углеводородной среде без применения. Важно отметить, что использование такой технологии позволит получать чрезвычайно активные ультрадисперсные частицы с высокоразвитой поверхностью, что делает возможным осуществлять технологический процесс с меньшей концентрацией катализатора.

Основной проблемой в использования каталитических дисперсий в промышленности является склонность этих систем к агрегации. Возможность контроля размера частиц на стадии синтеза дисперсии является важным фактором успешной реализации всего технологического процесса. Именно по этой причине наблюдается рост научного интереса к закономерностям формирования каталитических дисперсий непосредственно в реакционной зоне (in situ).

Известен способ получения металлсодержащей дисперсии катализатора синтеза Фишера-Тропша состава, мас. %: 87-95 Fe, 2-9 K2O, 1-8 Al2O3, который получают и активируют непосредственно в реакторе (см., патент РФ 2443471, кл. МПК B01J 23/745, В82В 1/00, B01J 23/78, B01J 21/04, С07С 1/04, опубл. 27.02.2012). Катализатор сформирован в процессе термообработки компонентов катализатора в токе водорода или оксида углерода в расплавленном парафине. Компоненты катализатора вводят в расплавленный нефтяной парафин в виде механической смеси солей и таким образом получают дисперсию. Образцы высокодисперсного оксида железа готовят следующим образом: расплавленный парафин объемом 25 мл нагревают до требуемой температуры, затем при интенсивном перемешивании, крайне осторожно (во избежание возгорания парафина) присыпают тонкоизмельченный порошок прекурсора соответствующей концентрации. Образующуюся в ходе термолиза дисперсию высокодисперсного оксида железа после термолиза выдерживают при соответствующей температуре в течение 1 ч при интенсивном перемешивании, для полного удаления продуктов разложения. Размер частиц составляет 667-1327 нм, т.е, катализатор не является наноразмерным, размер его частиц микрометрический. Другие недостатки известного способа - высокий расход активного металла катализатора и склонность дисперсии к оседанию частиц.

В качестве прототипа изобретения выбран способ получения металлсодержащей наноразмерной дисперсии катализатора, описанный в патенте РФ №2489207, кл. МПК B01J 23/745, B01J 23/72, В82В 1/00, С07С 1/04, C10G 2/00, опубл. 20.08.2013 г. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода (для синтеза Фишера-Тропша), содержащий наноразмерные частицы железа и сформированный in situ непосредственно в зоне реакции в процессе термообработки компонентов катализатора в токе водорода или оксида углерода в расплавленном парафине, характеризующийся тем, что наноразмерные частицы железа промотированы медью при следующем соотношении компонентов, % мас.: Cu 5-25; Fe - остальное. Для получения наноразмерной каталитической дисперсии компоненты катализатора вводят в расплавленный нефтяной парафин или в виде механической смеси солей, или в виде их раствора в растворителе, не смешивающемся с жидкой фазой, например, спирт, вода, эфир. Затем этот прекурсор катализатора подвергают термообработке при температуре 40-450°С в токе водорода или оксида углерода с образованием устойчивого коллоидного раствора. Размер частиц составляет 20-25 нм. Меньший размер частиц в прототипе не достигается; более того, в дальнейшем происходит агломерация до среднего размера частиц катализатора 250-270 нм. Недостатком прототипа также является высокий расход активного металла катализатора.

Сущность изобретения

Задача предлагаемого изобретения - уменьшение размера частиц наноразмерной дисперсии, снижение концентрации активных металлов в составе дисперсии катализатора, предотвращение оседания и агломерации частиц дисперсии.

Поставленная задача решается тем, что в способе получения металлсодержащей наноразмерной дисперсии катализатора синтеза Фишера-Тропша на основе оксидов активных металлов, включающем растворение солей активных металлов в воде, введение полученного раствора в расплавленный нефтяной парафин при температуре выше температуры разложения указанных солей и образование указанной дисперсии катализатора, введение указанного раствора солей осуществляют со скоростью 20-60 мл/час при перемешивании в токе инертного газа, после чего осуществляют выдерживание до образования оксидов активных металлов и охлаждение в токе инертного газа в течение 1-6 часов, а содержание активных металлов катализатора в указанной дисперсии не превышает 3% масс.

При указанном растворении солей активных металлов могут дополнительно вводить соль щелочного металла. Она является прекурсором промотора.

Указанная дисперсия может содержать оксиды двух активных металлов. Тогда катализатор представляет собой биметаллическую систему.

Технический результат, который может быть достигнут при использовании предлагаемого изобретения, заключается в

- снижении эксплуатационных затрат производства, так как при использовании предлагаемого метода приготовления каталитических дисперсий снижается концентрация активных компонентов (металлов).

- возможность использования катализаторов на основе каталитических дисперсий в современных сларри-реакторах без угрозы оседания и агломерации.

- улучшение эксплуатационных показателей производства вследствие бесперебойной работы сларри-реакторов с минимальным количеством регламентных работ.

Согласно данным динамического рассеяния света размер частиц полученных предлагаемым методом каталитической системы составляет 1-8 нм.

Наноразмерную металлсодержащую дисперсию готовят методом капельного термолиза раствора соли металла и промотора в парафине марки П-2.

Растворы прекурсоров вводят в четырехгорлую колбу при нагревании с заданной скоростью в токе инертного газа при перемешивании. После добавления всего объема раствора солей образец выдерживают в токе инертного газа, а затем охлаждают.

В качестве промоторов используют классические промоторы катализаторов для синтеза Фишера-Тропша - щелочные металлы. Также могут быть использованы биметаллические системы. Размер частиц наноразмерной металлсодержащей дисперсии определяли методом динамического рассеивания света на приборе NanoZetasizer ZS.

В результате описанного метода приготовления наноразмерной металлсодержащей дисперсии формируется система, в которой наноразмерные каталитически активные частицы металлов тонкодисперсно и однородно распределены в углеводородной среде - парафине марки П-2.

Под термином «активные металлы» здесь понимаются любые металлы, проявляющие активность в катализе синтеза Фишера-Тропша, такие, как железо, кобальт, никель, рутений.

В качестве солей металлов могут использовать любые водорастворимые соли используемых металлов, например, нитраты, сульфаты, хлориды и другие.

Используют любые инертные газы, например, гелий, аргон и т.д.

Предлагаемый способ получения наноразмерных металлсодержащих дисперсий включает следующие стадии:

• Приготовление раствора соли прекурсоров активных компонентов (активных металлов) в воде в расчетных количествах на массу навески парафина П-2;

• Нагрев дисперсионной среды (парафина П-2) до температуры, превышающей температуру разложения солей прекурсоров, в токе инертного газа;

• Введение раствора солей прекурсоров с заданной скоростью (20-60 мл/час) при перемешивании;

• Выдерживание до образования оксидов;

• Охлаждение полученной дисперсии в токе инертного газа в течение 1-6 часов.

Предложенный способ получения каталитической дисперсии следующие преимущества:

- возможность синтеза каталитической дисперсии с активными металлсодержащими частицами нанометрической области, не склонными к агломерации и оседанию;

- возможность длительного хранения и транспортировки полученной дисперсии без расслаивания и оседания;

- возможность синтеза каталитической дисперсии с узким распределением наноразмерных частиц по размерам;

- возможность синтеза би- и полиметаллической дисперсии с активными наноразмерными частицами, которая также не будет иметь склонность к оседанию;

- наноразмерные металлические частицы в каталитической дисперсии образуются "in situ" в процессе формирования ультрадисперсной каталитической системы, а не вводятся извне;

- предложенный метод синтеза каталитических дисперсий осуществляется с использование стандартного оборудования;

- нанометрические (наноразмерные) металлсодержащие частицы в составе каталитической дисперсии, приготовленной предложенным методом, значительно меньше наноразмерных частиц прототипа;

Нижеследующие примеры иллюстрируют изобретение, но никоим образом не ограничивают область его применения. Размер частиц приведен в табл. 1.

Пример 1 (1 г Fe)

7,2 г девятиводного нитрата железа растворяют в 3,3 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 98,6% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 8 нм.

Пример 2 (0,5 г Fe)

3,6 г девятиводного нитрата железа растворяют в 1,7 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 0,7% Fe: 99,3% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1, нм.

Пример 3 (2 г Fe + 0,04 K)

14,4 г девятиводного нитрата железа и 0,01 г нитрата калия растворяют в 6,8 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 3,0% Fe: 0,06% K: 96,94% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1, нм.

Пример 4 (1 г Fe + 0,02 K)

7,2 г девятиводного нитрата железа и 0,005 г нитрата калия растворяют в 3,4 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 0,03% K: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1, нм.

Пример 5 (1 г Fe + 0,01 K)

7,2 г девятиводного нитрата железа и 0,03 г нитрата калия растворяют в 3,3 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 0,01% K: 98,59% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1 нм.

Пример 6 (1 г Fe + 0,02 Na)

7,2 г девятиводного нитрата железа и 0,07 г нитрата натрия растворяют в 3,3 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 0,03% Na: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 2 нм.

Пример 7 (1 г Fe + 0,01 Na)

7,2 г девятиводного нитрата железа и 0,04 г нитрата натрия растворяют в 3,3 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 0,01% Na: 98,59% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1 нм.

Пример 8 (0,5 г Fe + 0,01 Na)

3,6 г девятиводного нитрата железа и 0,07 г нитрата натрия растворяют в 1,6 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% Fe: 0,03% Na: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 2 нм.

Пример 9 (0,5 г Со)

2,5 г шестиводного нитрата кобальта, растворяют в 1,7 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 0,7% Со: 99,3% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 5 нм.

Пример 10 (1 г Fe + 0,02 г K + 0,5 г Со)

2,5 г шестиводного нитрата кобальта, 7,2 г девятиводного нитрата железа и 0,05 нитрата калия растворяют в 3,4 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% (Fe+Co): 0,03% K: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 2 нм.

Пример 11 (0,75 г Fe + 0,02 г K + 0,25 г Со)

1,2 г шестиводного нитрата кобальта, 5,4 г девятиводного нитрата железа и 0,05 нитрата калия растворяют в 3,4 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% (Fe+Co): 0,03% K: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 1 нм.

Пример 12 (0,5 г Fe + 0,02 г K + 0,5 г Со)

2,5 г шестиводного нитрата кобальта, 3,6 г девятиводного нитрата железа и 0,05 нитрата калия растворяют в 3,4 мл дистиллированной воды. Полученный раствор вводят в 100 мл расплавленного парафина П-2 со скоростью 30 мл/час при температуре 280°С и постоянном перемешивании в токе инертного газа - гелия. После введения всего объема раствора прекурсора систему охлаждают до 80°С в токе инертного газа.

Полученный таким образом катализатор имеет состав, % масс: 1,4% (Fe+Co): 0,03% K: 98,57% парафин П-2. Размер частиц полученного катализатора определен методом динамического светорассеяния и составляет 2 нм.

Примечания:

* - в том числе Fe - 1.4% мас., Со - 0.7% мас.

** - в том числе Fe - 1.05% мас., Со - 0.35% мас.

*** - в том числе Fe - 0.7% мас., Со - 0.7% мас.

Источник поступления информации: Роспатент

Showing 21-30 of 141 items.
27.09.2014
№216.012.f9d0

Способ выбора лечения акне у женщин

Изобретение относится к медицине, а именно дерматологии, и может быть использовано для выбора лечения акне у женщин путем исследования биологических жидкостей и назначения препаратов в зависимости от результатов обследования. При этом в качестве биологических жидкостей используют кровь и мочу,...
Тип: Изобретение
Номер охранного документа: 0002529789
Дата охранного документа: 27.09.2014
20.11.2014
№216.013.091a

Способ получения синтез-газа

Изобретение относится к области нефтехимии и может быть использовано для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Метансодержащее сырьё подвергают окислительной конверсии при температуре 650-1100°C в лифт-реакторе. В качестве окислителя используют...
Тип: Изобретение
Номер охранного документа: 0002533731
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0ed2

Способ скоростной деструкции остаточных нефтяных продуктов

Изобретение относится к способу скоростной деструкции остаточных нефтяных продуктов. Способ включает адсорбцию остаточных нефтяных продуктов в порах углеродного сорбента и обработку сверхвысокочастотным излучением при индуцированной температуре до 600°C в потоке аргона или диоксида углерода....
Тип: Изобретение
Номер охранного документа: 0002535211
Дата охранного документа: 10.12.2014
27.01.2015
№216.013.21b7

Дифосфины, катализатор синтеза сложных эфиров на их основе и способ синтеза сложных эфиров в его присутствии

Группа изобретений относится к дифосфинам, палладиевому катализатору на их основе и способу синтеза сложных эфиров с использованием указанного катализатора, которые могут использоваться в химической промышленности, причем дифосфин имеет формулу: где R,R=H, Alk, Ar, OR, исключая случай R,R=H....
Тип: Изобретение
Номер охранного документа: 0002540079
Дата охранного документа: 27.01.2015
20.02.2015
№216.013.2720

Способ получения раствора сополимера на основе акрилонитрила в n-метилморфолин-n-оксиде

Изобретение относится к способу получения раствора сополимера на основе акрилонитрила (ПАН), пригодного для получения полиакрилонитрильных волокон - прекурсоров углеродных волокон. Способ получения раствора сополимера заключается в том, что проводят твердофазное смешение сополимера на основе...
Тип: Изобретение
Номер охранного документа: 0002541473
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3fde

Способ получения олефинов c-c из диметилового эфира

Изобретение относится к способу получения олефинов C-C из диметилового эфира при повышенной температуре в присутствии катализатора. При этом катализатор предварительно измельчают механически, затем суспендируют в углеводородах, выкипающих при температуре выше 320°C, и диспергируют полученную...
Тип: Изобретение
Номер охранного документа: 0002547838
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fe5

Катализатор, способ его получения и способ получения синтез-газа

Изобретение относится к катализатору получения синтез-газа в процессе парциального окисления метана, представляющему собой микросферический носитель с нанесенным активным компонентом на основе оксидов металлов, при этом в качестве микросферического носителя используют частицы диаметром от 50 до...
Тип: Изобретение
Номер охранного документа: 0002547845
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.44a9

Способ выделения полимера из раствора при формовании пан-прекурсора для получения углеродных волокон

Изобретение относится к технологии получения волокон из полимеров на основе полиакрилонитрила-полиакрилонитрила (ПАН) и сополимеров акрилонитрила (АН), а именно к стадии выделения полимера из раствора, и может быть использовано в производстве материалов для текстильной промышленности и...
Тип: Изобретение
Номер охранного документа: 0002549075
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4693

Способ получения алкановых и ароматических углеводородов

Изобретение относится к каталитическому превращению возобновляемого сырья - продуктов ферментации биомассы (этанол, сивушные масла) и их смесей с растительным маслом в алкан-ароматическую фракцию C-C, которая может быть использована для получения компонентов топлив. Способ получения алкановых и...
Тип: Изобретение
Номер охранного документа: 0002549571
Дата охранного документа: 27.04.2015
20.07.2015
№216.013.62e1

Способ получения жидких углеводородных смесей путем гидроконверсии лигноцеллюлозной биомассы

Изобретение относится к получению жидких углеводородных смесей из растительной лигноцеллюлозной биомассы, предназначенных для дальнейшей переработки в моторные топлива и химические продукты. Способ получения жидких углеводородных смесей осуществляют путем гидроконверсии лигноцеллюлозной...
Тип: Изобретение
Номер охранного документа: 0002556860
Дата охранного документа: 20.07.2015
Showing 21-30 of 57 items.
20.07.2015
№216.013.62e1

Способ получения жидких углеводородных смесей путем гидроконверсии лигноцеллюлозной биомассы

Изобретение относится к получению жидких углеводородных смесей из растительной лигноцеллюлозной биомассы, предназначенных для дальнейшей переработки в моторные топлива и химические продукты. Способ получения жидких углеводородных смесей осуществляют путем гидроконверсии лигноцеллюлозной...
Тип: Изобретение
Номер охранного документа: 0002556860
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6332

Способ получения синтез-газа

Изобретение относится к области нефтехимии и более конкретно к способу получения синтез-газа, который используется как исходное сырье, например, для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Способ получения синтез-газа включает окислительную конверсию...
Тип: Изобретение
Номер охранного документа: 0002556941
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.636a

Способ гидроконверсии тяжелых фракций нефти

Настоящее изобретение относится к области нефтепереработки тяжелых нефтяных фракций. Изобретение касается способа гидроконверсии тяжелых фракций нефти - исходного сырья, состоит из нулевой стадии и последующих N стадий. Нулевая стадия включает подачу в реактор сырья, прекурсора катализатора -...
Тип: Изобретение
Номер охранного документа: 0002556997
Дата охранного документа: 20.07.2015
20.12.2015
№216.013.9d0e

Катализатор получения алкадиенов (варианты) и способ получения алкадиенов с его применением (варианты)

Изобретение относится к синтезу основных мономеров синтетического каучука, в частности бутадиена-1,3 и изопрена каталитическим превращением низших спиртов. Описан катализатор получения алкадиенов из низших спиртов состава, мас.%: NaO - 0,1÷0,3, MgO - 30÷40, SiO - остальное и другой...
Тип: Изобретение
Номер охранного документа: 0002571831
Дата охранного документа: 20.12.2015
20.08.2016
№216.015.4af2

Катализатор и способ конверсии этанола, метанола или их смеси

Изобретение относится к области получения ароматических углеводородов из спиртов, а именно к катализатору конверсии этанола, метанола или их смеси в ароматические углеводороды. Катализатор содержит цеолит HZSM-5, ZnO и дополнительно содержит FeO и MgO при следующем составе в расчете на оксиды,...
Тип: Изобретение
Номер охранного документа: 0002594564
Дата охранного документа: 20.08.2016
25.08.2017
№217.015.a701

Способ получения катализатора, катализатор и способ алкилирования бензола этиленом с его применением

Изобретение относится к способам приготовления катализаторов для нефтехимических процессов, а именно к способу приготовления цеолитсодержащих катализаторов для процесса алкилирования бензола этиленом и способу алкилирования бензола этиленом с применением таких катализаторов, и может быть...
Тип: Изобретение
Номер охранного документа: 0002608037
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.a715

Способ гидроконверсии тяжёлого углеводородного сырья (варианты)

Изобретение относится к способам гидроконверсии тяжелого углеводородного сырья (ТУС) в присутствии дисперсных, ультрадисперсных или наноразмерных катализаторов. Указанный способ может быть использован при гидроконверсии тяжелых битуминозных нефтей, природных битумов, высококипящих остатков...
Тип: Изобретение
Номер охранного документа: 0002608035
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.a7fa

Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)

Группа изобретений относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°C. По первому варианту реализации способа нефтяной шлам,...
Тип: Изобретение
Номер охранного документа: 0002611163
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.ab82

Способ окислительной конверсии этана в этилен

Изобретение относится к способу окислительной конверсии этана в этилен. Способ включает подачу этана в реактор дегидрирования, где он контактирует с катализатором дегидрирования на основе оксидов металлов, каталитическое дегидрирование этана при повышенной температуре, отделение продуктов...
Тип: Изобретение
Номер охранного документа: 0002612305
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b49f

Способ гидроконверсии тяжелой части матричной нефти

Изобретение относится к способу гидроконверсии тяжелой части матричной нефти с получением жидких углеводородных смесей в присутствии распределенного в сырье молибденсодержащего катализатора при повышенной температуре и давлении водорода. Способ характеризуется тем, что в сырье - тяжелую часть...
Тип: Изобретение
Номер охранного документа: 0002614140
Дата охранного документа: 23.03.2017
+ добавить свой РИД